harnessing the power of super-resolution microscopy

38
Harnessing the Power of SuperResolution Microscopy Manasa V. Gudheti, Ph.D., Applications Scientist

Upload: ngophuc

Post on 08-Jan-2017

226 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Harnessing the Power of Super-Resolution Microscopy

Harnessing the Power of Super‐Resolution Microscopy

Manasa V. Gudheti, Ph.D., Applications Scientist

Page 2: Harnessing the Power of Super-Resolution Microscopy

Outline

• Brief Intro to Super‐Resolution Microscopy• Principle of Single Molecule Localization (SML)• Photoswitching Mechanisms• Sample Prep Optimization• Biological Examples

Page 3: Harnessing the Power of Super-Resolution Microscopy

Evolution of Super Resolution Microscopy

Z

X

100 nm

Resolutionxy‐20 nm; z‐50 nm

Single molecule Localization (SML)

Confocal                        SIM                        STED

Page 4: Harnessing the Power of Super-Resolution Microscopy

Vutara 350: Video Rate Super‐Resolution Microscope

• Fastest 3D super‐resolution microscope on the market• Only 3D video‐rate super‐resolution microscope• Precise 3D super‐resolution (SML) : 20nm (x,y) & 50nm (z)• Designed by scientists for biologists • Easy to use, yet powerful software• Loaded with innovative and cutting edge features

Page 5: Harnessing the Power of Super-Resolution Microscopy

250 nm

Principle of Single Molecule Localization (SML)

Page 6: Harnessing the Power of Super-Resolution Microscopy

Principle of Single Molecule Localization (SML)

Images are captured from two focal planes simultaneously on the Vutara microscope(f)PALM, STORM, dSTORM, GSDIM

Page 7: Harnessing the Power of Super-Resolution Microscopy

Super resolutionConventional

Alexa 647 labeled microtubules in a BSC1 cell

Comparison

2 um

Page 8: Harnessing the Power of Super-Resolution Microscopy

Photoswitching Mechanism for Blinking

Van de Linde et al. Photochem. Photobiol. Sci., 8, 465–469 (2009)

Page 9: Harnessing the Power of Super-Resolution Microscopy

Photoswitching Mechanism for Blinking

Henriques et al. Biopolymers 95, 499–506 (2011)

Page 10: Harnessing the Power of Super-Resolution Microscopy

Photoswitching Mechanism for Blinking

Blinking buffer: Reducing and oxidizing system (ROXS)

Shi et al. Anal. Chem. 82, 6132–6138 (2010)

Van de Linde et al. Photochem. Photobiol. Sci. 10, 499–506 (2011)

β-mercaptoethanol, (BME) β-mercaptoethylamine (MEA) and glucose/oxidase catalase (GLOX)

Page 11: Harnessing the Power of Super-Resolution Microscopy

Sample Prep Questions to Ask

• What type of sample do you want to image? Cells, tissues, bacteria, virus

• What is your current sample prep technique? • What kind of dyes do you currently use? • How do you mount your sample?• What are your expectations?

Page 12: Harnessing the Power of Super-Resolution Microscopy

Single Molecule Localization ProbesPreferred Organic Dyes 

Excitation Laser Line

(nm)

Dye ExcitationMaximum

(nm)

Emission Maximum

(nm)488 ATTO 488 501 523

Alexa 488 495 519561 Cy3B 559 570

Alexa 568 578 603Alexa 555 555 580

640 Alexa 647 650 665Cy5 649 670DyLight 650 652 672

750 DyLight 755 754 776Alexa 750 749 775

Page 13: Harnessing the Power of Super-Resolution Microscopy

Choice of Organic Dyes

Dempsey et al. Nat. Methods. 6, 1027-1036 (2011)

Page 14: Harnessing the Power of Super-Resolution Microscopy

Photoswitchable Fluorescent Proteins (Genetically-Encoded)

Probe Type λPA (nm) λX (nm) λEM (nm) VariantsPSCFP2 0→A (Irrev) Violet (~400) 490 511 PSCFPPA-GFP 0→A (Irrev) Violet 504 517

Dronpa 0→A (Rev*) *activ. w violetquench w blue

503 518 Fastlime, Dronpa3

Dendra2 A→B (Irrev) Violet-Blue 553 573 Dendra

EosFP A→B (Irrev) Violet 569 581 mEos3.2, tdEos

Kaede A→B (Irrev) Violet 572 580

KikGR A→B (Irrev) Violet 583 593

PAmCherry 0→A (Irrev) Violet 564 595 1&2

Page 15: Harnessing the Power of Super-Resolution Microscopy

• Dendra2‐HA • PAmCherry‐actin

Fast 2‐Color Live Super‐Resolution Imaging Reveals Dynamic Associations

Gudheti  et al. Manuscript in preparation

HA Moves Along Actin‐Rich Membrane Regions in Fibroblasts at 37C

Page 16: Harnessing the Power of Super-Resolution Microscopy

● Dendra2-HA (2,788 mol)● PAmCherry-Actin (7,316 mol)● PAmKate-TfR (2,967 mol)

1 μm

3‐Color FPALM of Dendra2‐HA, PAmCherry‐Actin, and PAmKate‐Transferrin Receptor

Gunewardene et al. Super‐resolution imaging of multiple fluorescent proteins with highly overlapping emission  spectra in living cells (2011)  Biophysical  J 101

Page 17: Harnessing the Power of Super-Resolution Microscopy

Three color super-resolution imaging of multiple fluorescent proteins in living cells

Gunewardene et al. Super‐resolution imaging of multiple fluorescent proteins with highly overlapping emission  spectra in living cells (2011)  Biophysical  J 101

Page 18: Harnessing the Power of Super-Resolution Microscopy

Live‐cell Imaging using mEos3.2 

• Biological System: Live HeLa Cell• Label: mEos3.2‐clathrin light chain• Imaged at 600 fps  for 58 s• 2 seconds per SR image• Imaged in PBS

Adapted from Huang et al. Nat. Meth. 10, 653‐658 (2013)

Page 19: Harnessing the Power of Super-Resolution Microscopy

Live‐cell Fast Imaging using Organic Dyes

• Biological System: LiveEA.Hy926 Cell• Label: AlexaFluor 647 labeled transferrin• Imaged at 1600 fps • Super‐resolution images were reconstructed 

from sequential sets of 50 frames  (31‐ms acquisition time or 32 super‐resolution images per second )

• Cells were imaged DMEM (high glucose, phenol red–free) supplemented with 2‐beta mercaptoethanol, glucose oxidase and catalase  at  room temperature.

Adapted from Huang et al. Nat. Meth. 10, 653‐658 (2013)

Page 20: Harnessing the Power of Super-Resolution Microscopy

Live Cell Imaging of BSC1 cells Labeled with AF647 Transferrin (3000 frames total imaged)

Page 21: Harnessing the Power of Super-Resolution Microscopy

Live‐Cell Imaging of Direct‐Labeled Cellular DNA

Benke & Manley. ChemBiochem. 13, 298-301 (2012)

• 1 mM ascorbic acid, 10% glucose, glucose oxidase and catalase in Leibowitz medium, pH 7.2

• 8000 frames• 30 ms acquisition time

Page 22: Harnessing the Power of Super-Resolution Microscopy

• Biological System: Vero Cell• Green: Cage fluorescent dye 505 

clathrin• Red:  Rhodamine spiroamide 565

Tubulin• Imaged in PBS

Imaging Without Switching Buffer

Page 23: Harnessing the Power of Super-Resolution Microscopy

Biological Applications

Infectious Diseases Reproduction

Developmental Biology Neuroscience

Cardiology

Cell Biology 

Page 24: Harnessing the Power of Super-Resolution Microscopy

Coverslip

Biological System: E.ColiTarget: Outer MembraneDye: Cy5

Color coded for depth

Courtesy of Dr. Tomasz Zal – MD Anderson Cancer Center, Texas

Single E. Coli standing on coverslip

3D  Image with Single Z Plane Acquisition

Page 25: Harnessing the Power of Super-Resolution Microscopy

Biological System:  hRSVGreen: Cy3B RNA antisense probeRed: Alexa 647 F‐protein

Human Respiratory Syncytial Virus (hRSV)

Alonas  et al. ACS Nano 8, 302‐315 (2014)

Labeled  RNA viruses using multiply labeled tetravalent RNA imaging probes (MTRIPs)

Page 26: Harnessing the Power of Super-Resolution Microscopy

Biological System:  Canine cardiomyocyteRed:  Alexa 647 alpha‐actinin

Arrows point to longitudinal depositions spanning between transverse sheets in the cell interior

Decrease in the spatial regularity of the α‐actinin distribution in heart failureversus control cells observed

Imaging in Cardiomyocytes

Lichter et al. Journal  of Cellular and Molecular Cardiology 72, 186‐195 (2014)

Page 27: Harnessing the Power of Super-Resolution Microscopy

3D Super‐Resolution z‐stack in Mouse Spermatocyte

AF 647 labeled synaptonemal complex protein 3 (SYCP3)

Sample courtesy of Mark Lessard, The Jackson Laboratory

Page 28: Harnessing the Power of Super-Resolution Microscopy

Biological System: DrosophilaGreen: Alexa 488 Frizzled ReceptorRed: DyLight 649 Lamin C

Developmental Biology‐Thick Samples

Page 29: Harnessing the Power of Super-Resolution Microscopy

•Light scattering reduced

•Increased tissue transparency to achieve refractive uniformity throughout the specimen which allows imaging at greater depth

August 2011

Page 30: Harnessing the Power of Super-Resolution Microscopy

Scale BufferTypical composition of Scale buffer

pH 7.7

Refractive index of 1.38

4M Urea

30% glycerol

0.1% Triton X-100

Comparison of whole fixed embryos incubated in PBS and Scale for two weeks

Hama et al. “Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain”, Nature Neuroscience 14, 1481-1488 (2011)

Page 31: Harnessing the Power of Super-Resolution Microscopy

Images courtesy of Dr. Chris German, University of Utah

Biological System: 30 µm Striatal Rat Brain SlicesGreen: Cy3B SNAP‐25Red: Alexa 647 Vesicular Monoamine Transporter‐2 (VMAT2) 

Super‐Resolution Imaging in TissueSaline

Drug

‐Treated

Page 32: Harnessing the Power of Super-Resolution Microscopy

Multi‐color Imaging in Cell Biology

Biological System: Cos 7 CellGreen: Alexa 568 Complex IVRed: Alexa 647 TOM 20

Image courtesy of Dr. Cliff Guy, St. JudesResearch Hospital

Biological System: HeLa cellGreen: ATTO 488 tubulinRed: Alexa 647 midbody proteinBlue: Cy3B midbody protein

Biological System: HeLa cellGreen: Alexa 488 tubulinRed: Alexa 647 midbody protein

Page 33: Harnessing the Power of Super-Resolution Microscopy

Mitochondria Imaging

Sample courtesy of Dr. Cliff Guy, St. Judes Research Hospital

Biological System: Cos 7 CellGreen: Alexa 568 Complex IVRed: Alexa 647 TOM 207000 frames for each color

Page 34: Harnessing the Power of Super-Resolution Microscopy

Multi‐color Imaging in Neurons

Biological System:  Rat Hippocampal NeuronsGreen:  Alexa 647 phalloidin( labeling actin)Magenta:  Cy3B βII‐Spectrin or Adducin

Xu  et al. “Actin, Spectrin, and Associated Proteins Form a Periodic  Cytoskeletal Structure in Axons”, Science 339, 452‐456( (2013)

Page 35: Harnessing the Power of Super-Resolution Microscopy

Multi‐color Imaging in Neurons

Images courtesy  of Andrew Taibi,    Dr. Jason Shepherd, University of 

Utah 

Biological System:  Rat Cortical NeuronsGreen:  Alexa 488 MAP2 (dendritic/axonal marker)Magenta:  alexa555 Arc (postsynaptic ‐associates with endocytic  machinery to get rid of surface AMPA Receptors)Cyan:  Alexa 647 GluR1 (live and surface labeled only)

Page 36: Harnessing the Power of Super-Resolution Microscopy

Multi‐color Imaging

Biological System: Vero CellGreen: Cy3B TOM20 mitochondriaRed: AF647 Tubulin

Biological System: Vero CellGreen: Cage fluorescent dye 505clathrinRed:  Rhodamine spiroamide 565tubulin

Biological System:  BSC1 cellsGreen: AF647 TOM20 mitochondriaRed: AF750 Tubulin

*750 on  Vutara 350 Video Rate Super‐Resolution Microscope

Page 37: Harnessing the Power of Super-Resolution Microscopy

Summary

• Sample prep optimization is crucial for obtaining good resolution with single molecule localization

• Choose the right dyes • Choose the right fixation reagents• Optimize primary and secondary antibody concentrations• Post‐fixing after secondary labeling is recommended• Choose the right imaging conditions (imaging buffer 

compatible with dyes, laser powers, acquisition time, and number of frames)

Page 38: Harnessing the Power of Super-Resolution Microscopy

www.bruker.comwww.bruker.com/FM