handbook of geometry

Upload: anonymous-spnlhaqxc6

Post on 04-Jun-2018

229 views

Category:

Documents


3 download

TRANSCRIPT

  • 8/13/2019 Handbook of Geometry

    1/82

    Copyright 2010-2013, Earl Whitney, Reno NV. All Rights Reserved

    Math Handbook

    of Formulas, Processes and Tricks

    Geometry

    Prepared by: Earl L. Whitney, FSA, MAAA

    Version 2.2

    October 30, 2013

  • 8/13/2019 Handbook of Geometry

    2/82

    GeometryHandbook

    Page Description

    Chapter1:Basics

    a eo ontents

    ,

    7 Segments,Rays&Lines

    8 DistanceBetweenPoints(1Dimensional,2Dimensional)

    9 DistanceFormulainn Dimensions

    10 Angles

    11 TypesofAngles

    ap er : roo s

    12 ConditionalStatements(Original,Converse,Inverse,Contrapositive)

    13 BasicPropertiesofAlgebra(EqualityandCongruence,AdditionandMultiplication)14 Inductivevs.DeductiveReasoning

    15 AnApproachtoProofs

    Chapter3:ParallelandPerpendicularLines

    16 ParallelLinesandTransversals

    17 MultipleSetsofParallelLines

    18 ProvingLinesareParallel

    19 ParallelandPerpendicularLinesintheCoordinatePlane

    Chapter4:Triangles Basic

    20 T esofTrian les Scalene Isosceles E uilateral Ri ht21 CongruentTriangles(SAS,SSS,ASA,AAS,CPCTC)

    22 CentersofTriangles

    23 LengthofHeight,MedianandAngleBisector

    24 InequalitiesinTriangles

    Chapter5:Polygons

    ,

    26 PolygonsMoreDefinitions(Definitions,DiagonalsofaPolygon)

    27 InteriorandExteriorAnglesofaPolygon

    -2-

    Version 2.2 10/30/2013

  • 8/13/2019 Handbook of Geometry

    3/82

    GeometryHandbooka eo ontents

    Page Description

    Chapter6:Quadrilaterals

    29 FiguresofQuadrilaterals

    30 CharacteristicsofParallelograms

    31 ParallelogramProofs(SufficientConditions)

    32 KitesandTrapezoids

    Chapter7:Transformations

    n ro uc on o rans orma on

    35 Reflection

    36 Rotation37 Rotationby90 aboutaPoint(x0,y0)

    40 Translation

    41 Compositions

    Chapter8:Similarity

    42 RatiosInvolvingUnits

    43 SimilarPolygons

    44 ScaleFactorofSimilarPolygons

    45 DilationsofPolygons

    46 MoreonDilation

    , ,48 ProportionTablesforSimilarTriangles

    49 ThreeSimilarTriangles

    Chapter9:RightTriangles

    50 PythagoreanTheorem

    51 PythagoreanTriples

    pec a r ang es r ang e, r ang e

    53 TrigonometricFunctionsandSpecialAngles

    54 TrigonometricFunctionValuesinQuadrantsII,III,andIV

    55 GraphsofTrigonometricFunctions

    56 Vectors57 OperatingwithVectors

    -3-

    Version 2.2 10/30/2013

  • 8/13/2019 Handbook of Geometry

    4/82

    GeometryHandbooka eo ontents

    Page Description

    Chapter10:Circles

    59 AnglesandCircles

    Chapter11:PerimeterandArea

    60 PerimeterandAreaofaTriangle

    61 MoreontheAreaofaTriangle

    62 PerimeterandAreaofQuadrilaterals

    er me eran reao enera o ygons

    64 CircleLengthsandAreas

    65 AreaofCompositeFigures

    Chapter12:SurfaceAreaandVolume

    66 Polyhedra

    67 AHoleinEulersTheorem

    68 PlatonicSolids

    69 Prisms

    70 Cylinders

    71 SurfaceAreabyDecomposition

    72 Pyramids

    73 Cones

    74 S heres75 SimilarSolids

    76 SummaryofPerimeterandAreaFormulas2DShapes

    77 SummaryofSurfaceAreaandVolumeFormulas3DShapes

    78 Index

    -4-

    Version 2.2 10/30/2013

  • 8/13/2019 Handbook of Geometry

    5/82

    GeometryHandbooka eo ontentsUsefulWebsites

    WolframMathWorldPerhapsthepremiersiteformathematicsontheWeb. Thissitecontains

    definitions,explanationsandexamplesforelementaryandadvancedmathtopics.

    http://mathworld.wolfram.com/

    http://www.mathleague.com/help/geometry/geometry.htm

    MathLeagueSpecializesinmathcontests,books,andcomputersoftwareforstudentsfromthe4th

    gradethroughhighschool.

    http://www.cde.ca.gov/ta/tg/sr/documents/rtqgeom.pdf

    SchaumsOutlines

    .

    Agoodwaytotestyourknowledge.

    Animportantstudentresourceforanyhighschoolmathstudentisa

    SchaumsOutline. Eachbookinthisseriesprovidesexplanationsofthe

    varioustopicsinthecourseandasubstantialnumberofproblemsforthe

    studenttotry. Manyoftheproblemsareworkedoutinthebook,sothe

    studentcanseeexamplesofhowtheyshouldbesolved.

    Note: This study guide was prepared to be a companion to most books on the subject of High

    SchaumsOutlinesareavailableatAmazon.com,Barnes&Noble,Bordersand

    otherbooksellers.

    . , , , ,

    determine which subjects to include in this guide. Although a significant effort was made to make

    the material in this study guide original, some material from Geometry was used in the preparation

    of the study guide.

    -5-

    Version 2.2 10/30/2013

  • 8/13/2019 Handbook of Geometry

    6/82

    Geometry

    Points,Lines&Planes

    Anintersectionofgeometric

    shapesisthe

    set

    of

    points

    they

    shareincommon.

    landmintersectatpointE.

    landnintersectatpointD.

    mandnintersectinline .

    Item Illustration Notation Definition

    Point Alocationinspace.Segment Astraightpaththathastwoendpoints.Ray Astraightpaththathasoneendpointandextendsinfinitelyinonedirection.Line l or Astraightpaththatextendsinfinitelyin

    bothdirections.

    Plane m or Aflatsurfacethatextendsinfinitelyintwodimensions.Collinearpointsarepointsthatlieonthesameline.

    Coplanarpointsarepointsthatlieonthesameplane.

    Inthefi gure atright:

    , , , , and arepoints.

    lisaline

    mandnareplanes.Inaddit n :io ,notethat

    arecollinearpoints., , and arecoplanarpoints., d , d arecoplanarpoints.anan Ray goesoffinasoutheastdirection. Ray

    goesof anorthwestdirection.fin

    Together,rays and makeuplinel. Linelintersectsbothplanesmandn.

    Note:Ingeometricfiguressuchastheoneabove,itis

    importanttorememberthat,eventhoughplanesare

    drawnwithedges,theyextendinfinitelyinthe2

    dimensionsshown.

    -6-

    Version 2.2 10/30/2013

  • 8/13/2019 Handbook of Geometry

    7/82

    Geometry

    Segments,Rays&Lines

    SomeThoughtsAbout

    LineSegments

    Linesegmentsaregenerallynamedbytheirendpoints,sothesegment ghtcouldbenamedeither or .atri

    Segment containsthetwoendpoints(AandB)andallpointsonline thatarebetweenthem.

    Rays

    Raysaregenerallynamedbytheirsingleendpoint,calle ninitial

    point,andanotherpointontheray.da

    Ray containsitsinitialpointAandallpointsonline in edirectionofthearrow.th Rays and ar tthesameray.eno IfpointOisonline andisbetweenpointsAandB,

    thenrays and arecalledoppositerays. TheyhaveonlypointOincommon,andtogethertheymakeupline .

    Lines

    Linesaregenerallynamedbyeitherasinglescriptletter(e.g., l)orbytwopointsontheline(e.g.,. ).

    ow Alineextendsinfinitelyinthe directionssh nbyitsarrows.

    Linesareparalleliftheyareinthesameplaneandtheyneverintersect. Linesfandg,atright,areparallel.

    Linesareperpendiculariftheyintersectata90 angle. Apairofperpendicularlinesisalwaysinthesameplane.

    Linesfande,atright,areperpendicular. Linesgande are

    alsoperpendicular.

    Linesareskewiftheyarenotinthesameplaneandtheyneverintersect. Lineskandl,atright,areskew.

    (Rememberthisfigureis3dimensional.)

    -7-

    Version 2.2 10/30/2013

  • 8/13/2019 Handbook of Geometry

    8/82

    Geometry

    DistanceBetweenPoints

    Distancemeasureshowfaraparttwothingsare. Thedistancebetweentwopointscanbe

    measuredinanynumberofdimensions,andisdefinedasthelengthofthelineconnectingthe

    twopoints. Distanceisalwaysapositivenumber.

    1DimensionalDistance

    Inonedimensionthedistancebetweentwopointsisdeterminedsimplybysubtractingthe

    coordinatesofthepoints.

    Example: Inthissegment,thedistancebetween 2and5iscalculatedas: 5 2 7.

    2DimensionalDistance

    Intwodimensions,thedistancebetweentwopointscanbecalculatedbyconsideringtheline

    betweenthemtobethehypotenuseofarighttriangle. Todeterminethelengthofthisline:

    Calculatethedifferenceinthexcoordinatesofthepoints Calculatethedifferenceintheycoordinatesofthepoints UsethePythagoreanTheorem.

    Thisprocessisillustratedbelow,usingthevariabledfordistance.Example: Findthedistancebetween(1,1)and(2,5). Basedonthe

    illustrationtotheleft:

    x-coordinatedifference: 3.2 1y-coordinatedifference: 5 1 4.

    Then,thedistanceiscalculatedusingtheformula:

    4 9 16 25

    3So, Ifwedefinetwopointsgenerallyas(x1,y1)and(x2,y2),thena2dimensionaldistanceformulawouldbe:

    -8-

    Version 2.2 10/30/2013

  • 8/13/2019 Handbook of Geometry

    9/82

    ADVANCEDGeometryDistanceFormulainnDimensions

    Thedistancebetweentwopointscanbegeneralizedtondimensionsbysuccessiveuseofthe

    PythagoreanTheoreminmultipledimensions. Tomovefromtwodimensionstothree

    dimensions,westartwiththetwodimensionalformulaandapplythePythagoreanTheoremto

    addthethirddimension.

    3Dimensions

    Considertwo3dimensionalpoints(x1,y1,z1)and(x2,y2,z2). Considerfirstthesituationwherethetwozcoordinatesarethesame. Then,thedistancebetweenthepointsis2

    dimensional,i.e., .Wethe thePythagoreanTheorem:naddathirddimensionusing

    And,finallythe3dimensionaldifferenceformula:

    nDimensions

    Usingthesamemethodologyinndimensions,wegetthegeneralizedndimensional

    difference e r n l, e sion):formula(wh retherea e termsbeneaththe radica oneforeachdim n

    Or,inhigherlevelmathematicalnotation:

    Thedistancebetween2pointsA=(a1,a2,,an)andB=(b1,b2,,bn)is

    , | |

    -9-

    Version 2.2 10/30/2013

  • 8/13/2019 Handbook of Geometry

    10/82

    Geometry

    Angles

    PartsofanAngle

    Anangleconsistsoftworayswithacommon

    endpoint(or,initialpoint).

    Eachrayisasideoftheangle. Thecommonendpointiscalledthevertexof

    theangle.

    NamingAngles

    Anglescanbenamedinoneoftwoways:

    Pointvertexpointmethod. Inthismethod,theangleisnamedfromapointononeray,thevertex,andapointontheotherray. Thisisthemostunambiguousmethodof

    naminganangle,andisusefulindiagramswithmultipleanglessharingthesamevertex.

    Intheabovefigure,theangleshowncouldbenamedor .

    Vertexmethod. Incaseswhereitisnotambiguous,ananglecanbenamedbasedsolelyonitsvertex. Intheabovefigure,theanglecouldbenamed.

    MeasureofanAngle

    Therearetwoconventionsformeasuringthesizeofanangle:

    Indegrees. Thesymbolfordegreesis . Thereare360 inafullcircle. Theangleabovemeasuresapproximately45(oneeighthofacircle).

    Inradians. Thereare2radiansinacompletecircle. Theangleabovemeasuresapproximately

    radians.

    SomeTermsRelatingtoAngles

    Angleinterioristheareabetweentherays.

    Angleexterior

    isthe

    area

    not

    between

    the

    rays.

    Adjacentanglesareanglesthatsharearayforaside. and

    inthefigureatrightareadjacentangles.

    Congruentanglesareaangleswiththesamemeasure.

    Anglebisectorisaraythatdividestheangleintotwocongruent

    angles. Ray bisectsinthefigureatright.

    -10-

    Version 2.2 10/30/2013

  • 8/13/2019 Handbook of Geometry

    11/82

    Geometry

    TypesofAngles

    SupplementaryAngles ComplementaryAngles

    DC

    A B

    Angles mplementary.CandDareco

    90AnglesAandBaresupplementary.

    Angles linearpair.AandBforma

    180

    VerticalAngles

    EF

    G

    H

    Angleswhichareoppositeeachotherwhen

    twolinescrossareverticalangles.

    AnglesEandGareverticalangles.

    Angles FandHareverticalangles.

    In

    addition,

    each

    angle

    issupplementary

    to

    thetwoanglesadjacenttoit. Forexample:

    AngleEissupplementarytoAnglesFandH.

    Acute Obtuse

    Right Straight

    Anacuteangleisonethatislessthan90. In

    theillustrationabove,anglesEandGare

    acuteangles.

    Arightangleisonethatisexactly90.

    Anobtuseangleisonethatisgreaterthan

    90. Intheillustrationabove,anglesFandH

    areobtuseangles.

    Astraightangleisonethatisexactly180.

    -11-

    Version 2.2 10/30/2013

  • 8/13/2019 Handbook of Geometry

    12/82

    GeometryConditionalStatements

    Aconditionalstatementcontainsbothahypothesisandaconclusioninthefollowingform:If

    hypothesis,

    then

    conclusion.

    Foranyconditionalstatement,itispossibletocreatethreerelatedconditionalstatements,asshownbelow. Inthetable,pisthehypothesisoftheoriginalstatementandqistheconclusionoftheoriginalstatement.

    TypeofConditionalStatement ExampleStatementis:

    OriginalStatement: Ifp,thenq. ( ) Example: Ifanumberisdivisibleby6,thenitisdivisibleby3. Theoriginalstatementmaybeeithertrueorfalse.

    TRUE

    ConverseStatement: Ifq,thenp. ( ) Example: Ifanumberisdivisibleby3,thenitisdivisibleby6. Theconversestatementmaybeeithertrueorfalse,andthisdoesnot

    dependonwhethertheoriginalstatementistrueorfalse.FALSE

    InverseStatement: Ifnotp,thennotq. (~ ~) Example: Ifanumberisnotdivisibleby6,thenitisnotdivisibleby3. Theinversestatementisalwaystruewhentheconverseistrueand

    falsewhentheconverseisfalse.FALSE

    ContrapositiveStatement: Ifnotq,thennotp. (~ ~) Example: Ifanumberisnotdivisibleby3,thenitisnotdivisibleby6. TheContrapositivestatementisalwaystruewhentheoriginal

    statementistrueandfalsewhentheoriginalstatementisfalse.TRUE

    Notealsothat: Whentwostatementsmustbeeitherbothtrueorbothfalse,theyarecalledequivalent

    statements.o Theoriginalstatementandthecontrapositiveareequivalentstatements.o Theconverseandtheinverseareequivalentstatements.

    Ifboththeoriginalstatementandtheconversearetrue,thephraseifandonlyif(abbreviatediff)maybeused. Forexample,Anumberisdivisibleby3iffthesumofitsdigitsisdivisibleby3.

    Statementslinkedbelowbyredarrowsmustbeeitherbothtrueorbothfalse.

    -12-

    Version 2.2 10/30/2013

  • 8/13/2019 Handbook of Geometry

    13/82

    GeometryBasicPropertiesofAlgebra

    PropertiesofEqualityandCongruence.

    PropertyDefinitionforEquality DefinitionforCongruence

    Foranyrealnumbersa,b,andc: Foranygeometricelementsa,bandc.(e.g.,segment,angle,triangle)

    ReflexiveProperty SymmetricProperty , , TransitiveProperty , , SubstitutionProperty If , then either can besubstituted for the other in any

    equation (or inequality).

    If , then either can be

    substituted for the other in any

    congruence expression.

    MorePropertiesofEquality. Foranyrealnumbersa,b,andc:Property DefinitionforEquality

    AdditionProperty , SubtractionProperty , MultiplicationProperty , DivisionProperty 0,

    PropertiesofAdditionandMultiplication. Foranyrealnumbersa,b,andc:Property DefinitionforAddition DefinitionforMultiplication

    CommutativeProperty AssociativeProperty DistributiveProperty

    -13-

    Version 2.2 10/30/2013

  • 8/13/2019 Handbook of Geometry

    14/82

    GeometryInductivevs.DeductiveReasoning

    InductiveReasoningInductivereasoningusesobservationtoformahypothesisorconjecture. Thehypothesiscanthenbetestedtoseeifitistrue. Thetestmustbeperformedinordertoconfirmthehypothesis.Example: Observethatthesumofthenumbers1to4is4 5/2andthatthesumofthenumbers1to5is5 6/2. Hypothesis:thesumofthefirstnnumbersis 1/2.Testingthishypothesisconfirmsthatitistrue.

    DeductiveReasoningDeductivereasoningarguesthatifsomethingistrueaboutabroadcategoryofthings,itistrueofaniteminthecategory.

    Example: Allbirdshavebeaks. Apigeonisabird;therefore,ithasabeak.Therearetwokeytypesofdeductivereasoningofwhichthestudentshouldbeaware:

    LawofDetachment. Giventhat ,ifpistruethenqistrue. Inwords,ifonethingimpliesanother,thenwheneverthefirstthingistrue,thesecondmustalsobetrue.Example: Startwiththestatement:Ifalivingcreatureishuman,thenithasabrain.Thenbecauseyouarehuman,wecanconcludethatyouhaveabrain.

    Syllogism. Giventhat and ,wecanconcludethat . Thisisakindoftransitivepropertyoflogic. Inwords,ifonethingimpliesasecondandthatsecondthingimpliesathird,thenthefirstthingimpliesthethird.Example: Startwiththestatements: Ifmypencilbreaks,Iwillnotbeabletowrite,andifIamnotabletowrite,Iwillnotpassmytest. ThenIcanconcludethatIfmypencilbreaks,Iwillnotpassmytest.

    -14-

    Version 2.2 10/30/2013

  • 8/13/2019 Handbook of Geometry

    15/82

    GeometryAnApproachtoProofs

    Learningtodevelopasuccessfulproofisoneofthekeyskillsstudentsdevelopingeometry.Theprocessisdifferentfromanythingstudentshaveencounteredinpreviousmathclasses,andmayseemdifficultatfirst. Diligenceandpracticeinsolvingproofswillhelpstudentsdevelopreasoningskillsthatwillservethemwellfortherestoftheirlives.RequirementsinPerformingProofs

    Eachproofstartswithasetofgivens,statementsthatyouaresuppliedandfromwhichyoumustderiveaconclusion. Yourmissionistostartwiththegivensandtoproceedlogicallytotheconclusion,providingreasonsforeachstepalongtheway.

    Eachstepinaproofbuildsonwhathasbeendevelopedbefore. Initially,youlookatwhatyoucanconcludefromthegivens. Thenasyouproceedthroughthestepsintheproof,youareabletouseadditionalthingsyouhaveconcludedbasedonearliersteps.

    Eachstepinaproofmusthaveavalidreasonassociatedwithit. So,eachstatementintheproofmustbefurnishedwithananswertothequestion:Whyisthisstepvalid?

    TipsforSuccessfulProofDevelopment Ateachstep,thinkaboutwhatyouknowandwhatyoucanconcludefromthat

    information. Dothisinitiallywithoutregardtowhatyouarebeingaskedtoprove. Thenlookateachthingyoucanconcludeandseewhichonesmoveyouclosertowhatyouaretryingtoprove.

    Goasfarasyoucanintotheprooffromthebeginning. Ifyougetstuck, Workbackwardsfromtheendoftheproof. Askyourselfwhatthelaststepintheproof

    islikelytobe. Forexample,ifyouareaskedtoprovethattwotrianglesarecongruent,trytoseewhichoftheseveraltheoremsaboutthisismostlikelytobeusefulbasedonwhatyouweregivenandwhatyouhavebeenabletoprovesofar.

    Continueworkingbackwardsuntilyouseestepsthatcanbeaddedtothefrontendoftheproof. Youmayfindyourselfalternatingbetweenthefrontendandthebackenduntilyoufinallybridgethegapbetweenthetwosectionsoftheproof.

    Dontskipanysteps. Somethingsappearobvious,butactuallyhaveamathematicalreasonforbeingtrue. Forexample, mightseemobvious,butobviousisnotavalidreasoninageometryproof. Thereasonfor isapropertyofalgebracalledthereflexivepropertyofequality. Usemathematicalreasonsforallyoursteps.

    -15-

    Version 2.2 10/30/2013

  • 8/13/2019 Handbook of Geometry

    16/82

    GeometryParallelLinesandTransversals

    CorrespondingAnglesCorrespondingAnglesareanglesinthesamelocationrelativetotheparallellinesandthetransversal. Forexample,theanglesontopoftheparallellinesandleftofthetransversal(i.e.,topleft)arecorrespondingangles.AnglesAandE(topleft)areCorrespondingAngles. SoareanglepairsBandF(topright),CandG(bottomleft),andDandH(bottomright). Correspondinganglesarecongruent.AlternateInteriorAnglesAnglesDandEareAlternateInteriorAngles. AnglesCandFarealsoalternateinteriorangles.Alternateinterioranglesarecongruent.AlternateExteriorAnglesAnglesAandHareAlternateExteriorAngles. AnglesBandGarealsoalternateexteriorangles. Alternateexterioranglesarecongruent.ConsecutiveInteriorAnglesAnglesCandEareConsecutiveInteriorAngles. AnglesDandFarealsoconsecutiveinteriorangles. Consecutiveinterioranglesaresupplementary.

    Notethatangles A,D,E,andHarecongruent,andanglesB,C,F,andGarecongruent. Inaddition,eachoftheanglesinthefirstgrouparesupplementarytoeachoftheanglesinthesecondgroup.

    Transversal

    HGFE

    C DBA

    Alternate:referstoanglesthatareonoppositesidesofthetransversal.Consecutive:referstoanglesthatareonthesamesideofthetransversal.Interior:referstoanglesthatarebetweentheparallellines.Exterior:referstoanglesthatareoutsidetheparallellines.

    ParallelLines

    -16-

    Version 2.2 10/30/2013

  • 8/13/2019 Handbook of Geometry

    17/82

    GeometryMultipleSetsofParallelLines

    TwoTransversalsSometimes,

    the

    student

    is

    presented

    two

    sets

    of

    intersecting

    parallel

    lines,

    as

    shown

    above.

    Notethateachpairofparallellinesisasetoftransversalstotheothersetofparallellines.

    GE F

    H POM N

    KI J

    LDCBA

    Inthiscase,thefollowinggroupsofanglesarecongruent:

    Group1:AnglesA,D,E,H,I,L,MandPareallcongruent. Group2:AnglesB,C,F,G,J,K,N,andOareallcongruent. EachangleintheGroup1issupplementarytoeachangleinGroup2.

    -17-

    Version 2.2 10/30/2013

  • 8/13/2019 Handbook of Geometry

    18/82

    GeometryProvingLinesareParallel

    Thepropertiesofparallellinescutbyatransversalcanbeusedtoprovetwolinesareparallel.

    CorrespondingAnglesIftwolinescutbyatransversalhavecongruentcorrespondingangles,

    thenthelinesareparallel. Notethatthereare4setsofcorresponding

    angles.

    AlternateInteriorAnglesIftwolinescutbyatransversalhavecongruentalternateinteriorangles

    congruent,then

    the

    lines

    are

    parallel.

    Note

    that

    there

    are

    2sets

    of

    alternateinteriorangles.

    AlternateExteriorAnglesIftwolinescutbyatransversalhavecongruentalternateexterior

    angles,thenthelinesareparallel. Notethatthereare2setsof

    alternateexteriorangles.

    ConsecutiveInteriorAnglesIftwolinescutbyatransversalhavesupplementaryconsecutive

    interiorangles,thenthelinesareparallel. Notethatthereare2setsof

    consecutiveinteriorangles.

    -18-

    Version 2.2 10/30/2013

  • 8/13/2019 Handbook of Geometry

    19/82

    GeometryParallelandPerpendicularLinesintheCoordinatePlane

    ParallelLinesTwolines if theirslopesareequal.areparallel

    In form,ifthevaluesofarethesame.

    Example: 2 3 and 2 1

    InStandardForm,ifthecoefficientsofandareproportiona tweentheequations.lbe

    Example: 3 and 2 5

    6 4 7 Also,ifthelinesarebothvertical(i.e.,their

    slopesareundefin de ).

    Example: and 3 2

    PerpendicularLinesTwolinesareperpendiculariftheproductoftheirslopesis . Thatis,iftheslopeshavedifferentsignsand tiveinverses.aremultiplica

    In form,thevaluesofmultiplytoget 1..

    Example: and 6 5

    3

    InStandardForm,ifyouaddtheproductofthexcoefficientstotheproductofthey

    coefficientsand

    get

    zero.

    Example: and4 6 4 3 2 5 because 4 3 6 2 0

    Also,ifonelineis isundefined)andonelineishorizontal(i.e., 0).vertical(i.e.,Example: and 6

    3

    -19-

    Version 2.2 10/30/2013

  • 8/13/2019 Handbook of Geometry

    20/82

    Geometry

    TypesofTriangles

    Scalene

    Isosceles

    Equilateral Right

    60

    60 60

    AScaleneTrianglehas3sidesofdifferent

    lengths. Becausethesidesareof

    differentlengths,theanglesmustalsobe

    ofdifferentmeasures.

    ARight

    Triangleis

    one

    that

    contains

    a90

    angle. Itmaybescaleneorisosceles,but

    cannotbeequilateral. Righttriangles

    havesidesthatmeettherequirementsof

    thePythagoreanTheorem.

    AnEquilateral

    Triangle

    has

    all

    3sides

    the

    samelength(i.e.,congruent). Becauseall

    3sidesarecongruent,all3anglesmust

    alsobecongruent. Thisrequireseach

    angletobe60.

    AnIsoscelesTrianglehas2sidesthesame

    length(i.e.,congruent). Becausetwo

    sidesarecongruent,twoanglesmustalso

    becongruent.

    -20-

    Version 2.2 10/30/2013

  • 8/13/2019 Handbook of Geometry

    21/82

    Geometry

    CongruentTriangles

    Thefollowingtheoremspresentconditionsunderwhichtrianglesarecongruent.

    SideAngleSide(SAS)Congruence

    SAScongruencerequiresthecongruenceof

    twosidesandtheanglebetweenthosesides.

    NotethatthereisnosuchthingasSSA

    congruence;thecongruentanglemustbe

    betweenthetwocongruentsides.

    SideSideSide(SSS)CongruenceSSScongruencerequiresthecongruenceofall

    threesides. Ifallofthesidesarecongruent

    thenalloftheanglesmustbecongruent. The

    converseisnottrue;thereisnosuchthingas

    AAAcongruence.

    AngleSideAngle(ASA)Congruence

    ASAcongruencerequiresthecongruenceof

    twoanglesandthesidebetweenthoseangles.

    Note:ASAandAAScombinetoprovidecongruenceoftwotriangleswheneveranytwoanglesandanyonesideofthetrianglesarecongruent.AngleAngleSide(AAS)Congruence

    AAScongruencerequiresthecongruenceof

    twoanglesandasidewhichisnotbetween

    thoseangles.

    CPCTC

    CPCTCmeanscorrespondingpartsofcongruenttrianglesarecongruent. Itisavery

    powerfultoolingeometryproofsandisoftenusedshortlyafterastepintheproofwhereapair

    oftrianglesisprovedtobecongruent.

    -21-

    Version 2.2 10/30/2013

  • 8/13/2019 Handbook of Geometry

    22/82

    Geometry

    CentersofTriangles

    Thefollowingareallpointswhichcanbeconsideredthecenterofatriangle.

    Centroid(Medians)

    Thecentroidistheintersectionofthethreemediansofatriangle. Amedianisa

    linesegmentdrawnfromavertextothemidpointofthelineoppositethe

    vertex.

    Thecentroidislocated2/3ofthewayfromavertextotheoppositeside. Thatis,thedistancefromavertextothecentroidisdoublethelengthfromthecentroidtothemidpointoftheoppositeline.

    Themediansofatrianglecreate6innertrianglesofequalarea.

    Orthocenter(Altitudes)

    Theorthocenteristheintersectionofthethreealtitudesofatriangle. An

    altitudeisalinesegmentdrawnfromavertextoapointontheoppositeside

    (extended,ifnecessary)thatisperpendiculartothatside.

    Inanacutetriangle,theorthocenterisinsidethetriangle. Inarighttriangle,theorthocenteristherightanglevertex. Inanobtusetriangle,theorthocenterisoutsidethetriangle.

    Circumcenter(PerpendicularBisectors)

    Thecircumcenteristheintersectionofthe

    perpendicularbisectorsofthethreesidesofthe

    triangle. Aperpendicularbisectorisalinewhich

    bothbisectsthesideandisperpendiculartothe

    side. Thecircumcenterisalsothecenterofthe

    circlecircumscribedaboutthetriangle.

    EulerLine:Interestingly,

    thecentroid,orthocenter

    andcircumcenterofa

    trianglearecollinear(i.e.,

    lieonthesameline,

    whichiscalledtheEuler

    Line). Inanacutetriangle,thecircumcenterisinsidethetriangle. Inarighttriangle,thecircumcenteristhemidpointofthehypotenuse. Inanobtusetriangle,thecircumcenterisoutsidethetriangle.

    Incenter(AngleBisectors)

    Theincenteristheintersectionoftheanglebisectorsofthethreeanglesof

    thetriangle. Ananglebisectorcutsanangleintotwocongruentangles,each

    ofwhichishalfthemeasureoftheoriginalangle. Theincenterisalsothe

    centerofthecircleinscribedinthetriangle.

    -22-

    Version 2.2 10/30/2013

  • 8/13/2019 Handbook of Geometry

    23/82

    GeometryLengthofHeight,MedianandAngleBisector

    HeightTheformulaforthelengthofaheightofatriangleisderivedfromHeronsformulafortheareaofatriangle:

    where, ,and

    ,,arethelengthsofthesidesofthetriangle.

    MedianTheformulaforthelengthofamedianofatriangleis:

    where,,,arethelengthsofthesidesofthetriangle.

    AngleBisectorTheformulaforthelengthofananglebisectorofatriangleis:

    where,,,arethelengthsofthesidesofthetriangle.

    -23-

    Version 2.2 10/30/2013

  • 8/13/2019 Handbook of Geometry

    24/82

    Geometry

    InequalitiesinTriangles

    Anglesandtheiroppositesidesintrianglesarerelated. Infact,thisisoftenreflectedinthe

    labelingofanglesandsidesintriangleillustrations.

    Anglesandtheiroppositesidesareoften

    labeledwiththesameletter. Anuppercase

    letterisusedfortheangleandalowercase

    letterisusedfortheside.

    Therelationshipbetweenanglesandtheiroppositesidestranslatesintothefollowingtriangle

    inequalities:

    If , then

    If , then

    Thatis,inanytriangle,

    Thelargestsideisoppositethelargestangle. Themediumsideisoppositethemediumangle. Thesmallestsideisoppositethesmallestangle.

    OtherInequalitiesinTriangles

    TriangleInequality:

    Thesumofthelengthsofanytwosidesofatriangle

    isgreaterthanthelengthofthethirdside. Thisisacrucialelementin

    decidingwh s r l .ether egmentsofany3lengthscanformat iang e

    ExteriorAngleInequality: Themeasureofanexternalangleisgreaterthanthemeasureof

    eitherofthetwononadj ow:acentinteriorangles. Thatis,inthefigurebel

    Note:theExteriorAngleInequalityismuchlessrelevantthantheExteriorAngleEquality.

    ExteriorAngleEquality: Themeasureofanexternalangleisequaltothesumofthemeasures

    ofthetwonon interior hatis,inthefigurebelow:adjacent angles. T

    -24-

    Version 2.2 10/30/2013

  • 8/13/2019 Handbook of Geometry

    25/82

    Geometry

    Polygons Basics

    BasicDefinitions

    Polygon:aclosedpathofthreeormorelinesegments,where:

    notwosideswithacommonendpointarecollinear,and eachsegmentisconnectedatitsendpointstoexactlytwoothersegments.

    Side: asegmentthatisconnectedtoothersegments(whicharealsosides)toformapolygon.

    Vertex: apointattheintersectionoftwosidesofthepolygon. (pluralform:vertices)

    Diagonal: asegment,fromonevertextoanother,whichisnotaside.

    Concave:Apolygoninwhichitispossibletodrawadiagonaloutsidethe

    polygon. (Noticetheorangediagonaldrawnoutsidethepolygonat

    right.) Concavepolygonsactuallylookliketheyhaveacaveinthem.

    Convex: Apolygoninwhichitisnotpossibletodrawadiagonaloutsidethe

    polygon. (Noticethatalloftheorangediagonalsareinsidethepolygon

    atright.) Convexpolygonsappearmoreroundedanddonotcontain

    caves.

    NamesofSomeCommonPolygons

    Number

    ofSides

    Name

    of

    Polygon

    Number

    ofSides

    Name

    of

    Polygon

    3 Triangle 9 Nonagon

    4 Quadrilateral 10 Decagon

    5 Pentagon 11 Undecagon

    6 Hexagon 12 Dodecagon

    7 Heptagon 20 Icosagon

    8 Octagon n n-gon

    Diagonal

    Namesofpolygons

    aregenerallyformed

    fromtheGreek

    language;however,

    somehybridformsof

    LatinandGreek(e.g.,

    undecagon)have

    creptintocommon

    usage.

    Vertex

    Side

    -25-

    Version 2.2 10/30/2013

  • 8/13/2019 Handbook of Geometry

    26/82

    Geometry

    PolygonsMoreDefinitions

    Definitions

    Equilateral:apolygoninwhichallofthesidesareequalinlength.

    Equiangular: apolygoninwhichalloftheangleshavethesame

    measure.

    Regular: apolygonwhichisbothequilateralandequiangular. That

    is,aregularpolygonisoneinwhichallofthesideshavethesamelengthandalloftheangleshavethesamemeasure.

    InteriorAngle: Anangleformedbytwosidesofapolygon. The

    angleisinsidethepolygon.

    ExteriorAngle: Anangleformedbyonesideofapolygonandthe

    linecontaininganadjacentsideofthepolygon. Theangleisoutside

    thepolygon.

    Interior

    AngleExterior

    Angle

    AdvancedDefinitions:

    SimplePolygon: apolygonwhosesidesdonotintersectatanylocationotherthanitsendpoints. Simple

    polygonsalwaysdividea

    planeintotworegions

    oneinsidethepolygonand

    oneoutsidethepolygon.

    ComplexPolygon: a

    polygonwithsidesthatintersectsomeplaceotherthantheirendpoints(i.e.,notasimplepolygon).

    Complexpolygonsdonot

    alwayshavewelldefined

    insidesandoutsides.

    SkewPolygon: apolygonforwhichnotallofitsverticeslieonthesameplane.

    HowManyDiagonalsDoesaConvexPolygonHave?

    Believeitornot,thisisacommonquestionwithasimplesolution. Considerapolygonwithn

    sidesand,therefore,nvertices.

    Eachofthenverticesofthepolygoncanbeconnectedtootherverticeswithdiagonals.

    That

    is,

    itcan

    be

    connected

    to

    all

    other

    vertices

    except

    itself

    and

    the

    two

    to

    whichitisconnectedbysides. So,thereare linestobedrawnasdiagonals.

    However,whenwedothis,wedraweachdiagonaltwicebecausewedrawitoncefromeachofitstwoendpoints. So,thenumberofdiagonalsisactuallyhalfofthenumberwe

    calculatedabove.

    Therefore,thenumberofdiagonalsin polygonis:annsided

    -26-

    Version 2.2 10/30/2013

  • 8/13/2019 Handbook of Geometry

    27/82

    Geometry

    InteriorandExteriorAnglesofaPolygon

    InteriorAngles

    Thesumofthe sidedpolygonis:interioranglesinan

    InteriorAngles

    Sides

    Sumof

    Interior

    Angles

    Each

    Interior

    Angle

    3 180 60

    4 360 90

    5 540 108

    6

    720

    120

    7 900 129

    8 1,080 135

    9 1,260 140

    10 1,440 144

    Ifthepolygonisregular,youcancalculatethemeasureof

    eachinteriorangleas:

    ExteriorAngles

    ExteriorAngles

    Sides

    Sumof

    Exterior

    Angles

    Each

    Exterior

    Angle

    3 360 120

    4 360 90

    5

    360

    72

    6 360 60

    7 360 51

    8 360 45

    9 360 40

    10 360 36

    Nomatterhowmanysidesthereareinapolygon,thesum

    oftheexterioranglesis:

    Ifthepolygonisregular,youcancalculatethemeasureof

    eachexteriora s:nglea

    Notation: TheGreekletterisequivalent

    totheEnglishletterSandismathshorthand

    forasummation(i.e.,addition)ofthings.

    -27-

    Version 2.2 10/30/2013

  • 8/13/2019 Handbook of Geometry

    28/82

    GeometryDefinitionsofQuadrilaterals

    Name DefinitionQuadrilateral Apolygonwith4sides.Kite Aquadrilateralwithtwoconsecutivepairsofcongruentsides,but

    withoppositesidesnotcongruent.Trapezoid Aquadrilateralwithexactlyonepairofparallelsides.IsoscelesTrapezoid Atrapezoidwithcongruentlegs.Parallelogram

    A

    quadrilateral

    with

    both

    pairs

    of

    opposite

    sides

    parallel.

    Rectangle Aparallelogramwithallanglescongruent(i.e.,rightangles).Rhombus Aparallelogramwithallsidescongruent.Square Aquadrilateralwithallsidescongruentandallanglescongruent.

    QuadrilateralTree:Quadrilateral

    Kite Parallelogram Trapezoid

    Rectangle Rhombus IsoscelesTrapezoid

    Square

    -28-

    Version 2.2 10/30/2013

  • 8/13/2019 Handbook of Geometry

    29/82

    GeometryFiguresofQuadrilaterals

    IsoscelesTrapezoid 1pairofparallelsides Congruentlegs 2pairofcongruentbase

    angles

    Diagonalscongruent

    Kite 2consecutivepairsof

    congruentsides 1pairofcongruent

    oppositeangles

    Diagonalsperpendicular

    Trapezoid

    1pairofparallelsides(calledbases)

    Anglesonthesamesideofthebasesaresupplementary

    Parallelogram Bothpairsofoppositesidesparallel Bothpairsofoppositesidescongruent Bothpairsofoppositeanglescongruent Consecutiveanglessupplementary Diagonalsbisecteachother

    Rectangle

    Parallelogramwithallanglescongruent(i.e.,rightangles)

    Diagonalscongruent

    Rhombus Parallelogramwithallsidescongruent Diagonalsperpendicular Eachdiagonalbisectsapairof

    oppositeangles

    Square

    BothaRhombusandaRectangle Allanglescongruent(i.e.,rightangles) Allsidescongruent

    -29-

    Version 2.2 10/30/2013

  • 8/13/2019 Handbook of Geometry

    30/82

    GeometryCharacteristicsofParallelograms

    Characteristic Square Rhombus Rec2pairofparallelsides

    Oppositesidesarecongruent

    Oppositeanglesarecongruent

    Consecutiveanglesaresupplementary

    Diagonals

    bisect

    each

    other

    All4anglesarecongruent(i.e.,rightangles)

    Diagonalsarecongruent

    All4sidesarecongruent

    Diagonalsareperpendicular

    Eachdiagonalbisectsapairofoppositeangles

    Notes:Redmarksareconditionssufficienttoprovethequadrilateralisofthetypespecified.

    Greenmarksareconditionssufficienttoprovethequadrilateralisofthetypespecifiedifthe

    parallelogram.

    -30-

    Version 2.2

  • 8/13/2019 Handbook of Geometry

    31/82

    GeometryParallelogramProofs

    Provinga

    Quadrilateral

    is

    a

    Parallelogram

    Toproveaquadrilateralisaparallelogram,proveanyofthefollowingconditions:1. Bothpairsofoppositesidesareparallel. (note:thisisthedefinitionofaparallelogram)2. Bothpairsofoppositesidesarecongruent.3. Bothpairsofoppositeanglesarecongruent.4. Aninteriorangleissupplementarytobothofitsconsecutiveangles.5. Itsdiagonalsbisecteachother.6. Apairofoppositesidesisbothparallelandcongruent.

    ProvingaQuadrilateralisaRectangleToproveaquadrilateralisarectangle,proveanyofthefollowingconditions:1. All4anglesarecongruent.2. Itisaparallelogramanditsdiagonalsarecongruent.

    ProvingaQuadrilateralisaRhombusToproveaquadrilateralisarhombus,proveanyofthefollowingconditions:1. All4sidesarecongruent.2. ItisaparallelogramandItsdiagonalsareperpendicular.3. Itisaparallelogramandeachdiagonalbisectsapairofoppositeangles.

    ProvingaQuadrilateralisaSquareToproveaquadrilateralisasquare,prove:1. ItisbothaRhombusandaRectangle.

    -31-

    Version 2.2 10/30/2013

  • 8/13/2019 Handbook of Geometry

    32/82

    GeometryKitesandTrapezoids

    FactsaboutaKiteToproveaquadrilateralisakite,prove: Ithastwopairofcongruentsides. Oppositesidesarenotcongruent.Also,ifaquadrilateralisakite,then: Itsdiagonalsareperpendicular Ithasexactlyonepairofcongruentoppositeangles.

    PartsofaTrapezoidBase

    LegLeg

    MidsegmentTrapezoidABCDhasthefollowingparts: and arebases. andarelegs.

    isth idsegment.em and arediagonals.

    Base Diagonals AnglesAandDformapairofbaseangles. AnglesBandCformapairofbaseangles.

    TrapezoidMidsegmentTheoremThemidsegmentofatrapezoidisparalleltoeachofitsbasesand:

    .

    Provinga

    Quadrilateral

    is

    an

    Isosceles

    Trapezoid

    Toproveaquadrilateralisanisoscelestrapezoid,proveanyofthefollowingconditions:1. Itisatrapezoidandhasapairofcongruentlegs.(definitionofisoscelestrapezoid)2. Itisatrapezoidandhasapairofcongruentbaseangles.3. Itisatrapezoidanditsdiagonalsarecongruent.

    -32-

    Version 2.2 10/30/2013

  • 8/13/2019 Handbook of Geometry

    33/82

    Geometry

    IntroductiontoTransformation

    ATransformationisamappingofthepreimageofageometricfigureontoanimagethat

    retainskeycharacteristicsofthepreimage.

    Definitions

    ThePreImageisthegeometricfigurebeforeithasbeentransformed.

    TheImageisthegeometricfigureafterithasbeentransformed.

    Amappingisanassociationbetweenobjects. Transformationsaretypesofmappings. Inthe

    figuresbelow,wesayABCDismappedontoABCD,or . Theorderoftheverticesiscriticaltoaproperlynamedmapping.

    AnIsometry

    isaone

    to

    one

    mapping

    that

    preserves

    lengths.

    Transformations

    that

    are

    isometries(i.e.,preservelength)arecalledrigidtransformations.

    IsometricTransformations

    Rotationisturninga

    figurearoundapoint.

    Rotatedfiguresretain

    theirsizeandshape,but

    nottheirorientation.

    Reflectionisflippinga

    figureacrossalinecalled

    amirror. Thefigure

    retainsitssizeandshape,

    butappearsbackwards

    afterthe

    reflection.

    Translationisslidinga

    figureintheplanesothat

    itchangeslocationbut

    retainsitsshape,sizeand

    orientation.

    TableofCharacteristicsofIsometricTransformations

    Transformation Reflection Rotation Translation

    Isometry(RetainsLengths)? Yes Yes Yes

    RetainsAngles? Yes Yes Yes

    RetainsOrientationtoAxes? No No Yes

    -33-

    Version 2.2 10/30/2013

  • 8/13/2019 Handbook of Geometry

    34/82

    Geometry

    IntroductiontoTransformation(contd)

    TransformationofaPoint

    Apoint

    isthe

    easiest

    object

    to

    transform.

    Simply

    reflect,

    rotate

    or

    translate

    itfollowing

    the

    rulesforthetransformationselected. Bytransformingkeypointsfirst,anytransformation

    becomesmucheasier.

    TransformationofaGeometricFigure

    Totransformanygeometricfigure,itisonlynecessarytotransformtheitemsthatdefinethe

    figure,andthenreformit. Forexample:

    Totransformalinesegment,transformitstwoendpoints,andthenconnecttheresultingimageswithalinesegment.

    To

    transform

    aray,

    transform

    the

    initial

    point

    and

    any

    other

    point

    on

    the

    ray,

    and

    then

    constructarayusingtheresultingimages.

    Totransformaline,transformanytwopointsontheline,andthenfitalinethroughtheresultingimages.

    Totransformapolygon,transformeachofitsvertices,andthenconnecttheresultingimageswithlinesegments.

    Totransformacircle,transformitscenterand,ifnecessary,itsradius. Fromtheresultingimages,constructtheimagecircle.

    Totransformotherconicsections(parabolas,ellipsesandhyperbolas),transformthefoci,verticesand/ordirectrix. Fromtheresultingimages,constructtheimageconic

    section.

    Example: ReflectQuadrilateralABCD

    -34-

    Version 2.2 10/30/2013

  • 8/13/2019 Handbook of Geometry

    35/82

    Geometry

    Reflection

    Definitions

    Reflectionisflipping

    afigure

    across

    amirror.

    TheLineofReflectionisthemirrorthroughwhichthe

    reflectiontakesplace.

    Notethat:

    Thelinesegmentconnectingcorrespondingpointsintheimageandpreimageisbisectedbythemirror.

    Thelinesegmentconnectingcorrespondingpointsintheimageandpreimageisperpendiculartothemirror.

    ReflectionthroughanAxisortheLine

    Reflectionofthepoint(a,b)throughthex- ory-axisortheline givesthefollowingresults:

    PreImage

    Point

    Mirror

    Line

    Image

    Point

    (a, b) xaxis (a, b)

    (a, b) yaxis (a, b)

    (a, b) the line: (a, b)

    Ifyouforgettheabo le,startwith onasetof ateaxes. Reflectthepointthroughtheselectedlineandseewhichsetofa,bcoordinatesworks.

    vetab thepoint 3,2 coordin

    LineofSymmetry

    ALineofSymmetryisanylinethroughwhichafigurecanbemappedontoitself. Thethinblack

    linesinthefollowingfiguresshowtheiraxesofsymmetry:

    -35-

    Version 2.2 10/30/2013

  • 8/13/2019 Handbook of Geometry

    36/82

    Geometry

    Rotation

    Definitions

    Rotationisturning

    afigure

    by

    an

    angle

    about

    afixed

    point.

    TheCenterofRotationisthepointaboutwhichthefigureis

    rotated. PointP,atright,isthecenterofrotation.

    TheAngleofRotationdeterminestheextentoftherotation.

    Theangleisformedbytheraysthatconnectthecenterof

    rotationtothepreimageandtheimageoftherotation.Angle

    P,atright,istheangleofrotation. Thoughshownonlyfor

    PointA,theangleisthesameforanyofthefigures4vertices.

    Note: Inperformingrotations,itisimportanttoindicatethedirectionoftherotation

    clockwiseorcounterclockwise.

    RotationabouttheOrigin

    Rotationofthepoint(a,b)abouttheorigin(0,0)givesthefollowingresults:

    PreImage

    Point

    Clockwise

    Rotation

    Counterclockwise

    Rotation

    Image

    Point

    (a, b) 90 270 (b, a)

    (a, b) 180 180 (a, b)

    (a, b) 270 90 (b, a)

    (a, b) 360 360 (a, b)

    Ifyouforg abovetable,star thepoint3,2 on tofcoordinatea otatethepointbytheselectedangleandseewhichsetofa,bcoordinatesworks.

    etthe twith ase xes. R

    RotationalSymmetry

    AfigureinaplanehasRotationalSymmetryifitcanbemappedontoitselfbyarotationof

    180 orless. Anyregularpolygonhasrotationalsymmetry,asdoesacircle. Herearesomeexamplesoffigureswithrotationalsymmetry:

    -36-

    Version 2.2 10/30/2013

  • 8/13/2019 Handbook of Geometry

    37/82

    ADVANCED

    Geometry

    Rotationby90 aboutaPoint(x0,y0)

    Rotatinganobjectby90 aboutapointinvolvesrotatingeachpointoftheobjectby90 about

    thatpoint. Forapolygon,thisisaccomplishedbyrotatingeachvertexandthenconnecting

    themtoeachother,soyoumainlyhavetoworryaboutthevertices,whicharepoints. The

    mathematicsbehindtheprocessofrotatingapointby90 isdescribedbelow:

    Letsdefinethefollowingpoints:

    Thepointaboutwhichtherotationwilltakeplace:(x0,y0) Theinitialpoint(beforerotation):(x1,y1) Thefinalpoint(afterrotation):(x2,y2)

    Theproblemistodetermine(x2,y2)ifwearegiven(x0,y0)and(x1,y1). Itinvolves3steps:

    1. Converttheproblemtooneofrotatingapointabouttheorigin(amucheasierproblem).

    2. Performtherotation.3. Converttheresultbacktotheoriginalsetofaxes.

    Wellconsidereachstepseparatelyandprovideanexample:

    Problem:Rotateapointby90 aboutanotherpoint.

    Step1:Converttheproblemtooneofrotatingapointabouttheorigin:

    First,weaskhowthepoint(x1,y1)relatestothepointaboutwhichitwillberotated(x0,

    y0)andcreateanew(translated)point. Thisisessentiallyanaxistranslation,which

    wewillreverseinStep3.

    GeneralSituation Example

    PointsintheProblem

    RotationCenter:(x0,y0) Initialpoint:(x1,y1) Finalpoint:(x2,y2)

    PointsintheProblem

    RotationCenter:(2,3) Initialpoint:(2,1) Finalpoint:tobedetermined

    Calculateanewpointthatrepresentshow

    (x1,y1)relatesto(x0,y0). Thatpointis:

    (x1x0,y1y0)

    Calculateanewpointthatrepresentshow

    (2,1)relatesto(2,3). Thatpointis:

    (4, 2)

    Thenextstepsdependonwhetherwearemakingaclockwiseorcounterclockwiserotation.

    -37-

    Version 2.2 10/30/2013

  • 8/13/2019 Handbook of Geometry

    38/82

    ADVANCED

    Geometry

    Rotationby90 aboutaPoint(contd)

    ClockwiseRotation:

    Step2:Performtherotationabouttheorigin:

    Rotatingby90 clockwiseabouttheorigin(0,0)issimplyaprocessofswitchingthex

    andyvaluesofapointandnegatingthenewyterm. Thatis(x,y)becomes(y, x)after

    rotationby90.

    GeneralSituation Example

    Prerotatedpoint(fromStep1):

    (x1x0,y1y0)

    Pointafterrotation:

    (y1y0, x1+x0)

    Prerotatedpoint(fromStep1):

    (4, 2)

    Pointafterrotation:

    (2,4)

    Step3:Converttheresultbacktotheoriginalsetofaxes.

    Todothis,simplyaddbackthepointofrotation(whichwassubtractedoutinStep1.

    GeneralSituation Example

    Pointafterrotation:

    (y1y0, x1+x0)

    Addbackthepointofrotation(x0,y0):

    (y1y0+x0

    , x1+x0+y0)

    whichgivesusthevaluesof(x2,y2)

    Pointafterrotation:

    (2,4)

    Addbackthepointofrotation(2,3):

    (0,7)

    Finally,lookattheformulasforx2andy2:

    Clockwise Rotation

    x2= y1 - y0+ x0

    y2 = -x1 + x0+ y0

    Noticethattheformulasfor

    clockwiseandcounter

    clockwiserotationby90 are

    thesameexceptthetermsin

    blueare

    negated

    between

    the

    formulas.

    Interestingnote: Ifyouareaskedtofindthepointaboutwhichtherotationoccurred,you

    simplysubstituteinthevaluesforthestartingpoint(x1,y1)andtheendingpoint(x2,y2)and

    solvetheresultingpairofsimultaneousequationsforx0andy0.

    -38-

    Version 2.2 10/30/2013

  • 8/13/2019 Handbook of Geometry

    39/82

    ADVANCED

    Geometry

    Rotationby90 aboutaPoint(contd)

    CounterClockwise

    Rotation:

    Step2:Performtherotationabouttheorigin:

    Rotatingby90 counterclockwiseabouttheorigin(0,0)issimplyaprocessofswitching

    thex andyvaluesofapointandnegatingthenewxterm. Thatis(x,y)becomes(y,x)

    afterrotationby90.

    GeneralSituation Example

    Prerotatedpoint(fromStep1):

    (x1x0,y1y0)

    Pointafterrotation:(y1+y0,x1x0)

    Prerotatedpoint(fromStep1):

    (4, 2)

    Pointafterrotation:(2, 4)

    Step3:Converttheresultbacktotheoriginalsetofaxes.

    Todothis,simplyaddbackthepointofrotation(whichwassubtractedoutinStep1.

    GeneralSituation Example

    Pointafterrotation:

    (y1+y0,x1x0)

    Addbackthepointofrotation(x0,y0):

    (y1+y0+x0,x1x0+y0)

    whichgivesusthevaluesof(x2,y2)

    Pointafterrotation:

    (2,4)

    Addbackthepointofrotation(2,3):

    (4, 1)

    Finally,lookattheformulasforx2andy2:

    Noticethattheformulasfor

    clockwiseandcounter

    clockwiserotationby90 are

    thesameexceptthetermsin

    bluearenegatedbetweenthe

    formulas.

    Counter-Clockwise Rotation

    x2= -y1 + y0+ x0

    y2 = x1 - x0+ y0

    Interestingnote: Thepointhalfwaybetweentheclockwiseandcounterclockwiserotationsof

    90 isthecenterofrotationitself,(x0,y0). Intheexample,(2,3)ishalfwaybetween(0,7)and

    (4,1).

    -39-

    Version 2.2 10/30/2013

  • 8/13/2019 Handbook of Geometry

    40/82

    Geometry

    Translation

    Definitions

    WhenTwoReflections OneTranslation

    Translationissliding

    afigure

    in

    the

    plane.

    Each

    pointinthefigureismovedthesamedistancein

    thesamedirection. Theresultisanimagethat

    looksthesameasthepreimageineveryway,

    exceptithasbeenmovedtoadifferentlocation

    intheplane.

    Eachofthefourorangelinesegmentsinthe

    figureatrighthasthesamelengthanddirection.

    Iftwomirrorsareparallel,thenreflectionthrough

    oneofthem,followedbyareflectionthroughthe

    secondisatranslation.

    Inthefigureatright,theblacklinesshowthepaths

    ofthetworeflections;thisisalsothepathofthe

    resultingtranslation. Notethefollowing:

    Thedistanceoftheresultingtranslation(e.g.,fromAtoA)isdoublethedistance

    betweenthemirrors.

    Theblacklinesofmovementareperpendiculartobothmirrors.

    DefiningTranslationsintheCoordinatePlane(UsingVectors)

    Atranslationmoveseachpointbythesamedistanceinthesamedirection. Inthecoordinate

    plane,thisisequivalenttomovingeachpointthesameamountinthex-directionandthesame

    amountinthey-direction. Thiscombinationofx-andy-directionmovementisdescribedbya

    mathematicalconceptcalledavector.

    Intheabovefigure,translationfromAtomoves10inthex-directionandthe-3inthey-direction. Invectornotation,thisis: ,. Noticethehalfraysymboloverthetwopointsandthefunnylookingbracketsaroundthemovementvalues.

    So,thetranslationresultingfromthetworeflectionsintheabovefiguremoveseachpointof

    thepreimagebythevector . Everytranslationcanbedefinedbythevectorrepresentingitsmovementinthecoordinateplane.

    -40-

    Version 2.2 10/30/2013

  • 8/13/2019 Handbook of Geometry

    41/82

    Geometry

    Compositions

    Whenmultipletransformationsarecombined,theresultiscalledaCompositionofthe

    Transformations. Twoexamplesofthisare:

    Combiningtworeflectionsthroughparallelmirrorstogenerateatranslation(seethepreviouspage).

    Combiningatranslationandareflectiontogeneratewhatiscalledaglidereflection.Theglidepartofthenamereferstotranslation,whichisakindofglidingofafigureon

    theplane.

    Note:Inaglidereflection,ifthelineofreflectionisparalleltothedirectionofthe

    translation,itdoesnotmatterwhetherthereflectionorthetranslationisperformedfirst.

    Figure2:ReflectionfollowedbyTranslation.Figure1:TranslationfollowedbyReflection.

    CompositionTheorem

    ThecompositionofmultipleisometriesisasIsometry. Putmoresimply,iftransformationsthat

    preservelengtharecombined,thecompositionwillpreservelength. Thisisalsotrueof

    compositionsoftransformationsthatpreserveanglemeasure.

    OrderofComposition

    Ordermattersinmostcompositionsthatinvolvemorethanoneclassoftransformation. Ifyou

    applymultipletransformationsofthesamekind(e.g.,reflection,rotation,ortranslation),order

    generallydoesnotmatter;however,applyingtransformationsinmorethanoneclassmay

    producedifferentfinalimagesiftheorderisswitched.

    -41-

    Version 2.2 10/30/2013

  • 8/13/2019 Handbook of Geometry

    42/82

    Example:

    Note:theunitinchescancelout,sotheansweris,not .

    3 12

    14

    Example:3

    2 3

    2 12 3 24

    18

    GeometryRatiosInvolvingUnits

    RatiosInvolvingUnitsWhensimplifyingratioscontainingthesameunits:

    Simplifythefraction. Notice that the units disappear. They behave

    just like factors; if the units exist in thenumeratoranddenominator,thecancelandarenotintheanswer.

    Whensimplifyingratioscontainingdifferentunits: Adjusttheratiosothatthenumeratoranddenominatorhavethesameunits. Simplifythefraction. Noticethattheunitsdisappear.

    Dealingwith

    Units

    Noticeintheaboveexamplethatunitscanbetreatedthesameasfactors;theycanbeusedinfractions and they cancel when they divide. This fact can be used to figure out whethermultiplicationordivisionisneededinaproblem. Considerthefollowing:Example: Howlongdidittakeforacartravelingat48milesperhourtogo32miles?Considertheunitsofeachitem: 32 48

    Ifyoumultiply,youget: 32 48 1,536

    . Thisisclearlywrong! Ifyoudivide,youget: 32 48 . Now,

    thislooksreasonable. Noticehowthe""unitcanceloutinthefinalanswer.Now you could have solved this problem by remembering that , or . However,payingcloseattention to theunitsalsogenerates thecorrectanswer. Inaddition,theunitstechniquealwaysworks,nomatterwhattheproblem!

    -42-

    Version 2.2 10/30/2013

  • 8/13/2019 Handbook of Geometry

    43/82

    Geometry

    SimilarPolygons

    Insimilarpolygons,

    Correspondinganglesarecongruent,and Correspondingsidesareproportional.

    Bothoftheseconditionsarenecessaryfortwo

    polygonstobesimilar. Conversely,whentwo

    polygonsaresimilar,allofthecorresponding

    anglesarecongruentandallofthesidesareproportional.

    NamingSimilarPolygons

    Similarpolygonsshouldbenamedsuchthatcorrespondinganglesareinthesamelocationin

    thename,andtheorderofthepointsinthenameshouldfollowthepolygonaround.

    Example: Thepolygonsabove llowingnames:couldbeshownsimilarwiththefo

    ~ Itwouldalsobeacceptabletoshowthesimilarityas:

    ~ Anynamesthatpreservetheorderofthepointsandkeepscorrespondinganglesin

    correspondinglocationsinthenameswouldbeacceptable.

    Proportions

    Onecommonproblemrelatingtosimilarpolygonsistopresentthreesidelengths,wheretwo

    ofthesidescorrespond,andtoaskforthe g the side gth.len thof correspondingtothethirdlen

    Example: Intheabovesimilarpolygons,if 20, 12, 6, ?Thisproblemissolvablewithproportions. Todosoproperly,itisimportanttorelate

    correspondingitems he

    p portion:

    in

    t ro

    20 126 1 0olygonisrepresentedonthe ofbothproportionsNoticethattheleftp top andthattheleft

    mostsegmentsofthetwopolygonsareintheleftfraction.

    -43-

    Version 2.2 10/30/2013

  • 8/13/2019 Handbook of Geometry

    44/82

    Geometry

    ScaleFactorsofSimilarPolygons

    Fromthesimilarpolygonsbelow, following he thsofthesides:the isknownaboutt leng

    Thatis,theratiosofcorrespondingsidesinthe

    twopolygonsarethesameandtheyequal

    someconstant,calledthescalefactorofthetwopolygons. Thevalueof,then,isallyouneedtoknowtorelatecorrespondingsidesin

    thetwopolygons.

    FindingtheMissingLength

    Anytimethestudentisaskedtofindthemissinglengthinsimilarpolygons:

    Lookfortwocorrespondingsidesforwhichthevaluesareknown. Calculatethevalueof. Usethevalueoftosolveforthemissinglength.

    isameasureoftherelativesizeofthetwopolygons. Usingthisknowledge,itispossibletoputintowordsaneasilyunderstandablerelationshipbetweenthepolygons.

    LetPolygon1betheonewhosesidesareinthenumeratorsofthefractions. LetPolygon2betheonewhosesides einthedenominatorsofthefractions.ar Then,itcanbesaidthatPolygon1is timesthesizeofthePolygon2.

    Example: In eabo polygons,if 20, 12, 6, ?th vesimilarSeeingthatandrelate,calculate:

    126 2

    Thensolveforbased thevalueof:on 20 2 1 0o everysideinthAlso,since 2,thelength f ebluepolygonisdoublethelengthofits

    correspondingsideintheorangepolygon.

    -44-

    Version 2.2 10/30/2013

  • 8/13/2019 Handbook of Geometry

    45/82

    Geometry

    DilationofPolygons

    Adilationisaspecialcaseoftransformationinvolvingsimilarpolygons. Itcanbethoughtofas

    atransformationthatcreatesapolygonofthesameshapebutadifferentsizefromtheoriginal.

    Keyelementsofadilationare:

    ScaleFactorThescalefactorofsimilarpolygonsistheconstantwhichrepresentstherelativesizesofthepolygons.

    Ce sthepointfromwhichthedilationtakesplace.nterThecenteriNotethat and 1inordertogenerateasecondpolygon. Then, 0

    If thedilationiscalledanenlargement. 1, If

    1,thedilationiscalledareduction.

    DilationswithCenter(0,0)

    Incoordinategeometry,dilationsareoftenperformedwiththecenterbeingtheorigin0,0.Inthatcase,toobtainthedilationofapolygon:

    Multiplythecoordinatesofeachvertexbythescalefactor,and Connecttheverticesofthedilationwithlinesegments(i.e.,connectthedots).

    Examples:

    Inthe

    following

    examples:

    Thegreenpolygonistheoriginal. Thebluepolygonisthedilation. Thedashedorangelinesshowthemovementawayfrom

    (enlargement)ortoward(reduction)thecenter,whichis

    theorigininall3examples.

    N :oticethat,ineachexample

    Thisfactcanbeusedtoconstructdilationswhencoordinateaxes

    arenotavailable. Alternatively,thestudentcoulddrawasetof

    coordinateaxesasanaidtoperformingthedilation.

    -45-

    Version 2.2 10/30/2013

  • 8/13/2019 Handbook of Geometry

    46/82

    ADVANCED

    Geometry

    MoreonDilation

    DilationsofNonPolygons

    Anygeometricfigurecanbedilated. Inthedilationofthe

    greencircleatright,noticethat:

    Thedilationfactoris2. Theoriginalcirclehascenter ndradius7,3a 5. Thedilatedcirclehascenter14,6andradius 10.

    So,thecenterandradiusarebothincreasedbyafactorof 2. Thisistrueofanyfigureinadilationwiththecenterattheorigin. Allofthekeyelementsthatdefinethefigureare

    increased

    by

    the

    scale

    factor

    .

    DilationswithCenter,Inthefiguresbelow,thegreenquadrilateralsaredilatedtotheblueoneswithascalefactorof 2. Noticethefollowing:

    Inthefiguretotheleft,thedilationhascenter0,0,whereasinthefiguretotheright,thedilationhascenter4,3. Thesizeoftheresultingfigureisthesameinbothcases

    (because 2inbothfigures),butthelocationisdifferent.Graphically,theseriesoftransformationsthatisequivalenttoadilationfromapoint,otherthantheoriginisshownbelow. Compar lresulttothefigureabove(right).ethefina

    Step1:Translatetheoriginalfigureby,toresetthecenterattheorigin. Step2: Performthedilation. Step3: Translatethedilatedfigureby

    ,. Thesestepsareillustratedbelow.

    Step1 Step3Step2

    -46-

    Version 2.2 10/30/2013

  • 8/13/2019 Handbook of Geometry

    47/82

    Geometry

    SimilarTriangles

    Thefollowingtheoremspresentconditionsunderwhichtrianglesaresimilar.

    SideAngle

    Side

    (SAS)

    Similarity

    SASsimilarity requirestheproportionality of

    twosidesandthecongruenceoftheangle

    betweenthosesides. Notethatthereisnosuch

    thingasSSAsimilarity;thecongruentanglemust

    bebetweenthetwoproportionalsides.

    SideSideSide(SSS)Similarity

    SSSsimilarityrequirestheproportionalityofall

    threesides. Ifallofthesidesareproportional,

    thenall

    of

    the

    angles

    must

    be

    congruent.

    AngleAngle(AA)Similarity

    AAsimilarityrequiresthecongruenceoftwo

    anglesandthesidebetweenthoseangles.

    SimilarTriangleParts

    Insimilartriangles,

    Correspondingsidesareproportional. Correspondinganglesarecongruent.

    Establishingthepropernamesforsimilartrianglesiscrucialtolineupcorrespondingvertices.

    Inthepictureabove,wecansay:

    or

    ~ or ~ or ~~ or ~ or ~Allofthesearecorrectbecausetheymatchcorrespondingpartsinthenaming. Eachofthese

    similaritiesimpliesthe b t riangles:followingrelationships e weenpartsofthetwot

    and d an

    -47-

    Version 2.2 10/30/2013

  • 8/13/2019 Handbook of Geometry

    48/82

    Geometry

    ProportionTablesforSimilarTriangles

    SettingUpaTableofProportions

    Itisoftenusefultosetupatabletoidentifytheproperproportions

    inasimilarity. Considerthefiguretotheright. Thetablemightlook

    somethinglikethis:

    Triangle LeftSide RightSide BottomSide

    Top AB BC CABottom

    DE EF FD

    Thepurposeofatablelikethisistoorganizetheinformationyouhaveaboutthesimilar

    trianglessothatyoucanreadilydeveloptheproportionsyouneed.

    DevelopingtheProportions

    Todevelopproportionsfromthetable:

    Extractthecolumnsneededfromthetable:AB BCDE EF Alsofromtheabove

    table,

    Eliminatethetablelines. Replacethehorizontallineswithdivisionlines. Putanequalsig hetworesultingfractions:nbetweent

    Solvingfortheunknownlengthofaside:

    Youcanextractanytwocolumnsyoulikefromthetable. Usually,youwillhaveinformationon

    lengthsofthreeofthesidesandwillbeaskedtocalculateafourth.

    Lookinthetableforthecolumnsthatcontainthe4sidesinquestion,andthensetupyour

    proportion. Substituteknownvaluesintotheproportion,andsolvefortheremainingvariable.

    -48-

    Version 2.2 10/30/2013

  • 8/13/2019 Handbook of Geometry

    49/82

    Geometry

    ThreeSimilarTriangles

    Acommonproblemingeometryistofindthemissingvalueinproportionsbasedonasetof

    threesimilar

    triangles,

    two

    of

    which

    are

    inside

    the

    third.

    The

    diagram

    often

    looks

    like

    this:

    c

    PythagoreanRelationships

    Insidetriangleontheleft: Insidetriangleontheright: Outside(large)triangle:

    SimilarTriangleRelationships

    Becauseallthreetrianglesaresimilar,wehavetherelationshipsinthetablebelow. These

    relationshipsarenotobviousfromthepicture,butareveryusefulinsolvingproblemsbasedon

    theabovediagram. Usingsimilaritiesbetweenthetriangles,2atatime,weget:

    Fromthetwoinsidetriangles

    Fromtheinsidetriangleon

    theleftandtheoutside

    triangle

    Fromtheinsidetriangleon

    therightandtheoutside

    triangle

    or or or

    Theheightsquared

    =theproductof:

    thetwopartsofthebase

    Theleftsidesquared

    =theproductof:

    thepartofthebasebelowit

    andtheentirebase

    Therightsidesquared

    =theproductof:

    thepartofthebasebelowit

    andtheentirebase

    -49-

    Version 2.2 10/30/2013

  • 8/13/2019 Handbook of Geometry

    50/82

    GeometryPythagoreanTheorem

    where,

    aandbare the lengthsof the legsofarighttriangle,and

    cisthelengthofthehypotenuse.

    Inarighttriangle,thePythagorean heoremsays:T

    Right,Acute,orObtuseTriangle?Inadditiontoallowingthesolutionofrighttriangles,thePythagoreanFormulacanbeusedto

    determinewhetheratriangleisarighttriangle,anacutetriangle,oranobtusetriangle.

    Todeterminewhetheratriangleisobtuse,right,oracute:

    Arrangeth esidesfromlowtohigh;callthema,b,andc,inincreasingorderelengthsofth Calculate: , , and . Compare: vs. Usetheillustrationsbelowtodeterminewhichtypeoftriangleyouhave.

    ObtuseTriangle

    RightTriangle

    AcuteTriangle

    5 8 . 92 5 6 4 8 1

    Example:Trianglewithsides:5,8,9

    7 9 . 124 9 8 1 1 4 4

    Example:Trianglewithsides:7,9,12

    6 8 . 103 6 6 4 1 0 0

    Example:Trianglewithsides:6,8,10

    -50-

    Version 2.2 10/30/2013

  • 8/13/2019 Handbook of Geometry

    51/82

    Geometry

    PythagoreanTriples

    PythagoreanTheorem:

    Pythagoreantriples

    are

    sets

    of

    3positive

    integers

    that

    meet

    the

    requirements

    of

    the

    PythagoreanTheorem. Becausethesesetsofintegersprovideprettysolutionstogeometry

    problems,theyareafavoriteofgeometrybooksandteachers. Knowingwhattriplesexistcan

    helpthestudentquicklyidentifysolutionstoproblemsthatmightotherwisetakeconsiderable

    timetosolve.

    345TriangleFamily 72425TriangleFamily

    9 16 25 49 576 625

    51213TriangleFamily 81517TriangleFamily

    25 144 169 64 225 289

    Sample

    Triples

    51213

    102426

    153639

    ...

    50120130

    Sample

    Triples

    345

    6810

    91215

    121620

    304050

    Sample

    Triples

    72425

    144850

    217275

    ...

    70240250

    Sample

    Triples

    81517

    163034

    244551

    ...

    80150170

    -51-

    Version 2.2 10/30/2013

  • 8/13/2019 Handbook of Geometry

    52/82

    Geometry

    SpecialTriangles

    Therelationshipamongthelengthsofthesidesofatriangleisdependentonthemeasuresof

    theanglesinthetriangle. Forarighttriangle(i.e.,onethatcontainsa90 angle),twospecial

    casesareofparticularinterest. Theseareshownbelow:

    454590 Triangle

    1

    1

    306090 Triangle

    2

    1

    Inarighttriangle,weneedtoknowthelengthsoftwosidestodeterminethelengthofthe

    third. Thepoweroftherelationshipsinthespecialtrianglesliesinthefactthatweneedonly

    knowthelengthofonesideofthetriangletodeterminethelengthsoftheothertwosides.

    ExampleSideLengths

    Ina454590 triangle,thecongruenceoftwo

    anglesguaranteesthecongruenceofthetwo

    legsofthetriangle. Theproportionsofthethree

    sidesare: . Thatis,thetwolegshave

    thesamelengthandthehypotenuseistimes

    aslong

    as

    either

    leg.

    Ina306090 triangle,theproportionsofthe

    threesidesare: . Thatis,thelongleg

    istimesaslongastheshortleg,andthe

    hypotenuseis

    timesas

    long

    as

    the

    short

    leg.

    454590 Triangle

    306090 Triangle

    -52-

    Version 2.2 10/30/2013

  • 8/13/2019 Handbook of Geometry

    53/82

    Geometry

    TrigFunctionsandSpecialAngles

    TrigonometricFunctions

    SpecialAngles

    TrigFunctionsofSpecialAngles

    Radians

    Degrees

    0 0 02

    042

    10

    4 0

    6 30

    12

    12

    32

    1

    333

    4 45

    22

    22

    1

    3 60

    32

    12

    12

    3

    1 3

    2 90

    42

    102

    0 undefined

    SOHCAHTOA

    si n

    sin sin

    cos

    cos cos

    tan

    tan

    tan

    -53-

    Version 2.2 10/30/2013

  • 8/13/2019 Handbook of Geometry

    54/82

    GeometryTrigonometricFunctionValuesinQuadrantsII,III,andIV

    InquadrantsotherthanQuadrantI,trigonometricvaluesforanglesarecalculatedinthe

    followingmanner:

    DrawtheangleontheCartesianPlane. Calculatethemeasureoftheanglefromthex

    axisto.

    Findthevalueofthetrigonometricfunctionoftheangleinthepreviousstep.

    Assignaorsigntothetrigonometricvaluebasedonthefunctionusedandthe

    quadrantisin.

    Examples:inQuadrantIICalculate: 180 For 120,baseyourworkon180 120 60

    sin60

    ,so:

    inQuadrantIIICalculate: 180For 210,baseyourworkon210 180 30

    cos 30

    ,so:

    inQuadrantIVCalculate: 360 For 315,baseyourworkon360 315 45

    tan 45 1,so:

    -54-

    Version 2.2 10/30/2013

  • 8/13/2019 Handbook of Geometry

    55/82

    Thesineandcosecantfunctionsareinverses. So:sin

    1

    csc and csc

    1

    sin

    Thecosineandsecantfunctionsareinverses. So:cos

    1

    sec and sec

    1

    cos

    Thetangentandcotangentfunctionsareinverses. So:tan

    1

    cot and cot

    1

    tan

    GeometryGraphsofTrigonometricFunctions

    -55-

    Version 2.2 10/30/2013

  • 8/13/2019 Handbook of Geometry

    56/82

    GeometryVectors

    Definitions

    Avector

    isageometric

    object

    that

    has

    both

    magnitude(length)anddirection.

    TheTailofthevectoristheendoppositethearrow.Itrepresentswherethevectorismovingfrom.

    TheHeadofthevectoristheendwiththearrow. Itrepresentswherethevectorismovingto.

    TheZeroVectorisdenoted0. Ithaszerolengthandallthepropertiesofzero.

    Twovectorsareequalistheyhaveboththesamemagnitudeandthesamedirection. Twovectorsareparalleliftheyhavethesameoroppositedirections. Thatis,iftheangles

    ofthevectorsarethesameor180 different.

    Twovectorsareperpendicularifthedifferenceoftheanglesofthevectorsis90 or270.MagnitudeofaVectorThedistanceformulagivesthemagnitudeofavector. Iftheheadandtailofvectorvarethe

    points , and a e is, ,thenthem gnitud ofv :

    || Notethat . Thedirectionsofthetwovectorsareopposite,buttheirmagnitudesarethesame.

    DirectionofaVectorThedirectionofavectorisdeterminedbytheangleitmakes

    withahorizontalline. Inthefigureatright,thedirectionisthe

    angle. Thevalueofcanbecalculatedbasedonthelengthsofthesidesofthetriang thevectorforms.le

    or

    wherethefunctiontan-1istheinversetangentfunction. Thesecondequationinthelineabove

    readsistheanglewhosetangentis.

    -56-

    Version 2.2 10/30/2013

  • 8/13/2019 Handbook of Geometry

    57/82

    GeometryOperationswithVectors

    Itispossibletooperatewithvectorsinsomeofthesamewaysweoperatewithnumbers. In

    particular:

    AddingVectorsVectorscanbe in tangularformbyseparatelyaddingtheirx-andy-components. In

    general,

    added rec

    , , , , ,

    Example:Inthe figureatright,

    4, 36 2,

    4, 3 2,6 6,3

    V aectorAlgebr a a a

    a b a b 1 ab a b b a

    ScalarMultiplicationScalarmultiplic sthemagnitudeofavector,butnotthedirection. Ingeneral,ationchange

    , ,

    Inthefigureatright,

    4, 32 2 4, 3 8, 6

    -57-

    Version 2.2 10/30/2013

  • 8/13/2019 Handbook of Geometry

    58/82

    GeometryPartsofCircles

    Centerthemiddleofthecircle. Allpointsonthecirclearethesamedistancefromthecenter.

    Radiusalinesegmentwithoneendpointatthecenter

    andtheotherendpointonthecircle. Thetermradiusis

    alsousedtorefertothedistancefromthecentertothe

    pointsonthecircle.

    Diameteralinesegmentwithendpointsonthecirclethatpassesthroughthecenter.

    Arcapathalongacircle.MinorArcapathalongthecirclethatislessthan180.MajorArcapathalongthecirclethatisgreaterthan180.

    Semicircleapathalongacirclethatequals180.Sectoraregioninsideacirclethatisboundedbytworadiiandanarc.

    SecantLinealinethatintersectsthecircleinexactlyonepoint.

    TangentLinealinethatintersectsthecircleinexactlytwopoints.

    Chordalinesegmentwithendpointsonthecirclethatdoesnotpassthroughthecenter.

    -58-

    Version 2.2 10/30/2013

  • 8/13/2019 Handbook of Geometry

    59/82

    GeometryAnglesandCircles

    CentralAngle

    Inscribed

    Angle

    Vertexinsidethecircle Vertexoutsidethecircle

    Tangentononeside Tangentsontwosides

    -59-

    Version 2.2 10/30/2013

  • 8/13/2019 Handbook of Geometry

    60/82

    GeometryPerimeterandAreaofaTriangle

    PerimeterofaTriangleTheperimeterofatriangleissimplythesumofthemeasuresofthethreesidesofthetriangle.

    AreaofaTriangleTherearetwoformulasfortheareaofatriangle,dependingonwhatinformationaboutthe

    triangle

    is

    available.

    Formula1: Theformulamostfamiliartothestudentcanbeusedwhenthebaseandheightofthetriangleareeitherknownorcanbedetermined.

    where, isthelengthofthebaseofthetriangle.istheheightofthetriangle.

    Note: Thebasecanbeanysideofthetriangle. Theheightisthemeasureofthealtitudeof

    whicheverside

    is

    selected

    as

    the

    base.

    So,

    you

    can

    use:

    or or

    Formula2: Heronsformulafortheareaofatrianglecanbeusedwhenthelengthsofallofthesidesareknown. Sometimesthisformula,

    thoughlessappealing,canbeveryuseful.

    where,

    . Note: issometimescalledthesemiperimeterofthetriangle.

    ,,arethelengthsofthesidesofthetriangle.

    -60-

    Version 2.2 10/30/2013

  • 8/13/2019 Handbook of Geometry

    61/82

    ADVANCEDGeometry

    MoreontheAreaofaTriangle

    TrigonometricFormulasThefollowingformulasfortheareaofatrianglecomefromtrigonometry.Whichoneisuseddependsontheinformationavailable:Twoanglesandaside:

    Twosidesandanangle:

    CoordinateGeometryIfthethreeverticesofatrianglearedisplayedinacoordinateplane,theformulabelow,usingadeterminant,willgivetheareaofatriangle.Letthethreepointsinthecoordinateplanebe:, , , , , . Then,theareaofthetriangleisonehalfoftheabsolutevalueofthedeterminantbelow:

    Example:For

    the

    triangle

    in

    the

    figure

    at

    right,

    the

    area

    is:

    -61-

    Version 2.2 10/30/2013

  • 8/13/2019 Handbook of Geometry

    62/82

    GeometryPerimeterandAreaofQuadrilaterals

    Name Illustration PerimeterKite 2 2

    Trapezoid

    2 2Parallelogram

    Rectangle 2 2

    Rhombus 4

    4Square

    -62-

    Version 2.2

  • 8/13/2019 Handbook of Geometry

    63/82

    GeometryPerimeterandAreaofRegularPolygons

    DefinitionsRegularPolygons Thecenterofapolygonisthecenterofitscircumscribed

    circle. PointOisthecenterofthehexagonatright. Theradiusofthepolygonistheradiusofits

    circumscribedcircle. and arebothradiiofthehexagonatright.

    Theapothemofapolygonisthedistancefromthecentertothemidpointofanyofitssides. aistheapothemofthehexagonatright.

    Thecentralangleofapolygonisananglewhosevertexisthecenterofthecircleandwhosesidespassthroughconsecutiveverticesofthepolygon. Inthefigureabove,isacentralangleofthehexagon.

    AreaofaReg P onular olyg where, istheapothemofthepolygon

    istheperimeterofthepolygon

    PerimeterandAreaofSimilarFiguresLetkbethescalefactorrelatingtwosimilargeometricfiguresF1andF2suchthat .

    Then,

    and

    -63-

    Version 2.2 10/30/2013

  • 8/13/2019 Handbook of Geometry

    64/82

    GeometryCircleLengthsandAreas

    Circum Areaferenceand

    istheareaofthecircle.isthecircumference(i.e.,theperimeter)ofthecircle.

    where: istheradiusofthecircle.

    LengthofanArconaCircleAcommonprobleminthegeometryofcirclesistomeasurethelengthofanarconacircle.Definitio thecircumferenceofacircle.n:Anarcisasegmentalong

    where: AB isthemeasure(indegrees)ofthearc. Notethat

    thisisalsothemeasureofthecentralangle.

    isthecircumferenceofthecircle.

    AreaofaSectorofaCircleAnothercommonprobleminthegeometryofcirclesistomeasuretheareaofasectoracircle.Definitio a lethatisboundedbytworadiiandanarcofthecircle.n:Asectorisaregion in circ

    where: AB isthemeasure(indegrees)ofthearc. Notethat

    thisisalsothemeasureofthecentralangle.istheareaofthecircle.

    -64-

    Version 2.2 10/30/2013

  • 8/13/2019 Handbook of Geometry

    65/82

    GeometryAreaofCompositeFigures

    Tocalculatetheareaofafigurethatisacompositeofshapes,considereachshapeseparately.Example1:Calculatetheareaoftheblueregioninthefiguretotheright.Tosolvethis:

    Recognizethatthefigureisthecompositeofarectangleandtwotriangles.

    Disassemblethecompositefigureintoitscomponents. Calculatetheareaofthecomponents. Subtracttogettheareaofthecompositefigure.

    Example2:Calculatetheareaoftheblueregioninthefiguretotheright.Tosolvethis:

    Recognizethatthefigureisthecompositeofasquareandacircle.

    Disassemblethecompositefigureintoitscomponents. Calculatetheareaofthecomponents. Subtracttogettheareaofthecompositefigure.

    ~ .

    -65-

    Version 2.2 10/30/2013

  • 8/13/2019 Handbook of Geometry

    66/82

    GeometryPolyhedra

    DefinitionsFaces

    APolyhedronisa3dimensionalsolidboundedbyaseriesofpolygons.

    Facesarethepolygonsthatboundthepolyhedron. AnEdgeisthelinesegmentattheintersectionoftwofaces. AVertexisapointattheintersectionoftwoedges. ARegularpolyhedronisoneinwhichallofthefacesarethe

    sameregularpolygon.Vertices

    AConvexPolyhedronisoneinwhichalldiagonalsarecontainedwithintheinteriorofthepolyhedron.

    A

    Concave

    polyhedron

    is

    one

    that

    is

    not

    convex.

    ACrossSectionistheintersectionofaplanewiththepolyhedron.Eulers oremTheLet: numberoffacesofapolyhedron. the

    henumberofverticesofapolyhedron. t

    thenumberofedgesofapolyhedron.

    Then,for

    any

    polyhedron

    that

    does

    not

    intersect

    itself,

    CalculatingtheNumberofEdges

    Edges

    EulersTheoremExample:Thecubeabovehas

    6faces 8vertices 12edges

    Thenumberofedgesofapolyhedronisonehalfthenumberofsidesinthepolygonsit

    comprises. Eachsidethatiscountedinthiswayissharedbytwopolygons;simplyaddingall

    thesides

    of

    the

    polygons,

    therefore,

    double

    counts

    the

    number

    of

    edges

    on

    the

    polyhedron.

    Example: Considerasoccerball. Itispolyhedronmadeupof20

    hexagonsand12pentagons. Thenthenumberofedgesis:

    -66-

    Version 2.2 10/30/2013

  • 8/13/2019 Handbook of Geometry

    67/82

    Example:

    Thecubewithatunnelinithas 16 32 16

    so,

    ADVANCEDGeometry

    AHoleinEulersTheoremTopologyisabranchofmathematicsthatstudiesthepropertiesofobjectsthatarepreservedthroughmanipulationthatdoesnotincludetearing. Anobjectmaybestretched,twistedandotherwisedeformed,butnottorn. Inthisbranchofmathematics,adonutisequivalenttoacoffeecupbecausebothhaveonehole;youcandeformeitherthecuporthedonutandcreatetheother,likeyouareplayingwithclay.Alloftheusualpolyhedrahavenoholesinthem,soEulersEquationholds. Whathappensifweallowthepolyhedratohaveholesinthem? Thatis,whatifweconsidertopologicalshapesdifferentfromtheoneswenormallyconsider?

    EulersCharacteristicWhenEulersEquationisrewrittenas ,thelefthandsideoftheequationiscalledtheEulerCharacteristic.

    GeneralizedEulers

    Theorem

    Let: thenumberoffacesofapolyhedron.

    thenumberofverticesofapolyhedron. thenumberofedgesofapolyhedron. thenumberofholesinthepolyhedron. is

    calledthegenusoftheshape.Then,foranypolyhedronthatdoesnotintersectitself,

    NotethatthevalueofEulersCharacteristiccanbenegativeiftheshapehasmorethanoneholeinit(i.e.,if 2)!

    TheEulerCharacteristicofashapeis:

    -67-

    Version 2.2 10/30/2013

  • 8/13/2019 Handbook of Geometry

    68/82

    GeometryPlatonicSolids

    A PlatonicSolidisaconvexregularpolyhedronwithfacescomposedofcongruentconvexregularpolygons. Therefiveofthem:

    KeyPropertiesofPlatonicSolidsItisinterestingtolookatthekeypropertiesoftheseregularpolyhedra.

    Name Faces Vertices Edges TypeofFaceTetrahedron 4 4 6 TriangleCube 6 8 12 SquareOctahedron 8 6 12 TriangleDodecahedron 12 20 30 PentagonIcosahedron 20 12 30 Triangle

    Noticethefollowingpatternsinthetable:

    Allofthenumbersoffacesareeven. Onlythecubehasanumberoffacesthatisnotamultipleof4.

    Allofthenumbersofverticesareeven. Onlytheoctahedronhasanumberoffacesthatisnotamultipleof4.

    Thenumberoffacesandverticesseemtoalternate(e.g.,cube68vs.octahedron86). Allofthenumbersofedgesaremultiplesof6. Thereareonlythreepossibilitiesforthenumbersofedges6,12and30. Thefacesareoneof:regulartriangles,squaresorregularpentagons.

    -68-

    Version 2.2 10/30/2013

  • 8/13/2019 Handbook of Geometry

    69/82

    GeometryPrisms

    Definitions

    APrismisapolyhedronwithtwocongruentpolygonalfacesthatlieinparallelplanes.

    TheBasesaretheparallelpolygonalfaces. TheLateralFacesarethefacesthatarenotbases. TheLateralEdgesaretheedgesbetweenthelateralfaces. TheSlantHeightisthelengthofalateraledge. Notethat

    alllateraledgesarethesamelength.

    TheHeightistheperpendicularlengthbetweenthebases. ARightPrismisoneinwhichtheanglesbetweenthebasesandthe

    lateraledgesarerightangles. Notethatinarightprism,theheightand

    theslantheightarethesame.

    AnObliquePrismisonethatisnotarightprism.RightHexagonal

    Prism TheSurfaceAreaofaprismisthesumoftheareasofallitsfaces. TheLateralAreaofaprismisthesumoftheareasofitslateralfaces.

    SurfaceAreaandVolume htPrismwhere,

    of aRigSurfaceArea: LateralSA: Volume:

    CavalierisPrincipleIftwosolidshavethesameheightandthesamecrosssectionalareaateverylevel,thenthey

    havethesamevolume. Thisprincipleallowsustoderiveaformulaforthevolumeofan

    obliqueprism

    from

    the

    formula

    for

    the

    volume

    of

    aright

    prism.

    SurfaceAreaandVolume bliquePrismwhere,

    ofanOSurfaceArea: LateralSA: Volume:

    -69-

    Version 2.2 10/30/2013

  • 8/13/2019 Handbook of Geometry

    70/82

    GeometryCylinders

    Definitions

    ACylinderisafigurewithtwocongruentcircularbasesinparallelplanes. AcylinderhasonlyoneLateralSurface. Whendeconstructed,thelateralsurfaceofa

    cylinderisarectanglewithlengthequaltothecircumferenceofthebase.

    TherearenoLateralEdgesinacylinder. TheSlantHeightisthelengthofthelateralsidebetweenthebases. Note

    thatalllateraldistancesarethesamelength. Theslantheighthas

    applicabilityonlyifthecylinderisoblique.

    TheHeightistheperpendicularlengthbetweenthebases. ARightCylinderisoneinwhichtheanglesbetweenthebasesandthelateralsideareright

    angles. Notethatinarightcylinder,theheightandtheslantheightarethesame.

    AnObliqueCylinderisonethatisnotarightcylinder. TheSurfaceAreaofacylinderisthesumoftheareasofitsbasesanditslateralsurface. TheLateralAreaofacylinderistheareasofitslateralsurface.

    SurfaceAreaandVolume htCylinderof aRigSurfaceArea:

    where,

    LateralSA: Volume:

    SurfaceAreaandVolume bliquePrismofanOSurface

    Area:

    where,

    LateralSA: Volume:

    -70-

    Version 2.2 10/30/2013

  • 8/13/2019 Handbook of Geometry

    71/82

    GeometrySurfaceAreabyDecomposition

    Sometimesthestudentisaskedtocalculatethesurfaceareofaprismthatdoesnotquitefitintooneofthecategoriesforwhichaneasyformulaexists. Inthiscase,theanswermaybetodecomposetheprismintoitscomponentshapes,andthencalculatetheareasofthecomponents. Note: thisprocessalsoworkswithcylindersandpyramids.DecompositionofaPrismTocalculatethesurfaceareaofaprism,decomposeitandlookateachoftheprismsfacesindividually.Example: Calculatethesurfaceareaofthetriangularprismatright.Todothis,firstnoticethatweneedthevalueofthehypotenuseofthebase. UsethePythagoreanTheoremorPythagoreanTriplestodeterminethemissingvalueis10. Then,decomposethefigureintoitsvariousfaces:

    Thesurfacearea,then,iscalculatedas: 2

    2 12 6 8 1 0 7 8 7 6 7 216DecompositionofaCylinder

    Thesurfacearea,then,iscalculatedas: 2

    2 3 6 5 48 ~ 150.80

    Thecylinderatrightisdecomposedintotwocircles(thebases)andarectangle(thelateralface).

    -71-

    Version 2.2 10/30/2013

  • 8/13/2019 Handbook of Geometry

    72/82

    GeometryPyramids

    Pyramids APyramidisapolyhedroninwhichthebaseisapolygonand

    thelateralsidesaretriangleswithacommonvertex.

    TheBaseisapolygonofanysizeorshape. TheLateralFacesarethefacesthatarenotthebase. TheLateralEdgesaretheedgesbetweenthelateralfaces. TheApexofthepyramidistheintersectionofthelateral

    edges. Itisthepointatthetopofthepyramid.

    TheSlantHeightofaregularpyramidisthealtitudeofoneofthe

    lateral

    faces.

    TheHeightistheperpendicularlengthbetweenthebaseandtheapex. ARegularPyramidisoneinwhichthelateralfacesarecongruenttriangles. Theheightofa

    regularpyramidintersectsthebaseatitscenter.

    AnObliquePyramidisonethatisnotarightpyramid. Thatis,theapexisnotaligneddirectlyabovethecenterofthebase.

    TheSurfaceAreaofapyramidisthesumoftheareasofallitsfaces.

    TheLateralAreaofapyramidisthesumoftheareasofitslateralfaces.

    SurfaceAreaandVolume gularPyramidofaReSurfaceArea:

    LateralSA:

    Volume:

    SurfaceAreaandVolume bliquePyramidofan O

    SurfaceArea: Volume:

    where,

    where,

    Thelateralsurfaceareaofanobliquepyramidisthesumof

    theareasofthefaces,whichmustbecalculatedindividually.

    -72-

    Version 2.2 10/30/2013

  • 8/13/2019 Handbook of Geometry

    73/82

    GeometryCones

    Definitions

    ACircularConeisa3dimensionalgeometricfigurewithacircularbasewhichtaperssmoothlytoavertex(orapex). Theapexandbaseareindifferentplanes. Note:thereis

    alsoanellipticalconethathasanellipseasabase,butthatwillnotbeconsideredhere.

    TheBaseisacircle. TheLateralSurfaceisareaofthefigurebetweenthebaseandtheapex. TherearenoLateralEdgesinacone. TheApexoftheconeisthepointatthetopofthecone. TheSlantHeightofaconeisthelengthalongthelateralsurfacefromtheapextothebase. TheHeightistheperpendicularlengthbetweenthebaseandtheapex. ARightConeisoneinwhichtheheightoftheconeintersectsthebaseat

    itscenter.

    AnObliqueConeisonethatisnotarightcone. Thatis,theapexisnotaligneddirectlyabovethecenterofthebase.

    TheSurfaceAreaofaconeisthesumoftheareaofitslateralsurfaceanditsbase.

    TheLateralAreaofaconeistheareaofitslateralsurface.SurfaceAreaandVolume tConeofaRigh

    SurfaceArea: LateralSA: Volume:

    SurfaceAreaandVolume iqueConeofan OblSurfaceArea: Volume:

    where,

    where,

    Thereisnoeasyformulaforthelateralsurfaceareaofan

    obliquecone.

    -73-

    Version 2.2 10/30/2013

  • 8/13/2019 Handbook of Geometry

    74/82

    GeometrySpheres

    Definitions

    ASphereisa3dimensionalgeometricfigureinwhichallpointsareafixeddistancefromapoint. Agoodexampleof

    asphereisaball.

    Centerthemiddleofthesphere. Allpointsonthespherearethesamedistancefromthecenter.

    Radiusalinesegmentwithoneendpointatthecenterandtheotherendpointonthesphere. Thetermradiusisalso

    usedtorefertothedistancefromthecentertothepoints

    onthe

    sphere.

    Diameteralinesegmentwithendpointsonthespherethatpassesthroughthecenter.

    GreatCircletheintersectionofaplaneandaspherethatpassesthroughthecenter.

    Hemispherehalfofasphere. Agreatcircleseparatesaplaneintotwohemispheres.

    SecantLinealinethatintersectsthesphereinexactlyonepoint.

    TangentLinealinethatintersectsthesphereinexactlytwopoints.

    Chordalinesegmentwithendpointsonthespherethatdoesnotpassthroughthecenter.

    SurfaceAreaandVolumeo fa SphereSurface

    Area:

    Volume:

    where,

    -74-

    Version 2.2 10/30/2013

  • 8/13/2019 Handbook of Geometry

    75/82

    GeometrySimilarSolids

    SimilarSolidshaveequalratiosofcorrespondinglinearmeasurements(e.g.,edges,radii). So,alloftheirkeydimensionsareproportional.

    Edges,SurfaceAreaandVolumeofSimilarFiguresLetkbethescalefactorrelatingtwosimilargeometricsolidsF1andF2suchthat .Then,forcorrespondingpartsofF1andF2,

    and

    And

    Theseformulasholdtrueforanycorrespondingportionofthefigures. So,forexample:

    T E L F

    T E L F k A F F

    A F F k

    -75-

    Version 2.2 10/30/2013

  • 8/13/2019 Handbook of Geometry

    76/82

    GeometrySummaryofPerimeterandAreaFormulas2DShapes

    Shape Figure Perimeter Area

    Kite , ,

    Trapezoid , ,

    b, b basesh height

    Parallelogram

    ,

    Rectangle ,

    Rhombus

    ,

    Square

    ,

    RegularPolygon

    Circle

    Ellipse

    -76-

    Version 2.2 10/30/2013

  • 8/13/2019 Handbook of Geometry

    77/82

  • 8/13/2019 Handbook of Geometry

    78/82

    Page Subject

    16 AlternateExteriorAngles

    16 AlternateInteriorAngles

    23 AngleBisectorLengthinaTriangle

    Angles

    10 Angles Basic

    11 Angles Types

    Area

    65 Area CompositeFigures

    63 Area Polygons

    62 Area Quadrilaterals

    64 Area RegionofaCircle

    60,61 Area Triangle

    76 AreaFormulas Summaryfor2DShapes

    69 Cavalieri'sPrinciple

    CentersofTriangles

    22 Centroid

    22 Circumcenter

    22 Incenter

    22 Orthocenter

    22 Centroid

    Circles64 Circles ArcLengths

    58 Circles DefinitionsofParts

    64 Circles RegionAreas

    59 Circles RelatedAngles

    59 Circles RelatedSegments

    22 CirclesandTriangles

    22 Circumcenter

    12 ConditionalStatements(Original,Converse,Inverse,Contrapositive)

    Cones

    73 Cones Definitions73 Cones Surfac