h2o machine learning and kalman filters for machine prognostics - galvanize sf

25
H2O Machine Learning and Kalman Filters for Machine Prognostics Hank Roark @hankroark [email protected]

Upload: jo-fai-chow

Post on 16-Apr-2017

1.668 views

Category:

Technology


1 download

TRANSCRIPT

H2OMachine Learning andKalman Fi lters for Machine Prognostics

HankRoark@[email protected]

WHOAMI ILead,[email protected]

JohnDeere:Research,SoftwareProductDevelopment, HighTechVenturesLotsoftimedealingwithdataoffofmachines,equipment, satellites, weather,radar,handsampled, andon.Geospatial, temporal/timeseries dataalmostall fromsensors.Previouslyatstartupsandconsulting (RedSkyInteractive,Nuforia,NetExplorer, PerotSystems,afewofmyown)

Engineering&ManagementMITPhysicsGeorgiaTech

[email protected]@hankroarkhttps://www.linkedin.com/in/hankroark

IF YOUARE INTO DATA, THE IOTHAS IT

WHYTHIS EXAMPLE?

GETREADY FORBRONTOBYTES!!

WOW,HOWBIG ISABRONTOBYTE?

Image courtesy http://www.telecom-cloud.net/wp-content/uploads/2015/05/Screen-Shot-2015-05-27-at-3.51.47-PM.png

This much data wil l requirea fastOODA loop

EXAMPLE FROMTHE IOTDomain:PrognosticsandHealthManagementMachine:TurbofanJetEnginesDataSet:A.Saxena andK.Goebel(2008)."TurbofanEngineDegradationSimulationDataSet",NASAAmesPrognosticsDataRepository

PredictRemainingUseful LifefromPartialLifeRuns

Sixoperatingmodes,twofailuremodes,manufacturingvariability

Training:249jetengines runtofailureTest: 248jetengines

INCORPORATING PRIOR STATE

Disentangling the dynamic core: a research program fora neurodynamics at the large-scaleMICHEL LE VAN QUYENBiol. Res. v.36 n.1 Santiago 2003http://dx.doi.org/10.4067/S0716-97602003000100006

One option:Phase Space Embedding

Drawbacks:Incorporates knowledge from small number of

prior states

Curse of dimensionality

KALMANFILTER

OVERALL PIPELINE

Featureengineering

• Signalprocessing,featurecreation,featureselection

RegressionModels

• SupervisedMachineLearning

Lineardynamicalsystem

• Kalmanfilter

EXPLORATORY DATA ANALYSISBooleanIndexing

EXPLORATORY DATA ANALYSISSamplethedatatolocalmemory

EXPLORATORY DATA ANALYSIS

Useyourfavorite

visualizationtools

(Seaborn!)

Ugh,wherearetrends

overtimeTime

ZeroRemainingUsefulLife

MODEL BASEDDATAENRICHMENTSensor

measurementsappearinclusters

Correspondingtooperating

mode!

FEATUREENGINEERING

UseH2Ok-meanstofindcluster

centers

FEATUREENGINEERING

Enrichexisting datawithoperatingmode

membership

MOREFEATUREENGINEERINGFornon-constant

sensormeasurements

withinanoperatingmode,

Standardizeeachsensormeasurementbyoperatingmode

Basedonthetrainingdata

TRENDSOVER TIME!

BeforeH2ODataPreparation

ReadyforH2OLearning

Time Time

MODELING - SIMPLE

ConfigureanEstimator

MODELING - SIMPLE

Train anEstimator

KALMANFILTER INPUTS

State:[CyclesRemaining,RateofChangeofCyclesRemaining]

StateTransition:[[1,1],[0,1]](takes[RUL,-1]->[RUL-1,-1])

Observations:regressionoutputofeachmodelinensemble

ObservationCovariance:meansquareerrorofeachmodelontrainingdata(diagonalmatrix)

InitialState:[Meanofmodels,-1]

KALMAN - POSTPROCESSING

SIGNAL PROCESSING +MACHINE LEARNING

• Filtering,Convolution(integrals,differences,etc)• Timedomaintofrequencydomain(Fourier)orotherdomain(wavelet)

• Dynamictimewarpingforsequencesimilarity• Spatial-temporalanalytics• ConvolutionNeuralNetsandLSTM-RNN

RESOURCES• Downloadandgo:http://www.h2o.ai/download• Documentation:http://docs.h2o.ai/• Booklets,Datasheet:http://www.h2o.ai/resources/• Github:http://github.com/h2oai/• Training:http://learn.h2o.ai/• ThispresentationandassociatedJupyter notebook

(lookin2016_02_23_MachineLearningAndKalmanFiltersForMachinePrognostics):https://github.com/h2oai/h2o-meetups/

THANK YOU