h. faust, g. kessedjian, c.sage, u. koester and a ......evaluation of spin distributions in fission...

30
Evaluation of Spin Distributions in Fission Fragments using the Statistical Model H. Faust, G. Kessedjian, C.Sage, U. Koester and A. Chebboubi Institut Laue-Langevin and LPSC Grenoble, France -interpretation of measured kinetic energy distributions and spin distributions on the basis of the statistical model -a new spectrometer to measure the prompt decay of fission products

Upload: others

Post on 24-Feb-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: H. Faust, G. Kessedjian, C.Sage, U. Koester and A ......Evaluation of Spin Distributions in Fission Fragments using the Statistical Model H. Faust, G. Kessedjian, C.Sage, U. Koester

Evaluation of Spin Distributions in Fission Fragments using the Statistical Model

H. Faust, G. Kessedjian, C.Sage, U. Koester and A. ChebboubiInstitut Laue-Langevin and LPSC

Grenoble, France

-interpretation of measured kinetic energy distributions and spin distributions on the basis of the statistical model

-a new spectrometer to measure the prompt decay of fission products

Page 2: H. Faust, G. Kessedjian, C.Sage, U. Koester and A ......Evaluation of Spin Distributions in Fission Fragments using the Statistical Model H. Faust, G. Kessedjian, C.Sage, U. Koester

Statistical Model/Thermodynamic and Nuclear Fission

2nd law of thermodynamics:

S=entropy, counts the number of nuclear levels in the potentialρln=S

),,( *EZAW ρ∝ *dEdN

=ρ number of nuclear levelsper energy interval

If Fermi-gas model:*2*),,( aEeEZA =ρ ),( ZAa level density parameter

SeW ∝

Statistical model: no selection rules, no barriers

→ All levels have the same weight, independent of quantum numbers

Page 3: H. Faust, G. Kessedjian, C.Sage, U. Koester and A ......Evaluation of Spin Distributions in Fission Fragments using the Statistical Model H. Faust, G. Kessedjian, C.Sage, U. Koester

Thermodynamic model: following decay all levels in the residual nucleus (fission fragment)are occupied according to Boltzmann, which results in:

kTE

eEaW*

),( * −⋅∝ ρ

kT depends on the Q-value of the reaction and on the type of interaction

-for the nuclear fission process:

*

ln1dE

dkT

ρ=

-if TXE (or TKE) distribution is known: derivative is taken at the maximum of the distribution

Page 4: H. Faust, G. Kessedjian, C.Sage, U. Koester and A ......Evaluation of Spin Distributions in Fission Fragments using the Statistical Model H. Faust, G. Kessedjian, C.Sage, U. Koester

Statistical ensemble in nuclear physics:

-micro-canonical ensemble of nuclei (fission fragments) which are non interacting

(all fission products of one kind (e.g.142Ba) from the same compound systeme.g. from 235U(n,f))

-important: statistical decay is a one-step process from a initial to a final state

In contrast: antagonistic view of the fission process:

Fission viewed as sequence of LD-shapes :

Here only the groundstate is followed in a moving barrier landscape, 1=ρ

________________________________________________________________________________________________________________________________

Page 5: H. Faust, G. Kessedjian, C.Sage, U. Koester and A ......Evaluation of Spin Distributions in Fission Fragments using the Statistical Model H. Faust, G. Kessedjian, C.Sage, U. Koester

statistical model approach for the fission process:

mechanism: at the excitation energies for fragments (10 to 20 MeV)pairing can be neclected

excitation energy: independent particle model, nucleons are promoted to excited states according to Boltzmann

spin: the final fragment angular momentum is generated by the couplingof spin and orbital momenta of the individual nucleons to the fragmentspin J

for the evaluation of energy and spin distributions of a statistical ensemble of fragments the nuclear temperature kT must be known. This is the only unknown parameter which enters the calculations

Page 6: H. Faust, G. Kessedjian, C.Sage, U. Koester and A ......Evaluation of Spin Distributions in Fission Fragments using the Statistical Model H. Faust, G. Kessedjian, C.Sage, U. Koester

thermodynamic modelthermodynamic model: the calculation of fragment mass distribution leads to wrong results (unless the available phase space is strongly truncated by selection rules)

-in the following: only fragment excitation, fragment kinetic energy,spin distribution and alignment are addressed..-questions on mass and nuclear charge distribution are not addressed

---it is assumed that we can decouple fragment mass/charge distribution and fragment excitation

),(),(),,,( **iiiiiiii JEZAJEZAW Φ⋅Θ=

We know:We know:

----and further as a consequence of the statistical model---

)()(),( **iiii JGEPJE ⋅=Φ

-separation for excitation energy and spin

Page 7: H. Faust, G. Kessedjian, C.Sage, U. Koester and A ......Evaluation of Spin Distributions in Fission Fragments using the Statistical Model H. Faust, G. Kessedjian, C.Sage, U. Koester

The probability to excite a fragment at E* isThe probability to excite a fragment at E* is*/*** *

*)(*1)( dEeEN

dEEP TE−= ρ

)( *Eρ level density for excited states in the nucleus

TEe /*− Boltzmann factor which populates the excited levels

*)(Eρ

E*

TE

e*

P(E*)

E*

2aT

10

1

[MeV]

P(E*)

)2exp()( ** aEE =ρ Fermi gas expression

Page 8: H. Faust, G. Kessedjian, C.Sage, U. Koester and A ......Evaluation of Spin Distributions in Fission Fragments using the Statistical Model H. Faust, G. Kessedjian, C.Sage, U. Koester

kT determines also the spin distribution for fragment (A,Z) via the spin cutoff parameter

3/22 088.0 AkTa ⋅⋅⋅=σ

0

1

2

3

4

5

6

7

0 5 10 15 20

exp(-x*(x+1)/50)*(2*x+1)

)2/)1(exp()12()( 2σ+−+∝ JJJJG

G(J)

J

The probability to populate spin J in the fragment isThe probability to populate spin J in the fragment is

5.0−>=< σJ

Page 9: H. Faust, G. Kessedjian, C.Sage, U. Koester and A ......Evaluation of Spin Distributions in Fission Fragments using the Statistical Model H. Faust, G. Kessedjian, C.Sage, U. Koester

80 100 120 140 160 1800

5

10

15

20

25

lev.

den

s. p

ar.

mass

lev. dens. par.Butz-Joergensen & Knitter

Measured level density parameter as function of fragment mass(Butz-Joergenson and Knitter)

The dependence of the level density parameter on the excitation energy is given by Ignatyuk et al.

ε

).,(.10

εδ ZAAa +=

The structure in the level density parameter imposes a structure on the mean excitation energies and mean spin values of the fragments as function of fragment mass.

Page 10: H. Faust, G. Kessedjian, C.Sage, U. Koester and A ......Evaluation of Spin Distributions in Fission Fragments using the Statistical Model H. Faust, G. Kessedjian, C.Sage, U. Koester

The temperature parameter determines the distribution functions for the excitation and the spin of fragments of the same kind (A,Z), e.g 146Ba-statistical ensembleThe knowledge of the temperature allows to know how the total excitation energy TXE in fission is shared between the light and the heavy fragment

To determine the temperature we have 3 ways:

1) Find a decay law for nuclear fission, in analogy to gamma decay,beta decay, or neutron decay

2) We have measured the total excitation energy TXE, e.g. by the determination of the fragment kinetic energies and by application of conservation laws

)()(ln

)(1

TXEdd

TXEddS

kTρ

==

3) We find an empirical law which connects the temperature to the Q-value of the reaction

aTXEkT =, for Fermi-gas:

Temperature of the statistical ensemble

Page 11: H. Faust, G. Kessedjian, C.Sage, U. Koester and A ......Evaluation of Spin Distributions in Fission Fragments using the Statistical Model H. Faust, G. Kessedjian, C.Sage, U. Koester

QfkT ⋅=

Empirical relationship for the temperature kT of a statistical ensemble of fragments with mass A and nuclear charge Z:

88 89 90 91 92 93 94 95 96 97

0.0035

0.0040

0.0045

0.0050

0.0055

0.0060

f

nucl. charge of compound nucleus

baZf c +=Dependence of constant f on the actinide system:

219Ac [12MeV],GSI225Th [12MeV],GSI234U [12MeV],GSI; [6MeV],LOHENGRIN246Cm [6MeV],LOHENGRIN

In general: temperature must come from a decay law not known for fission

Page 12: H. Faust, G. Kessedjian, C.Sage, U. Koester and A ......Evaluation of Spin Distributions in Fission Fragments using the Statistical Model H. Faust, G. Kessedjian, C.Sage, U. Koester

If the temperature kT of the system is known, all observables concerning the energy and spin distribution are determined

*2

*2

*2

*2

*1

*1

*1

*1

)()(

)()(*2

*1

dEEdEEP

dEEdEEP

ee

kTE

kTE

ρ

ρ

⋅=

⋅=−

−-for the excitation energy distributions of the fragments we have

-for the spin distribution we have

)2

)1(exp()2

exp()(

)2

)1(exp()2

exp()(

222

2

22

2

211

2

21

1

σσ

σσ+−

−−

=

+−−

−=

JJJJG

JJJJG

with )( *2,1Eρ the level density parameter for fragment 1,2

notice: independent excitation for fragment 1 and 2, not coupled to deformation

and 32

2,12,12 0888.0 AkTa ⋅⋅⋅=σ

Page 13: H. Faust, G. Kessedjian, C.Sage, U. Koester and A ......Evaluation of Spin Distributions in Fission Fragments using the Statistical Model H. Faust, G. Kessedjian, C.Sage, U. Koester

Calculation of mean values for single fragment kinetic energies:

22

*2

21

*1

)(

)(

fQaE

fQaE

⋅>=<

⋅>=<><+>>=<< *

2*1 EETXE

nuclear fission is a binary reaction: from momentum and energy conservation law we get the distribution of the single fragment kinetic energies:

1

22

1AA

TKEEkin

+

><>=<

2

11

1AA

TKEEkin

+

><>=< for fragment 1

for fragment 2

><−>=< TXEQTKE

fQkT =

Start from excitation of fragments, not from Coulomb repulsion:

Page 14: H. Faust, G. Kessedjian, C.Sage, U. Koester and A ......Evaluation of Spin Distributions in Fission Fragments using the Statistical Model H. Faust, G. Kessedjian, C.Sage, U. Koester

80 90 100 110 120 130 140 150 16050

60

70

80

90

100

110

<Eki

n> [M

eV]

mass number

exp. calc.

Calculated and experimental mean kinetic energies for 233U(n,f)Calculated and experimental mean kinetic energies for 233U(n,f)

Calculations (open points) are done with the fermi gas appoachfor the nuclear level density. Experimental points are from LOHENGRIN experiments.

0045.0=f

Page 15: H. Faust, G. Kessedjian, C.Sage, U. Koester and A ......Evaluation of Spin Distributions in Fission Fragments using the Statistical Model H. Faust, G. Kessedjian, C.Sage, U. Koester

From the agreement of the calculated mean kinetic energies with the measured ones:

-we know the constant to calculate the temperature of the fragments for different systems

-we can address to the spin distributions for the fragments

Page 16: H. Faust, G. Kessedjian, C.Sage, U. Koester and A ......Evaluation of Spin Distributions in Fission Fragments using the Statistical Model H. Faust, G. Kessedjian, C.Sage, U. Koester

0

2

4

6

8

10

12

14

70 80 90 100 110 120 130 140 150 160 170

'sigma_kt' us 1:2

'sigma_kt' us 1:6

'sigma_kt' us 1:10

<J>

A

kT=0.8MeV

kT=1.6MeV

kT=1.2MeV

Mean fragment spin (1Mean fragment spin (1stst moment)moment)

)2

)1(exp(2

1222 σσ+

−+

=ΦJJJ

J

32

2,12,12 0888.0 AkTa ⋅⋅⋅=σ

Page 17: H. Faust, G. Kessedjian, C.Sage, U. Koester and A ......Evaluation of Spin Distributions in Fission Fragments using the Statistical Model H. Faust, G. Kessedjian, C.Sage, U. Koester

0 2 4 6 8 10 120

5

10

15

20

exci

tatio

n en

ergy

[MeV

]

spin

entry states

Entry states for A=94 from 233U(n,f)Entry states for A=94 from 233U(n,f)

Knowing the excitation energy distribution and the spin distribution function we can construct the entry states:

-in order to find experimentally the spin distribution of fragments we can:-measure directly the population of the Yrast band-deduce the mean spin values from the population of isomeric states

- a model is needed to extract spin values from the experiment. The model has to say how the entry states decay by gamma and neutron emission.

Page 18: H. Faust, G. Kessedjian, C.Sage, U. Koester and A ......Evaluation of Spin Distributions in Fission Fragments using the Statistical Model H. Faust, G. Kessedjian, C.Sage, U. Koester

Decay pattern in fragment de-excitation

n

5 10 15 spin

5

10

15

20

excitation[MeV]

Bnn

g

g

0

in general: statistical decay by neutrons and dipole gamma raysassumed:- neutrons do not take away angular momentum -gamma rays take away 0 or +-1 units of angular momentum-no transitions along rotational bands (beside gs-band)

Page 19: H. Faust, G. Kessedjian, C.Sage, U. Koester and A ......Evaluation of Spin Distributions in Fission Fragments using the Statistical Model H. Faust, G. Kessedjian, C.Sage, U. Koester

Madland/EnglandMadland/England--model for extraction of <J> values from model for extraction of <J> values from population of isomeric statespopulation of isomeric states

spin

excitation energy[MeV]

3 6 9 120

10

20

entry states

-separation line at 2

21 JJ +

isomeric states

-not transitions along rotational bands included

Page 20: H. Faust, G. Kessedjian, C.Sage, U. Koester and A ......Evaluation of Spin Distributions in Fission Fragments using the Statistical Model H. Faust, G. Kessedjian, C.Sage, U. Koester

70 80 90 100 110 120 130 140 150 160 170 1800

2

4

6

8

10

12

14

<J>

fragment mass

235U(n,f)kT=1.2MeV

note: absolute values for <J> may be erroneous due to model dependence, but general trend should be OK

note: kT is different for different masses, but: complementary fragments have the same temperature

result: <J>heavy=<J>light +2

---the minimum for 132Sn seems to be confirmed (small level density parameter)---

235U(n,f)<J> from isomer ratios

Huizenga/Vandenbosch approach

Compilation of data by Naik et al.

Calculated values for kt=1.2MeV(to guide the eye)

Page 21: H. Faust, G. Kessedjian, C.Sage, U. Koester and A ......Evaluation of Spin Distributions in Fission Fragments using the Statistical Model H. Faust, G. Kessedjian, C.Sage, U. Koester

Mean angular momentum in fragments as function of the fragment Mean angular momentum in fragments as function of the fragment kinetic energykinetic energy

Methodology

fragment 1 fragment 2

TXE

kTkT

Calculation of kT from TXE

21 aaTXEkT+

=

TXE from single fragment kinetic energy

21

2

11 ]1[

aaAAEQ

kTkin

+

+−=

onconservatienergymomentumEETKE

TKEQTXE

kinkin

−++=

−=

21

note: a discrete value of TXE leads to a temperature distribution of the fragments

no free parameters, kT fixed by measurement of Ekin1

-translate single fragment kinetic energy in temperature:

Page 22: H. Faust, G. Kessedjian, C.Sage, U. Koester and A ......Evaluation of Spin Distributions in Fission Fragments using the Statistical Model H. Faust, G. Kessedjian, C.Sage, U. Koester

4

5

6

7

8

9

10

70 75 80 85 90 95 100

'sigma_ekin' us 2:4

Ekin [MeV]

<J>A=100

1.82 1.61 1.36 1.06 kT [MeV]

Dependence of mean fragment spin on the fragment kinetic energyDependence of mean fragment spin on the fragment kinetic energy (on temperature(on temperature)

in general: mean fragment spin is increasing when the kinetic energy is decreasing (temperature goes up)

Page 23: H. Faust, G. Kessedjian, C.Sage, U. Koester and A ......Evaluation of Spin Distributions in Fission Fragments using the Statistical Model H. Faust, G. Kessedjian, C.Sage, U. Koester

90 95 100 105 1100

2

4

6

8

10<J

>

Ekin [MeV]

102Nb

68 70 72 74 76 78 80 82 84 86 880

2

4

6

8

10

<J>

Ekin [MeV]

132Sb

102Nb 132Sb

Page 24: H. Faust, G. Kessedjian, C.Sage, U. Koester and A ......Evaluation of Spin Distributions in Fission Fragments using the Statistical Model H. Faust, G. Kessedjian, C.Sage, U. Koester

spin J

energy[keV]

0 2 4 6 8 10 12

1000

500

YrastYrast--band model (deformed evenband model (deformed even--even fragments)even fragments)

-direct feeding of gs-band members P(J) (simplified Huizenga/Vandenbosch-de-excitation along yrast band

P(2)P(4)

P(6)

P(8)

P(10) P(12)

∑∞

=

=12

12 )(J

JPIγ

)10(1210 PII += γγ

)8(108 PII += γγ

)6(86 PII += γγ

)4(64 PII += γγ

)2(42 PII += γγ

-may be refined by taking into account feeding from odd spin members

assumption: higher bands do not play a big role due to 3γE

(beside from the feeding of the 0+ ground state)

simplified Huizenga/Vandenbosch: only one statistical gamma ray (in the mean)

decay rule

)2

)1(exp(2

12)( 22 σσ+

−+

=JJJJP

-distribution functions for fragment spin:

Page 25: H. Faust, G. Kessedjian, C.Sage, U. Koester and A ......Evaluation of Spin Distributions in Fission Fragments using the Statistical Model H. Faust, G. Kessedjian, C.Sage, U. Koester

0 2 4 6 8 10 12 140

5

10

15

20

25

30

P(J)

spin

140Ba

probable reason for deviation at high J:nearby additional bands take away intensity

P(10)

P(8)

P(6)

P(4)

P(2)

)()()( inIoutIJP JJγγ −=

feeding of gs-band members:

fQkT = 0058.0=f (248Cm(sf)),

MeVkT 18.1=

Population of groundPopulation of ground--state band members in 248Cm(sf)state band members in 248Cm(sf)

data from Urban et al.Phys Rev C

Page 26: H. Faust, G. Kessedjian, C.Sage, U. Koester and A ......Evaluation of Spin Distributions in Fission Fragments using the Statistical Model H. Faust, G. Kessedjian, C.Sage, U. Koester

Conclusions Conclusions

-we have applied the well known statistical model to the fission process

-Fermi gas description for level density and-Bethe formulation for spin density (shell model state sequence)

-kinetic energy distributions are constructed from momentum and energy conservation

-this appears to lead to a full description of energetics in nuclear fission at low energies((sf) and thermal neutron capture)

-separation of the charge/masse distribution from energy and spin distribution

-expression for the temperature from empirical law

Page 27: H. Faust, G. Kessedjian, C.Sage, U. Koester and A ......Evaluation of Spin Distributions in Fission Fragments using the Statistical Model H. Faust, G. Kessedjian, C.Sage, U. Koester

The gas filled magnet for the investigation of prompt gamma decaycharacteristics in nuclear fission

aim:- to provide a filter in mass and charge range for the recording of prompt gamma decay from fission fragments (selectivity)-to provide focusing characteristics for ionic charge, velocityand solid angle (efficiency)

-problems:-due to collisions with the gas the ionic charge <q> of the incomingions is strongly fluctuating

-the values in the magnetic field change along thepath of the ion

-the velocity of the ions change along the path(electronic and nuclear stopping, dE/dx)

ρB

Collaboration: ILL, LPSC Grenoble, CEA Cadarache, CEA Saclay

Page 28: H. Faust, G. Kessedjian, C.Sage, U. Koester and A ......Evaluation of Spin Distributions in Fission Fragments using the Statistical Model H. Faust, G. Kessedjian, C.Sage, U. Koester

the following difficulties arise:

A) concerning the mean ionic charge of the ions:-shell effects at magic numbers for the ionic charge-pressure dependence of the mean charge values

B) concerning the stopping of ions at energies of 1Mev/amu:-effective charge of the ions-validity of the Bethe Bloch formalism

><><

⋅=qvAconstBρ

<v> and <q> to be determined

,...),( arg2

2

ettZvqf

dxdE

><><

=

Page 29: H. Faust, G. Kessedjian, C.Sage, U. Koester and A ......Evaluation of Spin Distributions in Fission Fragments using the Statistical Model H. Faust, G. Kessedjian, C.Sage, U. Koester

Experimental set up:Experimental set up:

Dipol-magnet RED filled with gas:

deflection radius: cm60=ρ

trajectory lengths: 68cmdeflection angle : 65 degrees

gas filling: He, N2, Ar, Kr, Xe

energy loss of ions: up to 70% in gas filled section

gas filling of last section

ions: 88Br98Y109Ru132Te136Xe

Page 30: H. Faust, G. Kessedjian, C.Sage, U. Koester and A ......Evaluation of Spin Distributions in Fission Fragments using the Statistical Model H. Faust, G. Kessedjian, C.Sage, U. Koester

Spectrometer lay‐out

Gas-filled magnet properties: - Ionic charge focusing - determination of A, (Z)

Gas-filled magnet properties: - Ionic charge focusing - determination of A, (Z)

Fragmentdetection

(A,Z,Ekin)

Rate ~ 105 fission/sPossible targets : 229Th, 233,235U, 239,241Pu, 242Am, 243,245,247Cm,249,251Cf

TOF

Intense cold neutron beam(109 n/cm2.s at the exit of a bent neutron guide)

Gamma-ray detection(Ge clovers, Ge planars)

Gamma-ray detection(Ge clovers, Ge planars)

ρB

He-filled

left fragment: stopped in backingDoppler free gamma detection,determination of: A,Z,E*,J,yield

right fragment:TOF: velocitymagnet: mass

with the help of conservation laws:

full picture of fission eventfull picture of fission event