[email protected] - departamento de informática e...

62
Universidade Federal de Santa Catarina Centro Tecnológico Computer Science & Electrical Engineering Lectures 33 to 36 Combinational Circuits in CMOS Digital Integrated Circuits INE 5442 / EEL 7312 Prof. José Luís Güntzel [email protected]

Upload: dodieu

Post on 02-Dec-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

Universidade Federal de Santa CatarinaCentro Tecnológico

Computer Science & Electrical Engineering

Lectures 33 to 36Combinational Circuits in CMOS

Digital Integrated CircuitsINE 5442 / EEL 7312

Prof. José Luís Gü[email protected]

2 Lectures 33 to 36

Prof. Güntzel

Combinational Circuits in CMOS

INE 5442 / EEL 7312

Digital Integrated Circuits

• Complementary CMOS

• Pass-Transistor Logic

Agenda

3 Lectures 33 to 36

Prof. Güntzel

Combinational Circuits in CMOS

INE 5442 / EEL 7312

Digital Integrated Circuits

Combinational vs. Sequential Logic

Combinational

Logic

in0

in1

...

ink

out0

out1

...

outj

Combinational

Logic

in0

in1

...

inm

out0

out1

...

outn

State

Output values depend only on

the current input values (no

feedback, no storage element).

Output values depend on the current

input values and on previous input

values (feedback with/without storage

element).

4 Lectures 33 to 36

Prof. Güntzel

Combinational Circuits in CMOS

INE 5442 / EEL 7312

Digital Integrated Circuits

Logic Families in CMOS

• Static CMOS Logic

– Complementary CMOS

– Ratioed Logic

– Pass-Transistor Logic

• Dynamic CMOS Logic

5 Lectures 33 to 36

Prof. Güntzel

Combinational Circuits in CMOS

INE 5442 / EEL 7312

Digital Integrated Circuits

Metrics for Choosing a Gate Design/Family

• Area in silicon (related to number of transistors)

• Speed (propagation delay)

• Energy consumption/Power dissipation

• Robustness to noise

• Reliability

• Manufacturability

“Depending on the application, the emphasis will be on different metrics.”

(Rabaey; Chandrakasan; Nikolic, 2005)

6 Lectures 33 to 36

Prof. Güntzel

Combinational Circuits in CMOS

INE 5442 / EEL 7312

Digital Integrated Circuits

Static CMOS Logic

Features:

• Robustness (low sensitivity to noise).

• Good performance.

• Low power consumption (no static consumption, except for

leakage currents).

• Easy to design (good for novice designers…)

7 Lectures 33 to 36

Prof. Güntzel

Combinational Circuits in CMOS

INE 5442 / EEL 7312

Digital Integrated Circuits

Truth-table

Logic-level symbolTransistor schematics

in out

01

10

outin

in out

Vdd

Complementary Logic: the inverter

8 Lectures 33 to 36

Prof. Güntzel

Combinational Circuits in CMOS

INE 5442 / EEL 7312

Digital Integrated Circuits

Complementary Logic: mask layout for an inverter

NNNNP wellP well

P-implant

PPPP

N SubstrateN Substrate

P P channelchannel N N channelchannelVdd

NN--implantimplant

Gnd

9 Lectures 33 to 36

Prof. Güntzel

Combinational Circuits in CMOS

INE 5442 / EEL 7312

Digital Integrated Circuits

Steady-state operation

01

10

outin

• Transistors seemed as ideal electronic switches • Capacitance represents the total charge at the gate´s output

in=0 out=1

CL= Vdd

Vdd

in=1 out=0

CL= 0 V

Vdd

(in=Vdd)

Complementary Logic: the inverter

10 Lectures 33 to 36

Prof. Güntzel

Combinational Circuits in CMOS

INE 5442 / EEL 7312

Digital Integrated Circuits

Complementary Logic

in1in2in3

Vdd

GND

out = f(in1, in2, in3)

PMOS only

makes f(in1, in2, in3) = 1

NMOS only

makes f(in1, in2, in3) = 0

pull-up network

pull-downnetwork

in1in2in3

• Pull-up and pull-down networks are mutually exclusive transistor associations

(dual)

• In steady state, there is always a path to either Vdd or GND! (In steady state, the

output is always a low-impedance node.)

11 Lectures 33 to 36

Prof. Güntzel

Combinational Circuits in CMOS

INE 5442 / EEL 7312

Digital Integrated Circuits

Discharging the output capacitance…

Charging the output capacitance…

Static CMOS Logic

output

CL

0 →→→→ Vdd

Vdd

S

D

output

CL

Vdd →→→→ |VTp|

S

D

output

CLVdd

Vdd →→→→ 0

D

S

output

CL

Vdd

0 →→→→ Vdd - VTn

Vdd

D

S

VGS

VGS

12 Lectures 33 to 36

Prof. Güntzel

Combinational Circuits in CMOS

INE 5442 / EEL 7312

Digital Integrated Circuits

NMOS Series/Parallel Associations

A

X

B

Y

X=Y if A=1 AND B=1

control variables

Problem: NMOS transistors pass a weak “1” (but a strong “0”)

X=Y if A=1 OR B=1

A

X

B

Y

control variables

13 Lectures 33 to 36

Prof. Güntzel

Combinational Circuits in CMOS

INE 5442 / EEL 7312

Digital Integrated Circuits

PMOS Series/Parallel Associations

X=Y if A=0 AND B=0

A

X

B

Y

X=Y if A=0 OR B=0

A

X

B

Y

Problem: PMOS transistors pass a weak “0” (but a strong “1”)

control variables

control variables

14 Lectures 33 to 36

Prof. Güntzel

Combinational Circuits in CMOS

INE 5442 / EEL 7312

Digital Integrated Circuits

Complementary Logic

in1in2in3

Vdd

GND

out = f(in1, in2, in3)

PMOS only;

makes f(in1, in2, in3) = 1

NMOS only;

makes f(in1, in2, in3) = 0

pull-up network

pull-downnetwork

in1in2in3

• Only negative logic functions

are implemented (e.g.: inverter,

NAND, NOR, XNOR…)

• Design procedure:

– use the “0” of the gate function

to design the pull-down

network

– Apply De Morgan´s theorem to

find the pull-up network.

• An n-input logic gate requires

2n transistors.

15 Lectures 33 to 36

Prof. Güntzel

Combinational Circuits in CMOS

INE 5442 / EEL 7312

Digital Integrated Circuits

011

101

110

100

SBA

A SB

A

S

B

A B

Vdd

Complementary Logic: 2-input Nand

Truth-table

Logic-level symbol Transistor schematics

16 Lectures 33 to 36

Prof. Güntzel

Combinational Circuits in CMOS

INE 5442 / EEL 7312

Digital Integrated Circuits

A

Out

VDD

GND

B

A

S

B

A B

Vdd

Complementary Logic: 2-input Nand mask layout

17 Lectures 33 to 36

Prof. Güntzel

Combinational Circuits in CMOS

INE 5442 / EEL 7312

Digital Integrated Circuits

Steady state behavior:

4 possible input combinations

A=0

S=1

B=0

A=0 B=0

CL=Vdd

Vdd

A=0S=1

B=1

A=0 B=1

CL=Vdd

Vdd

A=1

S=0

B=1

A=1 B=1

CL=0 V

Vdd

A=1

S=1

B=0

A=1 B=0

CL=Vdd

Vdd

011

101

110

100

SBA

Complementary Logic: 2-input Nand

18 Lectures 33 to 36

Prof. Güntzel

Combinational Circuits in CMOS

INE 5442 / EEL 7312

Digital Integrated Circuits

Delay characterization through electric-level simulation (e.g., Spice)

Complementary Logic: 2-input Nand

B

A

S

tpLH(A) tpHL(A)tpLH(B) tpHL(B)

A S

B B

A

inputtpHL

(ps)

tpLH

(ps)

Evaluates the individual contribution of each input

(the others are kept at their non-controlling values)

19 Lectures 33 to 36

Prof. Güntzel

Combinational Circuits in CMOS

INE 5442 / EEL 7312

Digital Integrated Circuits

A

Out

VDD

GND

B

A

S

B

A B

Vdd

Complementary Logic: 2-input Nand

20 Lectures 33 to 36

Prof. Güntzel

Combinational Circuits in CMOS

INE 5442 / EEL 7312

Digital Integrated Circuits

011

001

010

100

SBA

A SB

A

S

B

A

B

Vdd

Truth-table

Logic-level symbol Transistor schematics

Complementary Logic: 2-input Nor

21 Lectures 33 to 36

Prof. Güntzel

Combinational Circuits in CMOS

INE 5442 / EEL 7312

Digital Integrated Circuits

S = A+B·CExample:

A

S

B

C

Building Complementary CMOS Complex Gates

1. If the logic gate equation is not negated, imagine it as it were. At the end, an extra

inverter will have to be added .

(Alternatively, apply De Morgan´s

theorem…)

2. Take the non-inverting equation of the logic gate to design the pull-down network

22 Lectures 33 to 36

Prof. Güntzel

Combinational Circuits in CMOS

INE 5442 / EEL 7312

Digital Integrated Circuits

S = A+B·CExample:

A

S

B

A

B

C

C

Vdd

3. Design the pull-up network by finding the dual of the pull-down network, already designed:

1. Each series NMOS association gives rise

to a parallel PMOS association

2. Each parallel NMOS association gives

rise to a series PMOS association

Building Complementary CMOS Complex Gates

23 Lectures 33 to 36

Prof. Güntzel

Combinational Circuits in CMOS

INE 5442 / EEL 7312

Digital Integrated Circuits

Properties of Complementary CMOS Gates

• Full rail-to-rail swing; high noise margins (VOH=Vdd , VOL=GND)

• Logic levels not dependent upon the relative device sizes;ratioless

• Always a path to Vdd or Gnd in steady state; low output impedance

• Extremely high input resistance; nearly zero steady-state input current

• No direct path steady state between power and ground; no static power dissipation

• Propagation delay function of load capacitance and resistance of transistors

Source: Rabaey; Chandrakasan; Nikolic, 2005

24 Lectures 33 to 36

Prof. Güntzel

Combinational Circuits in CMOS

INE 5442 / EEL 7312

Digital Integrated Circuits

Rp

A

Rp

A

Rn CL

B

Rp

A

Rp

A

Rn

B

Rn CL

Cint

NAND2 INV NOR2

CL

B

Rn

A

Rp

B

Rp

A

Rn Cint

Switch Delay Models for Complementary Gates

Source: Rabaey; Chandrakasan; Nikolic, 2005

25 Lectures 33 to 36

Prof. Güntzel

Combinational Circuits in CMOS

INE 5442 / EEL 7312

Digital Integrated Circuits

• Delay is dependent on thepattern of inputs

• Low to high transition

– both inputs go low

• delay is 0.69 Rp/2 CL

– one input goes low

• delay is 0.69 Rp CL

• High to low transition

– both inputs go high

• delay is 0.69 2Rn CL

Delay Depends on the Input Pattern

Source: Rabaey; Chandrakasan; Nikolic, 2005

CL

B

Rn

A

Rp

B

Rp

A

Rn Cint

26 Lectures 33 to 36

Prof. Güntzel

Combinational Circuits in CMOS

INE 5442 / EEL 7312

Digital Integrated Circuits

Delay Depends on the Input Pattern

-0,5

0

0,5

1

1,5

2

2,5

3

0 100 200 300 400

A=B=1→0

A=1, B=1→0

A=1 →0, B=1

time [ps]

Vo

lta

ge

[V]

NMOS = 0.5µµµµm/0.25 µµµµmPMOS = 0.75µµµµm/0.25 µµµµmCL = 100 fF

Sized for tpLH =~ tpHL

Source: Rabaey; Chandrakasan; Nikolic, 2005

76 ↑A= 1→0, B=1

57 ↑A=1, B=1→0

35 ↑A=B=1→0

62 ↓A= 0→1, B=1

50 ↓A=1, B=0→1

69 ↓A=B=0→1

Atraso (ps)Entradas

27 Lectures 33 to 36

Prof. Güntzel

Combinational Circuits in CMOS

INE 5442 / EEL 7312

Digital Integrated Circuits

Delay Depends on the Input Pattern

-0,5

0

0,5

1

1,5

2

2,5

3

0 100 200 300 400

A=B=1→0

A=1, B=1→0

A=1 →0, B=1

time [ps]

Vo

lta

ge

[V]

NMOS = 0.5µµµµm/0.25 µµµµmPMOS = 0.75µµµµm/0.25 µµµµmCL = 100 fF

Sized for tpLH =~ tpHL

Source: Rabaey; Chandrakasan; Nikolic, 2005

B=1

S=0

A=1

A=1 B=1

CL=0 V

Vdd

Cint=0 V

B=1

S=1

A=0

A=0 B=1

CL=Vdd

Vdd

Vdd-VTn

28 Lectures 33 to 36

Prof. Güntzel

Combinational Circuits in CMOS

INE 5442 / EEL 7312

Digital Integrated Circuits

• The VT of the two NMOS transistors are calculate by:

The “Body Effect”

Source: Rabaey; Chandrakasan; Nikolic, 2005

VTn2 = Vtn0 + γ (( 2Φf + V

int)0.5 – (2Φf)0.5)

VTn1 = V

tn0

B

S

A

A B

Vdd

M1

M2

int

29 Lectures 33 to 36

Prof. Güntzel

Combinational Circuits in CMOS

INE 5442 / EEL 7312

Digital Integrated Circuits

Transistor Sizing

Distributed RC model (“Elmore Delay”)

tpHL = 0,69 × (R1× C1+ (R1+R2) × C2 +

+ (R1+R2+R3) × C3 + (R1+R2+R3+R4) × CL)

If R1=R2=R3=R4 then:

tpHL = 0.69 Reqn(C1+2C2+3C3+4CL)

CL

C

R7

D

R8

A

R4

B

R3C3

A

R5

B

R6

C

R2

D

R1C1

C2

Considering intra-cell capacitances

30 Lectures 33 to 36

Prof. Güntzel

Combinational Circuits in CMOS

INE 5442 / EEL 7312

Digital Integrated Circuits

Gates with more than 4 inputs should be avoided…

tpLH

t p(p

s)

fanin

0

250

500

750

1000

1250

2 4 6 8 10 12 14 16

tpHL

quadratic

linear

tp

Propagation Delay as a Function of Fan-In

Source: Rabaey; Chandrakasan; Nikolic, 2005

Propagation delay of CMOS NAND gate

31 Lectures 33 to 36

Prof. Güntzel

Combinational Circuits in CMOS

INE 5442 / EEL 7312

Digital Integrated Circuits

2 4 6 8 10 12 14 16

tpNOR2

t p(p

sec)

eff. fan-out

All gates have the

same drive current.

tpNAND2

tpINV

Slope is a function of

“driving

strength”

Propagation Delay as a Function of Fan-Out

Source: Rabaey; Chandrakasan; Nikolic, 2005

32 Lectures 33 to 36

Prof. Güntzel

Combinational Circuits in CMOS

INE 5442 / EEL 7312

Digital Integrated Circuits

• Fan-in: quadratic due to increasing resistance and capacitance

• Fan-out: each additional fan-out gate adds two gate capacitances to CL

tp = a1FI + a2FI2 + a3FO

Propagation Delay as a Function of Fan-Out

Source: Rabaey; Chandrakasan; Nikolic, 2005

33 Lectures 33 to 36

Prof. Güntzel

Combinational Circuits in CMOS

INE 5442 / EEL 7312

Digital Integrated Circuits

• Transistor sizing

– Desde que a capacitância de saída domine

• Progressive sizing

InN CL

C3

C2

C1In1

In2

In3

M1

M2

M3

MNRC distribuído

WM1 > WM2 > WM3 > … > WMN

(o trans. mais próximo da saídatema a menor resistência de canal.)

Pode reduzir o atraso da portaem até 20% (segundo Rabaey)

Design Techniques for Static CMOS Gates

Source: Rabaey; Chandrakasan; Nikolic, 2005

34 Lectures 33 to 36

Prof. Güntzel

Combinational Circuits in CMOS

INE 5442 / EEL 7312

Digital Integrated Circuits

Transistor ordering

C2

C1In1

In2

In3

M1

M2

M3 CL

C2

C1In3

In2

In1

M1

M2

M3 CL

Critical path

1

0→1

charged1

O Atraso é determinado pelo

tempo para descarregar CL, C1

e C2

1

1

0→1

charged

charged

Critical path

charged

charged

charged

O Atraso é determinado pelo

tempo para descarregar CL

Source: Rabaey; Chandrakasan; Nikolic, 2005

Design Techniques for Static CMOS Gates

35 Lectures 33 to 36

Prof. Güntzel

Combinational Circuits in CMOS

INE 5442 / EEL 7312

Digital Integrated Circuits

• Explorando a Decomposição Lógica

F = ABCDEFGH

Lógica de 2 níveis em CMOS

Elevando fanin (evitar)

Faninlimitado a 2, fanout unitário Source: Rabaey; Chandrakasan; Nikolic, 2005

Design Techniques for Static CMOS Gates

36 Lectures 33 to 36

Prof. Güntzel

Combinational Circuits in CMOS

INE 5442 / EEL 7312

Digital Integrated Circuits

• Isolamento de carga elevada usando buffer

CLCL

Design Techniques for Static CMOS Gates

Source: Rabaey; Chandrakasan; Nikolic, 2005

37 Lectures 33 to 36

Prof. Güntzel

Combinational Circuits in CMOS

INE 5442 / EEL 7312

Digital Integrated Circuits

Cell Design

• Standard Cells

– General purpose logic

– Can be synthesized

– Same height, varying width

• Datapath Cells

– For regular, structured designs (arithmetic)

– Includes some wiring in the cell

– Fixed height and width

Source: Rabaey; Chandrakasan; Nikolic, 2005

38 Lectures 33 to 36

Prof. Güntzel

Combinational Circuits in CMOS

INE 5442 / EEL 7312

Digital Integrated Circuits

Standard Cell Layout Methodology – 1980s

signals

Routingchannel

VDD

GND

Source: Rabaey; Chandrakasan; Nikolic, 2005

39 Lectures 33 to 36

Prof. Güntzel

Combinational Circuits in CMOS

INE 5442 / EEL 7312

Digital Integrated Circuits

Standard Cell Layout Methodology – 1990s

M2

No Routingchannels

VDD

GNDM3

VDD

GND

Mirrored Cell

Mirrored Cell

Source: Rabaey; Chandrakasan; Nikolic, 2005

40 Lectures 33 to 36

Prof. Güntzel

Combinational Circuits in CMOS

INE 5442 / EEL 7312

Digital Integrated Circuits

Standard Cells

Cell boundary

N Well

Cell height 12 metal tracksMetal track is approx. 3λ + 3λPitch = repetitive distance between objects

Cell height is “12 pitch”

Rails ~10λ

InOut

VDD

GND

Source: Rabaey; Chandrakasan; Nikolic, 2005

41 Lectures 33 to 36

Prof. Güntzel

Combinational Circuits in CMOS

INE 5442 / EEL 7312

Digital Integrated Circuits

Standard Cells

InOut

VDD

GND

In Out

VDD

GND

With silicideddiffusion

With minimaldiffusionrouting

OutIn

VDD

M2

M1

Source: Rabaey; Chandrakasan; Nikolic, 2005

42 Lectures 33 to 36

Prof. Güntzel

Combinational Circuits in CMOS

INE 5442 / EEL 7312

Digital Integrated Circuits

Standard Cells

A

Out

VDD

GND

B

2-input NAND gate

B

VDD

A

Source: Rabaey; Chandrakasan; Nikolic, 2005

43 Lectures 33 to 36

Prof. Güntzel

Combinational Circuits in CMOS

INE 5442 / EEL 7312

Digital Integrated Circuits

Stick Diagrams

Contains no dimensions

Represents relative positions of transistors

In

Out

VDD

GND

Inverter

A

Out

VDD

GNDB

NAND2

Source: Rabaey; Chandrakasan; Nikolic, 2005

44 Lectures 33 to 36

Prof. Güntzel

Combinational Circuits in CMOS

INE 5442 / EEL 7312

Digital Integrated Circuits

Stick Diagrams

C

A B

X = C • (A + B)

B

AC

i

j

j

VDDX

X

i

GND

AB

C

PUN

PDNABC

Logic Graph

Source: Rabaey; Chandrakasan; Nikolic, 2005

45 Lectures 33 to 36

Prof. Güntzel

Combinational Circuits in CMOS

INE 5442 / EEL 7312

Digital Integrated Circuits

Two Versions of C • (A + B)

X

CA B A B C

X

VDD

GND

VDD

GND

Source: Rabaey; Chandrakasan; Nikolic, 2005

46 Lectures 33 to 36

Prof. Güntzel

Combinational Circuits in CMOS

INE 5442 / EEL 7312

Digital Integrated Circuits

Consistent Euler Path

j

VDDX

X

i

GND

AB

C

A B C

Source: Rabaey; Chandrakasan; Nikolic, 2005

47 Lectures 33 to 36

Prof. Güntzel

Combinational Circuits in CMOS

INE 5442 / EEL 7312

Digital Integrated Circuits

OAI22 Logic Graph

C

A B

X = (A+B)•(C+D)

B

A

D

VDDX

X

GND

AB

C

PUN

PDN

C

D

D

ABCD

Source: Rabaey; Chandrakasan; Nikolic, 2005

48 Lectures 33 to 36

Prof. Güntzel

Combinational Circuits in CMOS

INE 5442 / EEL 7312

Digital Integrated Circuits

Multi-Fingered Transistors

One finger Two fingers (folded)

Less diffusion capacitance

Source: Rabaey; Chandrakasan; Nikolic, 2005

49 Lectures 33 to 36

Prof. Güntzel

Combinational Circuits in CMOS

INE 5442 / EEL 7312

Digital Integrated Circuits

Pass Transistor Logic

Exemplo 1: uma função arbitrária (com 4 vars. de controle)

saída

A’

B’

A B

E1

E2 E2’11

E1’01

E1’10

E1’00

saídaBA

Saída = A⋅B⋅E2’+A’⋅E1’+B’⋅E1’

buffer

• N transistores• Sem consumo estático

50 Lectures 33 to 36

Prof. Güntzel

Combinational Circuits in CMOS

INE 5442 / EEL 7312

Digital Integrated Circuits

• Vx não consegue atingir Vdd, mas Vdd -VTn(Vx) (efeito de corpo)• Tensão na entrada do inversor não é suficiente para desligar o transistor

PMOS• Mensagem: não cascatear transistores de passagem, conectando-os a gates

de outras estruturas similares.

~~

O Comportamento do Transistor de Passagem

VDD

In

Out

x

0.5µm/0.25µm0.5µm/0.25µm

1.5µm/0.25µm

0 0.5 1 1.5 20.0

1.0

2.0

3.0

Tempo [ns]

xOut

In

Tensão

[V]

Source: Rabaey; Chandrakasan; Nikolic, 2005

51 Lectures 33 to 36

Prof. Güntzel

Combinational Circuits in CMOS

INE 5442 / EEL 7312

Digital Integrated Circuits

NMOS-only Switch

A = 2.5 V

B

C = 2.5V

CL

A = 2.5 V

C = 2.5 V

B

M2

M1

Mn

Threshold voltage loss causes

static power consumption

VB does not pull up to 2.5V, but 2.5V -VTN

NMOS has higher threshold than PMOS (body effect)Source: Rabaey; Chandrakasan; Nikolic, 2005

52 Lectures 33 to 36

Prof. Güntzel

Combinational Circuits in CMOS

INE 5442 / EEL 7312

Digital Integrated Circuits

NMOS Only Logic: Level Restoring Transistor

M2

M1

Mn

Mr

OutA

B

VDDVDDLevel Restorer

X

• Advantage: Full Swing

• Restorer adds capacitance, takes away pull down current at X

• Ratio problemSource: Rabaey; Chandrakasan; Nikolic, 2005

53 Lectures 33 to 36

Prof. Güntzel

Combinational Circuits in CMOS

INE 5442 / EEL 7312

Digital Integrated Circuits

Restorer Sizing

0 100 200 300 400 5000.0

1.0

2.0

W/Lr=1.0/0.25 W/L

r=1.25/0.25

W/Lr=1.50/0.25

W/Lr=1.75/0.25

Volta

ge[V

]

Time [ps]

3.0•Upper limit on restorer size•Pass-transistor pull-downcan have several transistors in stack

Source: Rabaey; Chandrakasan; Nikolic, 2005

54 Lectures 33 to 36

Prof. Güntzel

Combinational Circuits in CMOS

INE 5442 / EEL 7312

Digital Integrated Circuits

Solution 2: Single Transistor Pass Gate with VT=0

Out

VDD

VDD

2.5V

VDD

0V 2.5V

0V

WATCH OUT FOR LEAKAGE CURRENTS

Source: Rabaey; Chandrakasan; Nikolic, 2005

55 Lectures 33 to 36

Prof. Güntzel

Combinational Circuits in CMOS

INE 5442 / EEL 7312

Digital Integrated Circuits

Complementary Pass Transistor Logic

A

B

A

B

B B B B

A

B

A

B

F=AB

F=AB

F=A+B

F=A+B

B B

A

A

A

A

F=A⊕ΒÝ

F=A⊕ΒÝ

OR/NOR EXOR/NEXORAND/NAND

F

F

Pass-Transistor

Network

Pass-TransistorNetwork

AABB

AABB

Inverse

(a)

(b)

Source: Rabaey; Chandrakasan; Nikolic, 2005

56 Lectures 33 to 36

Prof. Güntzel

Combinational Circuits in CMOS

INE 5442 / EEL 7312

Digital Integrated Circuits

Solution 3: Transmission Gate

A B

C

C

A B

C

C

B

CL

C = 0 V

A = 2.5 V

C = 2.5 V

Source: Rabaey; Chandrakasan; Nikolic, 2005

57 Lectures 33 to 36

Prof. Güntzel

Combinational Circuits in CMOS

INE 5442 / EEL 7312

Digital Integrated Circuits

Resistance of Transmission Gate

Vout

0 V

2.5 V

2.5 VR

n

Rp

0.0 1.0 2.00

10

20

30

Vout

, V

Resis

tance

, oh

ms

Rn

Rp

Rn

|| Rp

Source: Rabaey; Chandrakasan; Nikolic, 2005

58 Lectures 33 to 36

Prof. Güntzel

Combinational Circuits in CMOS

INE 5442 / EEL 7312

Digital Integrated Circuits

Pass-Transistor Based Multiplexer

AM2

M1

B

S

S

S F

VDD

GND

VDD

In1

In2S S

S S

Source: Rabaey; Chandrakasan; Nikolic, 2005

59 Lectures 33 to 36

Prof. Güntzel

Combinational Circuits in CMOS

INE 5442 / EEL 7312

Digital Integrated Circuits

Transmission Gate XOR

A

B

F

B

A

B

B

M1

M2

M3/M4

Source: Rabaey; Chandrakasan; Nikolic, 2005

60 Lectures 33 to 36

Prof. Güntzel

Combinational Circuits in CMOS

INE 5442 / EEL 7312

Digital Integrated Circuits

Delay in Transmission Gate Networks

V1 Vi-1

C

2.5 2.5

0 0

Vi Vi+1

CC

2.5

0

Vn-1 Vn

CC

2.5

0

In

V1 Vi Vi+1

C

Vn-1 Vn

CC

In

ReqReq Req Req

CC

(a)

(b)

C

Req Req

C C

Req

C C

Req Req

C C

Req

C

In

m

(c)

Source: Rabaey; Chandrakasan; Nikolic, 2005

61 Lectures 33 to 36

Prof. Güntzel

Combinational Circuits in CMOS

INE 5442 / EEL 7312

Digital Integrated Circuits

Delay Optimization

Source: Rabaey; Chandrakasan; Nikolic, 2005

62 Lectures 33 to 36

Prof. Güntzel

Combinational Circuits in CMOS

INE 5442 / EEL 7312

Digital Integrated Circuits

Transmission Gate Full Adder

A

B

P

Ci

VDDA

A A

VDD

Ci

A

P

AB

VDD

VDD

Ci

Ci

Co

S

Ci

P

P

P

P

P

Sum Generation

Carry Generation

Setup

Similar delays for sum and carrySource: Rabaey; Chandrakasan; Nikolic, 2005