guidelines for phd thesis - inflibnetshodhganga.inflibnet.ac.in/bitstream/10603/40981/14/14... ·...

31
93 References 1. J. A. Turner, A realiable renewable energy future, Science, 285, 687,1999. (b) N. S. Lewis, Powering the planet,, MRS Bull., 32, 808, 2007. (c) V. S. Arunachalam and E. L. Fleischer, The global energy landscape and materials innovation, MRS Bull.,33, 264, 2008. 2. www.eia.gov/forecasts/ieo/pdf/0484(2011). (International Energy Outlook 2011 – EIA) 3. www.nrel.gov/docs/fy130sti/54909. (National Renewable Energy Laboratory – Energy Analysis) 4. P. V. Kamat, Meeting the Clean Energy Demand: Nanostructure Architectures for Solar Energy Conversion, J. Phys. Chem. C, 111, 2834, 2007. 5. N. S. Lewis, and D. G. Nocera, Correction for Lewis and Nocera, Powering the planet: Chemical challenges in solar energy utilizationProc. Natl. Acad. Sci. U. S. A., 103, 15729, 2006 6. D.M. Chaplin, C.S. Fuller, and G.L. Pearson, A New Silicon pn Junction Photocell for Converting Solar Radiation into Electrical Power J. App. Phys., 25, 676, 1954. 7. W. Schockley, and H. J. Queisser. Detailed Balance Limit of Efficiency of p- n. Junction Solar CellsJ. App. Phys., 32, 510, 1961. 8. E.A. Alsema and M.J. de Wild-Scholten, A Life Cycle Analysis of Hydrogen Production for Buildings and VehiclesMRS Online Proceedings Library, 895, 2005. 9. Chiril_a, S. Buecheler, F. Pianezzi, P. Bloesch, C. Gretener,A. R. Uhl, C. Fella, L. Kranz, J. Perrenoud, S. Seyrling, R. Verma, S. Nishiwaki, Y. E. Romanyuk, G. Bilger and A. N. Tiwari, Highly efficient Cu(In,Ga)Se2 solar cells grown on flexible polymer filmsNat. Mater., 10, 857,2011. 10. T. S€oderstr€om, F. J. Haug, V. Terrazzoni-Daudrix and C. Ballif, Flexible micromorph tandema-Si/μc-Si solar cells J. Appl. Phys., 107, 014507, 2010. 11. DuPont Kapton Colorless Polyimide Film Enables World Record for Flexible CdTe Photovoltaic Efficiency, 2011

Upload: others

Post on 30-Nov-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Guidelines for PhD thesis - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/40981/14/14... · 2018. 7. 2. · the TiCl4 Treatment on Nanocrystalline TiO 2 Films in Dye-Sensitized

93

References

1. J. A. Turner, A realiable renewable energy future, Science, 285, 687,1999. (b)

N. S. Lewis, Powering the planet,, MRS Bull., 32, 808, 2007. (c) V. S.

Arunachalam and E. L. Fleischer, The global energy landscape and materials

innovation, MRS Bull.,33, 264, 2008.

2. www.eia.gov/forecasts/ieo/pdf/0484(2011). (International Energy Outlook

2011 – EIA)

3. www.nrel.gov/docs/fy130sti/54909. (National Renewable Energy Laboratory

– Energy Analysis)

4. P. V. Kamat, Meeting the Clean Energy Demand: Nanostructure Architectures

for Solar Energy Conversion, J. Phys. Chem. C, 111, 2834, 2007.

5. N. S. Lewis, and D. G. Nocera, Correction for Lewis and Nocera, Powering

the planet: Chemical challenges in solar energy utilizationProc. Natl. Acad.

Sci. U. S. A., 103, 15729, 2006

6. D.M. Chaplin, C.S. Fuller, and G.L. Pearson, A New Silicon p‐n Junction

Photocell for Converting Solar Radiation into Electrical Power J. App. Phys.,

25, 676, 1954.

7. W. Schockley, and H. J. Queisser. Detailed Balance Limit of Efficiency of p-

n. Junction Solar CellsJ. App. Phys., 32, 510, 1961.

8. E.A. Alsema and M.J. de Wild-Scholten, A Life Cycle Analysis of Hydrogen

Production for Buildings and VehiclesMRS Online Proceedings Library, 895,

2005.

9. Chiril_a, S. Buecheler, F. Pianezzi, P. Bloesch, C. Gretener,A. R. Uhl, C.

Fella, L. Kranz, J. Perrenoud, S. Seyrling, R. Verma, S. Nishiwaki, Y. E.

Romanyuk, G. Bilger and A. N. Tiwari, Highly efficient Cu(In,Ga)Se2 solar

cells grown on flexible polymer filmsNat. Mater., 10, 857,2011.

10. T. S€oderstr€om, F. J. Haug, V. Terrazzoni-Daudrix and C. Ballif, Flexible

micromorph tandema-Si/μc-Si solar cells J. Appl. Phys., 107, 014507, 2010.

11. DuPont Kapton Colorless Polyimide Film Enables World Record for Flexible

CdTe Photovoltaic Efficiency, 2011

Page 2: Guidelines for PhD thesis - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/40981/14/14... · 2018. 7. 2. · the TiCl4 Treatment on Nanocrystalline TiO 2 Films in Dye-Sensitized

94

12. R. H. Bube, Temperature Dependence of the Width of the Band Gap in

Several Photoconductors Phys.Rev., 98, 431,1955.

13. G. Aberle, Thin film solar cells, Thin Solid Films, 517, 4706, 2009.

14. V. Fthenakis, Sustainability of photovoltaics: The case for thin-film solar cells

Renew. Sust. Energ. Rev., 13, 2746, 2009.

15. Hagfeldt, and M. Gratzel, Molecuolar photo voltaics, Acc. Chem. Res., 33,

269, 2000.

16. http://commons.wikimedia.org/wiki/File:Best_Research-Cell_Efficiencies.png

17. http://commons.wikimedia.org/wiki/File:Best_Research-Cell_Efficiencies.png

18. http://www.nrel.gov/pv

19. O'Regan B Grätzel, M. A low-cost, high-efficiency solar cell based on dye-

sensitized colloidal TiO2 films Nature, 353, 737,1991.

20. Goetzberger A, Hebling, C. Photovoltaic materials, past, present, futureSol.

Energy Mater. Sol. Cells 62, 1, 2000.

21. Chappel S, Chen, S.-G, Zaban, A. TiO2-Coated Nanoporous SnO2 Electrodes

for Dye-Sensitized Solar CellsLangmuir 18, 3336, 2002.

22. C. T. Hsieh, B. H. Yang and J. Y. Lin, One- and two-dimensional carbon

nanomaterials as counter electrodes for dye-sensitized solar cells Carbon, 49,

60, 3092, 2011.

23. M. Y. Yen, M. C. Hsiao, N. W. Pu and M. D. Ger, Preparation of

graphene/multi-walled carbon nanotube hybrid and its use as photoanodes of

dye-sensitized solar cells Carbon, 49, 3597, 2011.

24. Grätzel M., Highly Efficient Nanocrystalline Photovoltaic DevicesPlatinum

Metals Rev, 38, 4, 151,1994.

25. Cahen D, Nature of Photovoltaic Action in Dye-Sensitized Solar CellsJ. Phys.

Chem. B, 104, 2053, 2000.

26. Ferrere, S., Gregg, B. A., Enhanced Dye-Sensitized Photoconversion

Efficiency via Reversible Production of UV-Induced Surface States in

Nanoporous TiO2, J. Phys. Chem. B, 105, 7602, 2001.

Page 3: Guidelines for PhD thesis - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/40981/14/14... · 2018. 7. 2. · the TiCl4 Treatment on Nanocrystalline TiO 2 Films in Dye-Sensitized

95

27. Matthews, D., Calculation of the photocurrent-potential characteristic for

regenerative, sensitized semiconductor electrodes Solar Energy Materials &

Solar Cells, 44, 119, 1996,

28. M. K. Nazeeruddin, A. Kay, R. H. Baker, E. Müller, P. Liska,N.

Vlachopoulos, and M. Grätzel, Conversion of light to electricity by cis-

X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer

sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium

dioxide electrodesJ. Am. Chem. Soc. 115, 6382,1993.

29. M. Grätzel, Solar Energy Conversion by Dye-Sensitized Photovoltaic

CellsInorg. Chem. 44, 6841, 2005.

30. G. E. Tulloch, Light and energy—dye solar cells for the 21st centuryJ.

Photochem. Photobiol. A 164, 209, 2004.

31. Lindström H., New Method for Manufacturing Nanostructured Electrodes on

Plastic Substrates Nano Letters, 1, 2, 97, 2001.

32. Pichot F., Low-Temperature Sintering of TiO2 Colloids:  Application to

Flexible Dye-Sensitized Solar Cells Langmuir, 16, 5626, 2000.

33. Lindström, H., A new method to make dye-sensitized nanocrystalline solar

cells at room temperatureJ. Photochem. Photobiol., A, 145(1-2), 107, 2001.

34. M. Spath, P. M. Sommeling, J. A. M. van Roosmalen, H. J. P. Smit,N. P. G.

van der Burg, D. R. Mahieu, N. J. Bakker, and J. M. Kroon, dye-sensitized

solar cells on a semi-automated baseline Prog. Photovolt: Res. Appl. 11, 207,

2003.

35. X. Fang, T. Ma, M. Akiyama, G. Guan, S. Tsunematsu, and E. Abe, Flexible

counter electrodes based on metal sheet and polymer film for dye-sensitized

solar cellsThin Solid Films 472, 242, 2005.

36. X. Mathew, G. W. Thompson, V. P. Singh, J. C. McClure,S. Velumani, N. R.

Mathews, and P. J. Sebastian, Sol. Energy Mater.Sol. Cells. 76, 293, 2003.

37. G. Calogero, P. Calandra, A. Irrera, A. Sinopoli, I. Citro, and G. Di Marco, A

new type of transparent and low cost counter-electrode based on platinum

Page 4: Guidelines for PhD thesis - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/40981/14/14... · 2018. 7. 2. · the TiCl4 Treatment on Nanocrystalline TiO 2 Films in Dye-Sensitized

96

nanoparticles for dye-sensitized solar cells Energy Environ. Sci. 4, 1838,

2011.

38. R. Jose, V. Thavasi, and S. Ramakrishna, Metal Oxides for Dye-Sensitized

Solar Cells J. Am. Ceram. Soc., 92, 289, 2009.

39. N.-G. Park , J. van de Lagemaat, and A. J. Frank, Comparison of Dye-

Sensitized Rutile- and Anatase-Based TiO2 Solar Cells J. Phys. Chem. B, 104,

8989, 2000.

40. K. Kalyanasundaram, M. Grätzel, Efficient Dye-Sensitized Solar Cells for

Direct Conversion of Sunlight to Electricity, Coord. Chem. Rev. 177, 347,

1998.

41. Imanishi, H. Suzuki, N. Ohashi, T. Ohta, Y. Nakato, Dye-sensitized

photocurrents and adsorption properties of merocyanine dye at atomically flat

rutile (1 1 0) and (1 0 0) TiO2 surfaces Inorg. Chim. Acta.361, 778, 2008.

42. Ni, M., Leung, M.K.H., Leung, D.Y.C. & Sumathy, K. An analytical study of

the porosity effect on dye-sensitized solar cell performanc Solar Energy

Materials & Solar Cells, 90,1331, 2006.

43. Zhang, Z.P., Ito, S., O‗Regan, B., Kuang, D.B., Zakeeruddin, S.M., Liska, P.,

Charvet, R., Comte, P., Nazeeruddin, M.K., Pechy, P., Humphry-Baker, R.,

Koyanagi, T., Mizuno, T. & Gratzel, M. Z., Fabrication of thin film dye

sensitized solar cells with solar toelectric power conversion efficiency over

10%, Phys. Chem., 221, 319, 2007.

44. Hore, S., Nitz, P., Vetter, C., Prahl, C., Niggemann, M. & Kern, R., Scattering

spherical voids in nanocrystalline TiO2 – enhancement of efficiency in dye-

sensitized solar cells Chem. Commun., 2011, 2005

45. Sommeling, P.M., O‗Regan, B.C., Haswell, R.R., Smit, H.J.P., Bakker, N.J.,

Smits, J.J.T., Kroon, J.M. & van Roosmalen, J. A. M., Influence of a TiCl4

Post-Treatment on Nanocrystalline TiO2 Films in Dye-Sensitized Solar CellsJ.

Phys. Chem. B, 110, 19191, 2006.

Page 5: Guidelines for PhD thesis - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/40981/14/14... · 2018. 7. 2. · the TiCl4 Treatment on Nanocrystalline TiO 2 Films in Dye-Sensitized

97

46. O‗Regan, B.C., Durrant, J.R., Sommeling, P.M. & Bakker, N.J.J., Influence of

the TiCl4 Treatment on Nanocrystalline TiO2 Films in Dye-Sensitized Solar

Cells. 2. Charge Density, Band Edge Shifts, and Quantification of

Recombination Losses at Short Circuit Phys. Chem. C, 111,14001, 2007.

47. Kongkanand, A., Martinez-Dominguez, R. & Kamat, P.V. Figure 1 of 6Single

Wall Carbon Nanotube Scaffolds for Photoelectrochemical Solar Cells.

Capture and Transport of Photogenerated ElectronsNano Lett., 7, 676, 2007.

48. M.K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Muller, P.

Liska, N. Vlachopoulos, M. Grätzel, Conversion of light to electricity by cis-

X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer

sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium

dioxide electrodes J. Am. Chem. Soc. 115, 6382, 1993.

49. N. Robertson, Optimizing dyes for dye-sensitized solar cells. Angew. Chem.

Int. Ed., 45, 2338, 2006.

50. Y. Tachibana, J. E. Moser, M. Grätzel, D. R. Klug, and J. R. Durrant,

Subpicosecond Interfacial Charge Separation in Dye-Sensitized solar cells, J.

Phys. Chem., 100, 20056, 1996.

51. S. Haque, Y. Tachibana, R. L. Willis, J. E. Moser, M. Gratzel, D. R. Klug, and

J. R. Durrant, Parameters Influencing Charge Recombination Kinetics in Dye-

Sensitized Nanocrystalline Titanium Dioxide Films J. Phys. Chem. B, 104,

538, 2000.

52. J. Wu, Z. Lan, S. Hao, P. Li, J. Lin, M. Huang, L. Fang and Y. Huang,

Progress on the electrolytes for dye-sensitized solar cells Pure Appl. Chem.,

80, 2241, 2008.

53. C. Zafer, K. Ocakoglu, C. Ozsoy, S. Icli. Dicationic bis-imidazolium molten

salts for efficient dye sensitized solar cells: Synthesis and photovoltaic

properties. Electrochimica Acta 54, 5709, 2009.

54. M. Kang, K. Ahn, J. Lee, Y. Kang. Dye-sensitized solar cells employing non-

volatile electrolytes based on oligomer solvent. Journal of Photochemistry and

Photobiology A:Chemistry 195, 198, 2008.

Page 6: Guidelines for PhD thesis - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/40981/14/14... · 2018. 7. 2. · the TiCl4 Treatment on Nanocrystalline TiO 2 Films in Dye-Sensitized

98

55. Nazerruddin, M.K; Kay, A.; Ridicio, I.; Humphry-Baker, R.; Mueller, E.;

Liska, P.;Vlachopoulos, N. & Gratzel, Conversion of light to electricity by

cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer

sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium

dioxide electrodesM. J. Amer. Chem. Soc. 115, 6382, 1993.

56. K. Tennakone, V. P. S. Perera, I. R. M. Kottegoda and G. R. R. A. Kumara,

Dye-sensitized solid state photovoltaic cell based on composite zinc oxide/tin

(IV) oxide films J. Phys. D: Appl. Phys., 32, 374, 1999.

57. U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissörtel, J. Salbeck, H.

Spreitzer, and M. Grätzel, Solid-state dye-sensitized mesoporous TiO2 solar

cells with high photon-to-electron conversion efficienciesNature, 395, 583,

1998.

58. T. N. Murakami, and M. Grätzel, hybrid solar cells, Inorg. Chim. Acta, 361,

572, 2008.

59. N. Papagergiou, W.F. Maier, M. Grätzel, An Iodine/Triiodide Reduction

Electrocatalyst for Aqueous and Organic MediaJ. Electrochem. Soc. 144 876,

1997.

60. J. Halme, M. Toivola, A. Tolvanen, P. Lund, Pt Deposition on Anode

Enhances the Performance of Dye-Sensitized Solar Cell with Non-Cross-

Linked Gel Electrolyte, Sol. Energy Mater. Sol. Cells 90, 872, 2006.

61. K. Imoto, K. Takahashi, T. Yamaguchi, T. Komura, J. Nakamura, K. Murata,

High-performance carbon counter electrode for dye-sensitized solar cells Sol.

Energy Mater. Sol. Cells 79 459, 2003.

62. K. Suzuki, M. Yamaguchi, M. Kumagai, S. Yanagida, Application of carbon

nanotubes to counter electrodes of dye-sensitized solar cells Chem. Lett. 32,

28, 2003.

63. Y. Saito, T. Kitamuram, Y. Wada, S. Yanagida, Application of poly (3, 4-

ethylenedioxythiophene) to counter electrode in dye-sensitized solar

cellsChem. Lett. 31, 1060, 2002.

Page 7: Guidelines for PhD thesis - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/40981/14/14... · 2018. 7. 2. · the TiCl4 Treatment on Nanocrystalline TiO 2 Films in Dye-Sensitized

99

64. K. Andreas, and M. Grätzel, Low cost photovoltaic modules based on dye

sensitized nanocrystalline titanium dioxide and carbon powderSol.Energy

Mater. Sol. Cells, 44, 99,1996.

65. Hagfeldt, A.; Gra¨tzel, M. Molecular photovoltaics Acc. Chem. Res. 33, 269,

2000.

66. Asbury, J. B.; Ellingson, R. J.; Ghosh, H. N.; Ferrere, S.; Nozik, A. J.; Lian,

T. Q. Femtosecond IR study of excited-state relaxation and electron-injection

dynamics of Ru (dcbpy) 2 (NCS) 2 in solution and on nanocrystalline TiO2

and Al2O3 thin films J. Phys. Chem. B 103, 3110,1999.

67. Ramakrishna, G.; Jose, D. A.; Kumar, D. K.; Das, A.; Palit, D. K.; Ghosh, H.

N. Strongly coupled ruthenium-polypyridyl complexes for efficient electron

injection in dye-sensitized semiconductor nanoparticles J. Phys. Chem. B 109,

15445,2005.

68. Kuang, D.; Ito, S.; Wenger, B.; Klein, C.; Moser, J.-E.; Humphry- Baker, R.;

Zakeeruddin, S. M.; Gra¨tzel, M. Stable mesoscopic dye-sensitized solar cells

based on tetracyanoborate ionic liquid electrolyte J. Am. Chem. Soc. 128,

4146, 2006.

69. Benko, G.; Kallioinen, J.; Korppi-Tommola, J. E. I.; Yartsev, A. P.;

Sundstrom, V. Photoinduced ultrafast dye-to-semiconductor electron injection

from nonthermalized and thermalized donor states J. Am. Chem. Soc. 124,

489, 2002.

70. K. Kalyanasundaram (Editor). Dye-Sensitized Solar Cells. EPFL Press,

Lausanne (2010).

71. S. Haque, Y. Tachibana, R. L. Willis, J. E. Moser, M. Gratzel, D. R. Klug, and

J. R. Durrant, Parameters Influencing Charge Recombination Kinetics in Dye-

Sensitized Nanocrystalline Titanium Dioxide Films J. Phys. Chem. B, 104,

538, 2000.

72. W. M. Campbell, K. W. Jolley, P. Wagner, K. Wagner, P. J. Walsh, K. C.

Gordon, L. Schmidt-Mende, M. K. Nazeeruddin, Q. Wang, M. Grätzel, and D.

Page 8: Guidelines for PhD thesis - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/40981/14/14... · 2018. 7. 2. · the TiCl4 Treatment on Nanocrystalline TiO 2 Films in Dye-Sensitized

100

L. Officer, Highly Efficient Mesoscopic Dye‐Sensitized Solar Cells Based on

Donor–Acceptor‐Substituted PorphyrinsJ. Phys. Chem. C, 111, 11760, 2007. 73. O‘Regan, B.; Moser, J.; Anderson, M.; Gra¨tzel, M. Vectorial electron

injection into transparent semiconductor membranes and electric field effects

on the dynamics of light-induced charge separation J. Phys. Chem. 94, 8720,

1990.

74. So¨dergren, S.; Hagfeldt, A.; Olsson, J.; Lindquist, S. E. Theoretical models

for the action spectrum and the current-voltage characteristics of microporous

semiconductor films in photoelectrochemical cells J. Phys. Chem. 98, 5552,

1994.

75. Solbrand, A.; Lindstro¨m, H.; Rensmo, H.; Hagfeldt, A.; Lindquist,S. E.;

So¨dergren, S. Electron Transport in the Nanostructured TiO2−Electrolyte

System Studied with Time-Resolved Photocurrents J. Phys. Chem. B 101,

2514, 1997.

76. J. Bisquert, A. Zaban, M. Greenshtein, I. Mora-Seró. A review of recent

results on electrochemical determination of the density of electronic states of

nanostructured metal-oxide semiconductors and organic hole J. Am. Chem.

Soc.126, 13550, 2004.

77. L. M. Peter. ―Sticky Electrons‖ transport and interfacial transfer of electrons

in the dye-sensitized solar cell Acc. Chem. Res. 42, 1839, 2009.

78. E. Hendry, M. Koeberg, B. O‘Regan, M. Bonn. Local field effects on electron

transport in nanostructured TiO2 revealed by terahertz spectroscopy Nano

Lett. 6, 755, 2006.

79. K. Kalyanasundaram (Editor). Dye-Sensitized Solar Cells. EPFL Press,

Lausanne 2010.

80. Cao, F.; Oskam, G.; Searson, P. C. Electron transport in porous

nanocrystalline TiO2 photoelectrochemical cells J. Phys. Chem., 100, 17021,

1996.

81. Dloczik, L.; Ileperuma, O.; Lauermann, I.; Peter, L. M.; Ponomarev,E. A.;

Redmond, G.; Shaw, N. J.; Uhlendorf, I. Dynamic response of dye-sensitized

Page 9: Guidelines for PhD thesis - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/40981/14/14... · 2018. 7. 2. · the TiCl4 Treatment on Nanocrystalline TiO 2 Films in Dye-Sensitized

101

nanocrystalline solar cells: Characterization by intensity-modulated

photocurrent spectroscopy J. Phys. Chem. B, , 101, 10281, 1997.

82. Kopidakis, N.; Neale, N. R.; Zhu, K.; Lagemaat, J. v. d.; Frank, A. Spatial

location of transport-limiting traps inTiO 2 nanoparticle films in dye-

sensitized solar cells J.Appl. Phys. Lett. 87, 202106, 2005.

83. Zhu, K.; Kopidakis, N.; Neale, N. R.; van de Lagemaat, J.; Frank,A. J.

Influence of surface area on charge transport and recombination in dye-

sensitized TiO2 solar cells J. Phys. Chem. B 110, 25174, 2006.

84. Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L. & Pettersson, H., "Dye-

Sensitized Solar Cells", Chem. Rev., 110, 11, 6595, 2010.

85. N. Papageorgiou, M. Grätzel, P. P. Infelta. On the relevance of mass transport

in thin layer nanocrystalline photoelectrochemical solar cells,Sol. Energy

Mater. Sol. Cells, 44, 405 1996.

86. S. Y. Huang, G. Schlichthorl, A. J. Nozik, M. Grätzel, and A. J. Frank, Charge

recombination in dye-sensitized nanocrystalline TiO2 solar cells J. Phys.

Chem. B, 101, 2576, 1997.

87. Q. Wang, J. E. Moser, and M. Gratzel, Electrochemical impedance

spectroscopic analysis of dye-sensitized solar cells J. Phys. Chem. B, 109,

14945, 2005.

88. S. Ngamsinlapasathian, T. Sreethawong, Y. Suzuki and S.Yoshikawa, Single-

and double-layered mesoporous TiO< sub> 2</sub>/P25 TiO< sub> 2</sub>

electrode for dye-sensitized solar cell Sol. Energy Mater. Sol. Cells, 86, 269,

2005.

89. S. Ito, S. M. Zakeeruddin, R. Humphry-Baker, P. Liska, R. Charvet, P. Comte,

M. K. Nazeeruddin, P. Pechy, M. Takata, H. Miura, S. Uchida and M. Gratzel,

High‐Efficiency Organic‐Dye‐Sensitized Solar Cells Controlled by

Nanocrystalline‐TiO2 Electrode Thickness Adv. Mater., 18, 1202, 2006. 90. K. Zhu, E. A. Schiff, N. G. Park, J. van de Lagemaat and A. J. Frank,

Determining the locus for photocarrier recombination in dye-sensitized solar

cells Appl. Phys. Lett., 80, 685, 2002.

Page 10: Guidelines for PhD thesis - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/40981/14/14... · 2018. 7. 2. · the TiCl4 Treatment on Nanocrystalline TiO 2 Films in Dye-Sensitized

102

91. T. L. Ma, T. Kida, M. Akiyama, K. Inoue, S. J. Tsunematsu, K. Yao, H. Noma

and E. Abe, Highly crystallized mesoporous TiO2 films and their

applications in dye sensitized solar cells , Electrochem. Commun., 5,369,

2003.

92. T. P. Chou, Q. Zhang, B. Russo, G. E. Fryxell and G. Cao, Effects of dye

loading conditions on the energy conversion efficiency of ZnO and TiO2 dye-

sensitized solar cells J. Phys. Chem. C, 111, 6296, 2007.

93. M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P.

Liska, S. Ito, B. Takeru, M. Grätzel, Combined Experimental and DFT-

TDDFT Computational Study of Photoelectrochemical Cell Ruthenium

Sensitizers J. Am. Chem. Soc. 127, 16835, 2005.

94. S. Kambe, S. Nakade, Y. Wada, T. Kitamura and S. Yanagida, Effects of

crystal structure, size, shape and surface structural differences on photo-

induced electron transport in TiO2 mesoporous electrodes J. Mater. Chem., 12,

723, 2002.

95. S. Ngamsinlapasathian, T. Sreethawong, Y. Suzuki and S.Yoshikawa, Single-

and double-layered mesoporous TiO< sub> 2</sub>/P25 TiO< sub> 2</sub>

electrode for dye-sensitized solar cell Sol. Energy Mater. Sol. Cells, 86, 269,

2005.

96. K. Hou, B. Tian, F. Li, Z. Bian, D. Zhao and C. Huang, Highly crystallized

mesoporous TiO2 films and their applications in dye sensitized solar cells J.

Mater. Chem., 15, 2414, 2005.

97. G. Kantonis, T. Stergiopoulos, A. P. Katsoulidis, P. J. Pomonis and P. Falaras,

Electron dynamics dependence on optimum dye loading for an efficient dye-

sensitized solar cell J. Photochem. Photobiol. A, 217, 236, 2011.

98. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H.

Yan, One‐dimensional nanostructures: synthesis, characterization, and

applications Adv. Mater. 15, 353, 2003.

99. Gr¨atzel M. Journal of Photochemistry and Photobiology C : Photochemistry

Reviews 4, 2, 45, 2003.

Page 11: Guidelines for PhD thesis - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/40981/14/14... · 2018. 7. 2. · the TiCl4 Treatment on Nanocrystalline TiO 2 Films in Dye-Sensitized

103

100. Yu H, Zhang S ,Zhao H, Will G,Liu P, An efficient and low-cost TiO< sub>

2</sub> compact layer for performance improvement of dye-sensitized solar

cells Electrochimica Acta 54, 4, 1319, 2009.

101. Cameron PJ, Peter LM. Characterization of titanium dioxide blocking layers

in dye-sensitized nanocrystalline solar cells Journal of Physical Chemistry B

107, 51, 14394, 2003.

102. J. R. Mann, M. K. Gannon, T. C. Fitzgibbons, M. R. Detty and D. F. Watson,

Optimizing the photocurrent efficiency of dye-sensitized solar cells through

the controlled aggregation of chalcogenoxanthylium dyes on nanocrystalline

titania films J. Phys. Chem. C, 112, 13057, 2008.

103. R. Y. Ogura, S. Nakane, M. Morooka, M. Orihashi, Y. Suzuki and K. Noda,

High-performance dye-sensitized solar cell with a multiple dye system Appl.

Phys. Lett., 94, 073308, 2009.

104. L. Hu, S. Dai, J. Weng, S. Xiao, Y. Sui, Y. Huang, S. Chen, F. Kong, X. Pan,

L. Liang, K.Wang, Microstructure Design of Nanoporous TiO2

Photoelectrodes for Dye-Sensitized Solar Cell Modules J. Phys. Chem. B 111,

358, 2007.

105. T. Berger, T. Lana-Villarreal, D. Monllor-Satoca, R. Gomez, In Situ Infrared

Study of the Adsorption and Surface Acid−Base Properties of the Anions of

Dicarboxylic Acids at Gold Single Crystal and Thin-Film ElectrodesJ. Phys.

Chem. C 111, 9936, 2007.

106. D. D. Vuong, D. T. N. Tram, P. Q. Pho and N. D. Chienin: Physics and

Engineering of New Materials, Eds. 95-102.

107. D. T. Cat, A. Pucci and K. Wandelt, Springer-Verlag, Berlin Heidelberg,

Germany 2009.

108. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino and K. Niihara, Langmuir, 14,

3160, 1998.

109. Paulose M, Shankar K, Varghese O K, Mor G K, Hardin B and Grimes C A

Backside illuminated dye-sensitized solar cells based on titania nanotube array

electrodes Nanotechnology 17, 1446, 2006.

Page 12: Guidelines for PhD thesis - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/40981/14/14... · 2018. 7. 2. · the TiCl4 Treatment on Nanocrystalline TiO 2 Films in Dye-Sensitized

104

110. C. Zhu, S. Guo, P. Wang, X. Li, Y. Fang, Y. Zhai and S. Dong, One-pot,

water-phase approach to high-quality graphene/TiO2 composite nanosheets

Chem. Commun., 46, 7148, 2010.

111. Asha A. M, Ranjusha R, Daya K C, Arun T A, Antonio Licciulli2, Sanosh K.

P2. Shanti Kumar V Nair, A. Sreekumaran Nair, Avinash Balakrishnan, Opto-

electrical properties of molten salt synthesizedTiO2-graphene composites,

Science of Advance materials. (Accepted article in press).

112. G. Oskam, A. Nellore, R. L. Penn and P. C. Searson, The growth kinetics of

TiO2 nanoparticles from titanium (IV) alkoxide at high water/titanium ratio J.

Phys. Chem. B, 107, 1734, 2003.

113. J. H. Jung, H. Kobayashi, K. J. C. van Bommel, S. Shinkai and T. Shimizu,

Creation of novel helical ribbon and double-layered nanotube TiO2 structures

using an organogel template Chem. Mater., 14, 1445, 2002.

114. Yang N, Zhai, J, Wang D, Chen Y, Jiang L. Two-dimensional graphene

bridges enhanced photoinduced charge transport in dye-sensitized solar cells.

ACS Nano 4, 2, 887, 2010.

115. Asha A M, Sujith K, Nair A S, Nair S V, Balakrishnan A. et al. Electrical and

optical properties of electrospun TiO2-graphene composite nanofibers and its

application as DSSC photo-anodes. RSC Adv 2, 13032, 2012.

116. Zhu P, Nair A S, Shengjie P, Shengyuan Y, Ramakrishna S. Facile

Fabrication of TiO2–Graphene Composite with Enhanced Photovoltaic and

Photocatalytic Properties by Electrospinning. Appl. Mater. Interfaces 4, 2,

581, 2012.

117. P. Hoyer, Formation of a titanium dioxide nanotube array Langmuir, 12, 1411,

1996.

118. H. Shin, D. K. Jeong, J. Lee, M. M. Sung and J. Kim, Formation of TiO2 and

ZrO2 nanotubes using atomic layer deposition with ultraprecise control of the

wall thickness Adv.Mater., 16, 1197, 2004.

119. F. Li, L. Zhang and R. M. Metzger, On the growth of highly ordered pores in

anodized aluminum oxide Chem. Mater., 10, 2470, 1998.

Page 13: Guidelines for PhD thesis - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/40981/14/14... · 2018. 7. 2. · the TiCl4 Treatment on Nanocrystalline TiO 2 Films in Dye-Sensitized

105

120. K. Fujihara, A. Kumar, R. Jose, S. Ramakrishna, S. Uchida, Spray deposition

of electrospun TiO2 nanorods for dye-sensitized solar cell Nanotechnology 18

365709, 2007.

121. J.B. Baxter, E.S. Aydil, Dye-sensitized solar cells based on semiconductor

morphologies with ZnO nanowires Sol. Energy Mater. Sol. Cells 90, 607,

2006.

122. V. V. Kislyuk and O. P. Dimitriev, Nanorods and nanotubes for solar cells J.

Nanosci. Nanotechnol.,8, 131, 2008.

123. M. Adachi, Y. Murata, J. Takao, J. Jiu, M. Sakamoto, F. Wang, Highly

Efficient Dye-Sensitized Solar Cells with a Titania Thin-Film Electrode

Composed of a Network Structure of Single-Crystal-like TiO2 Nanowires

Made by the ―Oriented Attachment‖ Mechanism J. Am. Chem. Soc. 126,

14943, 2004.

124. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H.

Yan, One-Dimensional Nanostructures: Synthesis, Characterization, and

Applications Adv. Mater. 15, 353, 2003.

125. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H.

Yan, One-Dimensional Nanostructures: Synthesis, Characterization, and.

Applications, Adv. Mater. 15, 353, 2003.

126. J.G. Lu, P. Chang, Z. Fan, Mater. Sci. Eng. R: Reports R, 52, 49, 2006.

127. Grätzel, M. Solar Energy Conversion by Dye-Sensitized Photovoltaic

Cells,Inorg. Chem. 44, 6841, 2005.

128. Subramanian, V.; Wolf, E.; Kamat, P. V. Semiconductor-Metal Composite

Nanostructures. To What Extent Metal Nanoparticles (Au, Pt, Ir) Improve the

Photocatalytic Activity of TiO2 Films?, J. Phys. Chem. B 105, 11439, 2001.

129. Sclafani, A.; Mozzanega, M. N.; Pichat, P. Photochem. Photobiol. A 59,181,

1991.

130. Palomares, E.; Clifford, J. N.; Haque, S.A.; Lutz, T.; Durrant, J.R.

Chem.Commun. 1464, 2002.

131. Yang, S.; Huang, Y.; Huang, C.; Zhao, X. Chem. Mater. 14, 1500, 2002.

Page 14: Guidelines for PhD thesis - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/40981/14/14... · 2018. 7. 2. · the TiCl4 Treatment on Nanocrystalline TiO 2 Films in Dye-Sensitized

106

132. Subramanian, V.; Wolf, E. E.; Kamat, P. V. Langmuir 19, 469, 2003.

133. M. A. Behnajady, N. Modirshahla, M. Shokri, and B. Rad, Global NEST J.

10, 1 2008.

134. P. Oelhafen and A. Schuler, Sol. Energy 79, 110, 2005.

135. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, J. Appl. Phys. 101, 1,

2007.

136. T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnal, Sol.

Energy Mater. Sol. Cells 93, 1978, 2009.

137. K. R. Catchpolea and A. Polman, Appl. Phys. Lett. 93, 1, 2008.

138. N. D. Fatti, D. Christofilos, and F. Vallee, Gold Bull. 41, 147, 2008.

139. Chen, S. G.; Chappel, S.; Diamant, Y.; Zaban, A. Chem. Mater., 13, 4629,

2001.

140. Yang, S.; Huang, Y.; Huang, C.; Zhao, X. Chem. Mater. 14, 1500, 2002.

141. Palomares, E.; Clifford, J. N.; Haque, S. A.; Lutz, T.; Durrant, J. R, Specific

surface area of carbon nanotubes and bundles of carbon nanotubes,J. Am.

Chem. Soc. 125, 475, 2003.

142. Wang, Z. S.; Huang, C.-H.; Huang, Y.-Y.; Hou, Y.-J.; Xie, P.-H.; Zhang,

B.W.; Cheng, H.-M. Three-Dimensional Array of Highly Oriented Crystalline

ZnO MicrotubesChem. Mater. 13, 678, 2001.

143. Grätzel M, Conversion of sunlight to electric power by nanocrystalline dye-

sensitized solar cells‖ , J. Photochem. and Photobio. A: Chem, 164, 3, 2004

144. Di Wei, Dye Sensitized Solar Cells‖ , Int. J. Mol. Sci., 11,1103, 2010 145. Polo A. S., Itokazu M. K., Iha N. Y. M., Metal complex sensitizers in dye-

sensitized solar cells‖ , Coordination Coord. Chem. Rev, 248, 1343, 2004

146. Sekar N., Ghelot V., Metal Complex Dyes for Dye-Sensitized Solar Cells: Recent Developments‖ , General Article, Resonance, 2010

147. Bessho T., Constable E. C., Gratzel M., Redondo A. H., Housecroft C. E.,

Kylberg W., Nazeeruddin M. K., Neuburger M. and Schaffner S, An element

of surprise—efficient copper-functionalized dye-sensitized solar cells‖ ,

Chem. Commun., 32, 3717 2008

Page 15: Guidelines for PhD thesis - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/40981/14/14... · 2018. 7. 2. · the TiCl4 Treatment on Nanocrystalline TiO 2 Films in Dye-Sensitized

107

148. Jayaweera P.M., Palayangoda S.S., Tennakone K., Nanoporous TiO2 solar

cells sensitized with iron(II) complexes of bromopyrogallol red ligand, J.

Photochem. and Phtobio. A:Chem, 140,17, 2001.

149. Onozawa-Komatsuzaki N., Yanagida M, Funaki T., Kasuga K., Sayama K.,

Sugihara H., ―Near IR dye-sensitized solar cells using a new type of

ruthenium complexes having 2,6-bis (quinolin-2-yl) pyridine derivatives, Sol.

Ene. Mat. & Sol. Cells, 95,310, 2011.

150. Onozawa-Komatsuzaki N., Yanagida M, Funaki T., Kasuga K., Sayama K.,

Sugihara H., ―Near IR sensitization of nanocrystalline TiO2 witha new

ruthenium complex having a 2,6-bis(4-carboxyquinolin-2-yl) pyridine

ligand‖ , Inorg. Chem Comn., 12, 1212, 2009.

151. Nazeeruddin, M.K., Pechy, P., Renouard, T., Zakeeruddin, S.M., Humphry-

Baker, R., Comte, P., Liska, P., Cevey, L., Costa, E., Shklover, V., Spiccia, L.,

Deacon, G.B., Bignozzi, C.A. & Gratzel, M., Engineering of Efficient

Panchromatic Sensitizers for Nanocrystalline TiO2-based Solar cells, J. Am.

Chem. Soc., 123, 1613, 2010.

152. A Hagfeldt, Chem. Rev.110, 6595,2010

153. Hara K., Miyamoto K., Abe Y., Yanagida M., Electron Transport in

Coumarin-Dye-Sensitized Nanocrystalline TiO2 Electrodes, J. Phy. Chem B,

109, 23776, 2005.

154. S. Hwang,a Jung Ho Lee,Nam-Gyu Park*c and Chulhee Kim, A highly

efficient organic sensitizer for dye-sensitized solar cells, Chem. Commun.,

2007, 4887–4889

155. Y. G. Kim, J. Walker, L. A. Samuelson, J. Kumar, Efficient Light Harvesting

Polymers for Nanocrystalline TiO2 Photovoltaic Cells, Nano Lett. 2003, 3,

523.

156. J. K. Mwaura, X. Zhao, H. Jiang, K. S. Schanze, J. R. Reynolds, Spectral

Broadening in Nanocrystalline TiO2 Solar Cells Based on Poly(p-phenylene

ethynylene) and Polythiophene Sensitizers, Chem. Mater. 2006, 18, 6109.

Page 16: Guidelines for PhD thesis - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/40981/14/14... · 2018. 7. 2. · the TiCl4 Treatment on Nanocrystalline TiO 2 Films in Dye-Sensitized

108

157. Z. Fang, A. A. Eshbaugh, K. S. Schanze, Low-Bandgap Donor−Acceptor

Conjugated Polymer Sensitizers for Dye-Sensitized Solar Cells, J. Am. Chem.

Soc. 2011, 133, 3063.

158. C. Y. Chen, M.Wang, J. Y. Li, N. Pootrakulchote, L. Alibabaei, C. Ngoc-le, J.

D. Decoppet, J. H. Tsai, C. Grätzel, C. G.Wu, S. M. Zakeeruddin, M. Grätzel,

Highly Efficient Light-Harvesting Ruthenium Sensitizer for Thin-Film Dye-

Sensitized Solar Cells, ACS Nano 2009, 3, 3103.

159. M. Grätzel, Recent Advances in Sensitized Mesoscopic Solar CellsAccs.

Chem. Res. 2009, 42. 1788.

160. Umer Mehmood,1 Saleem-ur Rahman,1 Khalil Harrabi, Ibnelwaleed A.

Hussein,1 and B. V. S. Reddy, Recent Advances in Dye Sensitized Solar

Cells, Advances in Materials Science and Engineering, Volume 2014, Article

ID 974782, 12 pages

161. J.Wu, Z. Lan, S.Hao et al., ―Progress on the electrolytes for dyesensitized

solar cells,‖ Pure and Applied Chemistry, vol. 80, no. 11, pp. 2241–2258,

2008.

162. Heng L, Wang X, Yang N, Zhai J, Wan M, Jiang L. p–n-junction-based

flexible dye-sensitized solar cells. Advanced Functional Materials, 20(2), 266,

2010.

163. Bach U, Lupo D, Comte P, Moser JE, Weissortel F, Salbeck J, Spreitzer H,

Gratzel M. Solid-state dye-sensitized mesoporous TiO2 solar cells with high

photon-to-electron conversion efficiencies. Nature 395, 583,1998

164. Kron G, Egerter T, Werner JH, Rau U. Electronic transport in dye-sensitized

nanoporous TiO2 solar cells—comparison of electrolyte and solid-state

devices. Journal of Physical Chemistry B, 107, 15, 3556, 2003.

165. Wang P, Zakeeruddin SM, Moser JE, Nazeeruddin MK, Sekiguchi T, Gratzel

M. A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic

ruthenium sensitizer and polymer gel electrolyte. Nature Materials, 2(6), 402,

2003.

Page 17: Guidelines for PhD thesis - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/40981/14/14... · 2018. 7. 2. · the TiCl4 Treatment on Nanocrystalline TiO 2 Films in Dye-Sensitized

109

166. Wang P, Zakeeruddin SM, Comte P, Exnar I, Gratzel M. Gelation of ionic

liquid-based electrolytes with silica nanoparticles for quasi-solid-state dye-

sensitized solar cell, J. Am. Chem. Soc., 125, 1166 ,2003.

167. Mohmeyer, P. Wang, H.-W. Schmidt, S. M. Zakeeruddin, andM.Gr¨atzel,

―Quasi-solid-state dye sensitized solar cells with 1,3:2,4-di-O-benzylidene-D-

sorbitol derivatives as low molecular weight organic gelators,‖ Journal

ofMaterials Chemistry, 14, (12), 1905, 2004.

168. J.Wu, Z. Lan, J. Lin et al., A novel thermosetting gel electrolyte for stable

quasi-solid-state dye-sensitized solar cells, Advanced Materials, 19 (22),

4006, 2007.

169. A W. Kubo, T. Kitamura, K. Hanabusa, Y.Wada, and S. Yanagida, Quasi-

solid-state dye-sensitized solar cells using room temperature molten salts and

a low molecular weight gelator, Chemical Communications, 4,374, 2002.

170. Z. Lan, J. Wu, D.Wang, S. Hao, J. Lin, and Y. Huang, Quasisolid state dye-

sensitized solar cells based on gel polymer electrolyte with

poly(acrylonitrile-co-styrene)/NaI+I2, Solar Energy, 80,11,1483, 2006.

168 J. Wu, S. Hao, Z. Lan, A thermoplastic gel electrolyte for stable quasi-solid-

state dye-sensitized solar cells, Advanced Functional Materials, 17,15, 2645,

2007

169 Hart, J. N.; Menzies, D.; Cheng, Y.-B.; Simon, G. P.; Spiccia, L. C. R. Chim.,

Towards Optimization of Materials for Dye-Sensitized solar cells, 9, 622,

2006.

170 Hart, J. N.; Menzies, D.; Cheng, Y. B.; Simon, G. P.; Spiccia, L. Dye-

sensitized solar cell using natural dyes extracted from rosella and blue pea

flowers, Sol. Energy Mater. Sol. Cells ,91, 6, 2007.

171 P. J. F. Harris , Carbon Nanotubes and Related Structures – New Materials for

the Twenty-First Century , Cambridge University Express , Cambridge 2001 .

172 Carbon Nanotechnology: Recent Developments in Chemistry,Physics,

Materials Science and Device Applications (Ed: L. Dai ),Elsevier Science ,

London 2006 .

Page 18: Guidelines for PhD thesis - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/40981/14/14... · 2018. 7. 2. · the TiCl4 Treatment on Nanocrystalline TiO 2 Films in Dye-Sensitized

110

173 S. Iijima , Helical microtubules of graphitic carbon, Nature, 354 , 56, 1991.

174 A. Peigney , C. Laurent , E. Flahaut , R. R. Bacsa , A. Rousset , Specific

surface area of carbon nanotubes and bundles of carbon nanotubes, Carbon,

39 , 507, 2001

175 Lee, K.-M., ncorporating carbon nanotube in a low-temperature fabrication

process for dye-sensitized TiO2 solar cells, Solar Energy Materials & Solar

Cells, 92, 1628, 2008.

176 Lee, T.Y., P.S. Alegaonkar, and J.-B. Yoo, Fabrication of dye sensitized solar

cell using TiO2 coated carbon nano -tubes.,Thin Solid Films, 515, 5131, 2007.

177 Kongkanand, A., R.M. Domínguez, and P.V. Kamat, Single Wall Carbon

Nanotube Scaffolds for Photoelectrochemical Solar Cells. Capture and

Transport of Photogenerated Electron,Nano Lett., 7, 3, 676, 2007.

178 Sun L M, Song-R J, R. Vittal, Jiwon L, Kang J K, Rutile TiO2-modified

multi-wall carbon nanotubes in TiO2 film electrodes for dye-sensitized

solar cells,Journal of Applied Electrochemistry, 36, 1433, 2006.

179 Jang, S.-R., R. Vittal, and K.-J. Kim,. Incorporation of functionalized single-

wall carbon nanotubes in dye-sensitized TiO2 solar cells,Langmuir, 20, 22,

9807, 2004.

180 Novoselov, K.S., Two-dimensional atomic crystals, PNAS, 102, 10451, 2005.

181 Nair, R.R., Fine Structure Constant Defines Visual Transparency of Graphene,

Science, 320, 1308, 2008.

182 M. Y. Han, B. Ozyilmaz, Y. B. Zhang and P. Kim, Energy Band-Gap

Engineering of Graphene Nanoribbons, Phys. Rev.Lett., 98, 206805, 2007.

183 Y. Shao, J. Wang, H. Wu, J. Liu, I. A. Aksay and Y. Lin, Graphene Based

Electrochemical Sensors and Biosensors: A Review, Electroanalysis, 22,

1027, 2010.

184 G. Williams, B. Seger and P. V. Kamat, TiO2-graphene nanocomposites. UV-

assisted photocatalytic reduction of graphene oxide, ACS Nano, 2, 487, 2008.

Page 19: Guidelines for PhD thesis - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/40981/14/14... · 2018. 7. 2. · the TiCl4 Treatment on Nanocrystalline TiO 2 Films in Dye-Sensitized

111

185 J. Liu, J. Tang and J. J. Gooding, Strategies for chemical modification

of graphene and applications of chemically modified graphene, J. Mater.

Chem., 22, 12435, 2012.

186 Kim, S.R., M.K. Parveza, and M. Chhowalla, UV-reduction of graphene oxide

and its application as an interfacial layer to reduce the back-transport reactions

in dye-sensitized solar cells, Chem. Phys. Lett., 483, 1, 124, 2009.

187 Nailiang Y, Jin Z, Dan W ,Yongsheng C and Lei J, Two-Dimensional

Graphene Bridges Enhanced Photoinduced Charge Transport in Dye-

Sensitized Solar Cells,ACS Nano, 4, 2, 887, 2010.

188 Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphry-Baker, R.; Mueller, E.;

tzel, M. Conversion of Light to Electricity

by cis-XzBis( 2,2‘-bipyridyl-4,4‘-dicarboxylate)ruthenium(11) Charge-

Transfer Sensitizers (X = C1-, Br-, I-, CN-, and SCN-) on Nanocrystalline

Ti02 Electrodes, J. Am. Chem. Soc, 115, 6382, 1993

189 Koops, S. E.; O‘Regan, B. C.; Barnes, P. R. F.; Durrant, J. R. Parameters

Influencing the Efficiency of Electron Injection in Dye-Sensitized Solar Cells

J. Am. Chem. Soc., 131, 4808, 2009

190 Kuang, D.; Ito, S.; Wenger, B.; Klein, C.; Moser, J.-E.; Humphry-Baker, R.;

Zakeerudd tzel, M. High Molar Extinction Coefficient

Heteroleptic Ruthenium Complexes for Thin Film Dye-Sensitized Solar Cells,

J. Am. Chem. Soc. 128, 4146, 2006.

191 Cameron, P. J.; Peter, L. M. Characterization of Titanium Dioxide Blocking

Layers in Dye-Sensitized Nanocrystalline Solar Cells, J. Phys. Chem. B 107,

14394, 2003

192 Waita, S. M.; Aduda, B. O.; Mwabora, J. M.; Niklasson, G. A.;Granqvist, C.

G.; Boschloo, G. J. Electroanal. Chem., 637, 79, 2009.

193 Cameron, P. J.; Peter, L. M.; Hore, S. How Important is the Back Reaction of

Electrons via the Substrate in Dye-Sensitized Nanocrystalline Solar Cells?, J.

Phys. Chem. B 2004,109, 930, 2004

Page 20: Guidelines for PhD thesis - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/40981/14/14... · 2018. 7. 2. · the TiCl4 Treatment on Nanocrystalline TiO 2 Films in Dye-Sensitized

112

194 Wang, H.; Peter, L. M. A Comparison of Different Methods To Determine the

Electron Diffusion Length in Dye-Sensitized Solar Cells, J. Phys. Chem. C,

113, 18125, 2009.

195 Dunn, H. K.; Peter, L. M. Electron Lifetime in Dye-Sensitized Solar Cells:

Theory and Interpretation of Measurements, J. Phys. Chem. C, 113, 4726,

2009.

196 Dunn, H. K.; Westin, P.-O.; Staff, D. R.; Peter, L. M.; Walker,A. B.;

Boschloo, G.; Hagfeldt, A. Determination of the Electron Diffusion Length in

Dye-Sensitized Solar Cells by Substrate Contact Patterning,J. Phys. Chem. C,

115, 13932, 2011

197 Ramanathan, T.; Abdala, A. A.; Stankovich, S.; Dikin, D. A.;Herrera-Alonso,

M.; Piner, R. D.; Adamson, D. H.; Schniepp, H. C.;Chen, X.; Ruoff, R. S.;

Nguyen, S. T.; Aksay, I. A.; Prud‘Homme, R. K.;Brinson, L. C.

Functionalized graphene sheets for polymer nanocomposites, Nat.

Nanotechnol. 3, 327, 2008.

198 M. Y. Han, B. Ozyilmaz, Y. B. Zhang and P. Kim, Energy Band-Gap

Engineering of Graphene Nanoribbons, Phys. Rev. Lett., , 98, 206805, 2007.

199 G. Williams, B. Seger and P. V. Kamat, TiO2-Graphene Nanocomposites.

UV-Assisted Photocatalytic Reduction of Graphene Oxide, ACS Nano, 2,

1487, 2008.

200 J. Liu, J. Tang and J. J. Gooding, Strategies for chemical modification

of graphene and applications of chemically modified graphene, J. Mater.

Chem., 22, 12435, 2012.

201 J. Shen, B. Yan, M. Shi, H. Ma, N. Li and M. Ye, One step hydrothermal

synthesis of TiO2-reduced graphene oxide sheets, J. Mater. Chem., 21, 3415,

2011.

202 J. Shen, M. Shi, B. Yan, H. Ma, N. Li and M. Ye, Ionic liquid-assisted one-

step hydrothermal synthesis of TiO2-reduced graphene oxide composites,

Nano Res., 4, 795, 2011.

Page 21: Guidelines for PhD thesis - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/40981/14/14... · 2018. 7. 2. · the TiCl4 Treatment on Nanocrystalline TiO 2 Films in Dye-Sensitized

113

203 V. J. Babu, A. S. Nair, P. Zhu and S. Ramakrishna, Synthesis and

characterization of rice grains like Nitrogen-doped TiO2 nanostructures by

electrospinning–photocatalysis, Mater. Lett., 65, 3064, 2011.

204 C. Zhu, S. Guo, P. Wang, X. Li, Y. Fang, Y. Zhai and S. Dong, One-

pot, water-phase approach to high-

quality graphene/TiO2 compositenanosheets, Chem. Commun., 46, 7148,

2010.

205 Asha A. M, Ranjusha R, Daya K C, Arun T A, Antonio Licciulli2, Sanosh K.

P2. Shanti Kumar V Nair, A. Sreekumaran Nair, Avinash Balakrishnan, Opto-

electrical properties of molten salt synthesizedTiO2-graphene composites,

Science of Advance materials. (accepted article in press).

206 Yang, S.; Zhu, P.; Nair, A. S.; Ramakrishna, S. Rice grain-shaped

TiO2 mesostructures—synthesis, characterization and applications in dye-

sensitized solar cells and photocatalysis, J. Mater. Chem. 21, 6541, 2011.

207 K. Sujith, A. M. Asha, P. Anjali, N. Sivakumar, K.R.V. Subramanian, S. V.

Nair and A. Balakrishnan, Fabrication of highly porous conducting PANI-C

composite fiber mats via electrospinning, Mater.Lett., 67, 376, 2012.

208 A. M. Asha, K. Sujith, P. Anjali, N. Sivakumar, K. R.V. Subramanian, S. V.

Nair and A. Balakrishnan, Effect of surface nanomorphology and interfacial

galvanic coupling of PEDOT-Titanium counter electrodes on the stability of

dye-sensitized solar cell, J.Nanosci. Nanotechnol., 12, 1, 2012.

209 Chen, J. S.; Wang, Z.; Dong, X. C.; Chen, P.; Lou, X. W. D. Nanoscale 3,

2158, 2011.

210 G. Xiong, R. Shao, T. C. Droubay, A. G. Joly, K. M. Beck, S. A. Chambers,

W. P. Hess, Photoemission Electron Microscopy of TiO2 Anatase Films

Embedded with Rutile Nanocrystals, Adv. Funct. Mater. 17, 2133, 2007.

211 T. Ohsaka, F. Izumi, Y. Fujiki, Raman spectrum of anatase, TiO2, J. Raman

Spectrosc. 7, 321, 1978.

Page 22: Guidelines for PhD thesis - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/40981/14/14... · 2018. 7. 2. · the TiCl4 Treatment on Nanocrystalline TiO 2 Films in Dye-Sensitized

114

212 W. X. Xu, S. Zhu, X. C. Fu, Q. Chen, Influence of annealing atmosphere on

room temperature ferromagnetism of Mn-doped ZnO nanoparticles, Appl.

Surf. Sci. 148, 253, 1999.

213 B. S. Kong, J. Geng, H. T. Jung, Layer-by-layer

assembly of graphene and gold nanoparticles by vacuum filtration and

spontaneous reduction of gold ion, Chem. Commun. 2174, 2009.

214 D. Cahen, G. Hodes, M. Gr_tzel, J. F. Guillemoles, I. Riess, Nature of

Photovoltaic Action in Dye-Sensitized Solar Cells, J. Phys. Chem. B 104,

2053, 2000.

215 G. Zhu, L. K. Pan, T. Xu, Q. F. Zhao and Z. Sun, Cascade structure of

TiO2/ZnO/CdS film for quantum dot sensitized solar cells, J. Alloys Compd.,

509, 7814, 2011.

216 T. H. Tsai, S. C. Chiou and S. M. Chen, Enhancement of Dye-Sensitized

Solar Cells by using Graphene-TiO2 Composites as Photoelectrochemical

Working Electrode, Int. J. Electrochem. Sci., 6, 3333, 2011.

217 R.K. Sung, M.K. Parvez and V. Manish, UV-reduction of graphene oxide and

its application as an interfacial layer to reduce the back-transport reactions in

dye-sensitized solar cells, Chem. Phys. Lett. 483, 124, 2009.

218 Shkrob and M. C. Sauer, J. Phys. Chem. B, 108, 12497, 2004.N. Satoh, T.

Nakashima, K. Yamamoto, J. Am. Chem. Soc. 127, 13030, 2005.

219 L. Han, A. Fukui, Y. Chiba, A. Islam, R. Komiya, N. Fuke, N. Koide, R.

Yamanaka, M. Shimizu, Integrated dye-sensitized solar cell module with

conversion efficiency of 8.2%, Appl. Phys. Lett. 94, 013305, 2009.

220 Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, L. Han, Dye

sensitized solar cells with conversion efficiency of 11.1% Jpn J Appl. Phys. 4,

L638, 2006.

221 Q. Wang, J. E. Moser, M. Gr_tzel, Electrochemical Impedance Spectroscopic

Analysis of Dye –sensitized solar cells. J. Phys. Chem B 109, 14945, 2005.

222 X. Li, H. Lin, J. B. Li, X. X. Li, B. Cui, L. Z. Zhang, A Numerical Simulation

and Impedance Study of the Electron Transport and Recombination in Binder-

Page 23: Guidelines for PhD thesis - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/40981/14/14... · 2018. 7. 2. · the TiCl4 Treatment on Nanocrystalline TiO 2 Films in Dye-Sensitized

115

Free TiO2 Film for Flexible Dye-Sensitized Solar Cells, J. Phys. Chem. C 112,

13744, 2008.

223 P. J. Cameron, L. M. Peter, S. Hore, How Important is the Back Reaction of

Electrons via the Substrate in Dye-Sensitized Nanocrystalline Solar Cells?,J.

Phys. Chem. B 109, 930, 2005.

224 F. Pichot, B. A. Gregg, The Photovoltage-Determining Mechanism in Dye-

Sensitized Solar Cells, J. Phys. Chem. B 104, 6, 2000.

225 J. van de Lagemaat, N. G. Park, A. J. Frank, Influence of Electrical Potential

Distribution, Charge Transport, and Recombination on the Photopotential and

Photocurrent Conversion Efficiency of Dye-Sensitized Nanocrystalline

TiO2 Solar Cells:  A Study by Electrical Impedance and Optical Modulation

Techniques, J. Phys. Chem. B 104, 2044, 2000.

226 Hagfeldt, M. Gratzel, Light-Induced Redox Reactions in Nanocrystalline

Systems, Chem. Rev. 95, 49, 1995.

227 S. J. Roh, R. S. Mane, S. K. Min, W. J. Lee, C. D. Lokhande, S. H. Han,

Achievement of 4.51% conversion efficiency using ZnO recombination

barrier layer in TiO2 based dye-sensitized solar, Appl. Phys. Lett. 89, 253512,

2006.

228 S. Y. Huang, G. Schlichthorl, A. J. Nozik, M. Gr_tzel, A. J. Frank, Charge

Recombination in Dye-Sensitized Nanocrystalline TiO2 Solar Cells, J. Phys.

Chem. B, 101, 2576, 1997.

229 H. B. Choi, S. O. J. J. Ko, G. H. Gao, H. S. Kang, M. S. Kang, M. K.

Nazeeruddin, M. Gratzel, An Efficient Dye-Sensitized Solar Cell with an

Organic Sensitizer Encapsulated in a Cyclodextrin Cavity†, Angew. Chem.

121, 6052, 2009.

230 M. Adachi, M. Sakamoto, J. T. Jiu, Y. K. Ogata, S. Isoda, Determination of

Parameters of Electron Transport in Dye-Sensitized Solar Cells Using

Electrochemical Impedance Spectroscopy, J. Phys. Chem. B 110, 13872,

2006.

Page 24: Guidelines for PhD thesis - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/40981/14/14... · 2018. 7. 2. · the TiCl4 Treatment on Nanocrystalline TiO 2 Films in Dye-Sensitized

116

231 Juan Bisquert, Francisco Fabregat-Santiago, Iva´n Mora-Sero´, Germa`

Garcia-Belmonte, and Sixto Gime´nez, Electron Lifetime in Dye-Sensitized

Solar Cells: Theory and Interpretation of Measurements, J. Phys. Chem. C,

113, 40, 17279, 2009.

232 C. Liu , U. Burghaus , F. Besenbacher , Z. L. Wang , Preparation and

Characterization of Nanomaterials for Sustainable Energy Production, ACS

Nano, 4 , 5517, 2010.

233 T. Oekermann , D. Zhang , T. Yoshida , H. Minoura , Electron Transport and

Back Reaction in Nanocrystalline TiO2 Films Prepared by Hydrothermal

Crystallization, J. Phys. Chem. B, 108, 2227, 2004

234 P. S. Archana , R. Jose , C. Vijila , S. Ramakrishna , Improved Electron

Diffusion Coefficient in Electrospun TiO2 Nanowires, J. Phys. Chem. C, 113 ,

21538, 2009

235 C. Berger, Electronic Confinement and Coherence in Patterned Epitaxial

Graphene, Science, 312, 1191, 2006 .

236 M. L. Schmidt, U. Bach, B. R. Humphry, T. Horiuchi, H. Miura, S. Ito, S.

Uchida, M. Grätzel, Organic dye for Highly efficient solid state DSSC, Adv.

Mater. 17, 813, 2005.

237 S. Kim, J. K. Lee, S. O. Kang, J. Ko, J.-H. Yum, S. Fantacci, F. De Angelis,

D. Di Censo, M. K. Nazeeruddin, M. Grätzel, Molecular engineering of

organic sensitizers for solar cell applications., J. Am. Chem. Soc. 128, 16701,

2006.

238 R. Zhu, C. Y. Jiang, B. Liu M. Zukalová, A. Zukal, L. Kavan, M. K.

Nazeeruddin, P. Liska, M. Grätzel, Design of Novel Hierarchical TiO2

Photoanode Material for Optimum Performance in Dye-Sensitized Solar Cell

Nano Lett. 5, 1789, 2005.

239 J. R. Jennings, L. M. Peter, A Reappraisal of the Electron Diffusion Length in

Solid-State Dye-Sensitized Solar Cells, J. Phys. Chem. C, 111, 16100, 2007.

Page 25: Guidelines for PhD thesis - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/40981/14/14... · 2018. 7. 2. · the TiCl4 Treatment on Nanocrystalline TiO 2 Films in Dye-Sensitized

117

240 K. Zhu, T. B. Vinzant, N. R. Neale, A. J. Frank, Enhanced Charge-Collection

Efficiencies and Light Scattering in Dye-Sensitized Solar Cells Using

Oriented TiO2 Nanotube Arrays, Nano Lett. 7, 3739, 2007.

241 J. R. Jennings, A. Ghicov, L. M. Peter, P. Schmuki, A. B. Walker, Dye-

sensitized solar cells based on oriented TiO2 nanotube arrays: transport,

trapping, and transfer of electrons, J. Am. Chem. Soc. 130, 2008.

242 S. H. Kang, S. H. Choi, M. S. Kang, J. Y. Kim, H. S. Kim, T. Hyeon, Y. E.

Sung, Nanosize copper encapsulated carbon thin films on a dye-sensitized

solar cell cathode, Adv. Mater. 20, 54, 2008.

243 Z. Miao, D. Xu, J. Ouyang, G. Guo, X. Zhao, Y. Tang, Electrochemically

Induced Sol−Gel Preparation of Single-Crystalline TiO2 Nanowires, Nano

Lett. 2, 717, 2002.

244 J. J. Wu, C. J. Yu, J. Phys. Chem. B 108, 3377, 2004.

245 Y. W. Jun, M. F. Casula, J. H. Sim, S. Y. Kim, J. Cheon, A. P. Alivisatos,

Surfactant-Assisted Elimination of a High Energy Facet as a Means of

Controlling the Shapes of TiO2 Nanocrystals, J. Am. Chem. Soc. 125, 15981,

2003.

246 D. Li, Y. Xia, One-Dimensional Nanostructures: Synthesis, Characterization,

and Applications, Nano Lett. 3, 555, 2003.

247 Kumar, R. Jose, K. Fujihara, J. Wang, S. Ramakrishna, Structural and optical

properties of electrospun TiO2 nanofibers,, Chem. Mater. 19, 6536, 2007.

248 Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Chem. Rev. 110, 6595,

2010.

249 GS Anjusree, A. Sreekumaran Nair, Shantikumar V Nair and Sajini

Vadukumpully, One-pot hydrothermal synthesis of TiO2/graphene

nanocomposites for enhanced visible photocatalysis and photovoltaics, RSC

Adv., 2013.

Page 26: Guidelines for PhD thesis - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/40981/14/14... · 2018. 7. 2. · the TiCl4 Treatment on Nanocrystalline TiO 2 Films in Dye-Sensitized

118

250 K. Sujith, A. M. Asha, P. Anjali, N. Sivakumar, K. R.V. Subramanian, S. V.

Nair and A. Balakrishnan, Fabrication of highly porous conducting PANI-C

composite fiber mats via electrospinning, Mater. Lett., 67, 376, 2012.

251 A. M. Asha, K. Sujith, P. Anjali, N. Sivakumar, K. R.V. Subramanian, S. V.

Nair and A. Balakrishnan, Effect of surface nanomorphology and interfacial

galvanic coupling of PEDOT-Titanium counter electrodes on the stability of

dye-sensitized solar cell , J. Nanosci. Nanotechnol., 12, 1, 2012.

252 Chen, H. Qu, J. Zhu, Z. Luo, A. Khasanov, A.S. Kucknoor, N.

Haldolaarachchige, D. P. Young, S. Wei and Z. Guo, Interfacial Polymerized

Polyaniline/Graphite Oxide Composites toward Electrochemical Energy

Storage, Polymer, 53, 4501, 2012.

253 Lau and Y. Mi, A study of blending and complexation of poly(acrylic

acid)/poly(vinyl pyrrolidone), Polymer, 43, 823, 2002.

254 Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Chem. Rev. 110, 6595,

2010.

255 Kumar, R. Jose, K. Fujihara, J. Wang, S. Ramakrishna, Structural and optical

properties of electrospun TiO2 nanofibers, Chem. Mater. 19, 6536, 2007.

256 J. Overstone, K. Yanagisawa, Chem. Mater. 11, 2770, 1999.

257 Yoon, Y. W. Son and H. Cheong, Negative thermal expansion coefficient of

graphene measured by Raman spectroscopy, Nano Lett., 11, 3227, 2011.

258 R. Hummer, P. J. Heaney and J. E. Post, Thermal expansion of anatase and

rutile between 300 and 575 K using synchrotron powder Xray diffraction,

Powder Diffr., 22, 352, 2007.

259 S. Liu, B. Liu, K. Nakata, T. Ochiai, T. Murakami and A. Fujishima, J.

Nanomater., 1, 2012.

260 Mikrajuddin and R. Khairurrijal, A Simple Method for Determining Surface

Porosity Based on SEM Images Using OriginPro Software, Indonesian J.

Phys., 20, 37, 2009.

Page 27: Guidelines for PhD thesis - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/40981/14/14... · 2018. 7. 2. · the TiCl4 Treatment on Nanocrystalline TiO 2 Films in Dye-Sensitized

119

261 W. Nuansing , S. Ninmuang, W. Jarernboon, S. Maensiri, S. Seraphin, Low-

Cost Fabrication of TiO2 Nanorod Photoelectrode for Dye-sensitized Solar

Cell Application, Mat. Sci. Eng. B 131, 147, 2006.

262 Chen, J. S.; Wang, Z.; Dong, X. C.; Chen, P.; Lou, X. W. D., Graphene-

wrapped TiO2 hollow structures with enhanced lithium storage capabilities,

Nanoscale, 3, 2158, 2011.

263 Xiang, Q.; Yu, J.; Jaroniec, M. Enhanced photocatalytic H2-production

activity of graphene-modifiedtitania nanosheets,Nanoscale, 3, 3670, 2011.

264 J. G. Yu, W. G. Wang and B. Cheng, Synthesis and Enhanced Photocatalytic

Activity of a Hierarchical Porous Flowerlike p–n Junction

NiO/TiO2 Photocatalyst, Chem.–Asian J., 5, 2499, 2010.

265 Q. J. Xiang, K. L. Lv and J. G. Yu, Pivotal role of fluorine in enhanced

photocatalytic activity of anatase TiO2 nanosheets with dominant (0 0 1)

facets for the photocatalytic degradation of acetone in air, Appl. Catal., B, 96,

557, 2010.

266 Q. Wang, J. E. Moser, M. Gr_tzel, Electrochemical Impedance Spectroscopic

Analysis of Dye-Sensitized Solar Cells,J. Phys. Chem. B 109, 14945, 2005.

267 X. Li, H. Lin, J. B. Li, X. X. Li, B. Cui, L. Z. Zhang, A Numerical Simulation

and Impedance Study of the Electron Transport and Recombination in Binder-

Free TiO2 Film for Flexible Dye-Sensitized Solar Cells, J. Phys. Chem. C,

112, 13744, 2008.

268 P. J. Cameron, L. M. Peter, S. Hore, How Important is the Back Reaction of

Electrons via the Substrate in Dye-Sensitized Nanocrystalline Solar Cells?,J.

Phys. Chem. B, 109, 930, 2005.

269 X. Cheng, H. Liu, X. Yu, Q. Chen, J. Li, P. Wang, A. Umar and Qiang Wang,

The Facile Synthesis of SnSb/Graphene Composites and Their Enhanced

Electrochemical Performance for

Lithium-Ion Batteries , Sci. Adv. Mater. 5, 1563, 2013.

Page 28: Guidelines for PhD thesis - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/40981/14/14... · 2018. 7. 2. · the TiCl4 Treatment on Nanocrystalline TiO 2 Films in Dye-Sensitized

120

270 S. Sun, L. Gao, and Y. Liu, High quality solution processed carbon nanotube

transistors assembled by dielectrophoresis, Appl. Phys. Lett. 96, 083110,

2010.

271 O‘regan and M. Gra¨tzel , A low-cost, high-efficiency solar cell based on dye-

sensitized colloidal TiO2 films, Nature. 353, 737, 1991.

272 Y.X. Zhang, B. Gao, G. Li Puma, A.K. Ray and H.C. Zeng, Self-Assembled

Au/TiO2/CNTs Ternary Nanocomposites for Photocatalytic Applications, Sci.

Adv. Mater. 503, 2, 2010.

273 J. Shen, B. Yan, M. Shi, H. Ma, N. Li and M. Ye, One step hydrothermal

synthesis of TiO2-reduced graphene oxide sheets,J. Mater. Chem., 21, 3415,

2011.

274 J. Shen, M. Shi, B. Yan, H. Ma, N. Li and M. Ye, Ionic liquid-assisted one-

step hydrothermal synthesis of TiO2-reduced graphene oxide

composites,Nano Res., 4, 795, 2011.

275 V. J. Babu, A. S. Nair, P. Zhu and S. Ramakrishna, Synthesis and

characterization of rice grains like Nitrogen-doped TiO2 nanostructures by

electrospinning photocatalysis. Mater. Lett., 65, 3064, 201.

276 Zhu, S. Guo, P. Wang, X. Li, Y. Fang, Y. Zhai and S. Dong, One-pot water –

phase, approach to high quality graphene/TiO2 composite nansheets., Chem.

Commun., 46, 7148, 2010.

277 K. Zhou, Y. Zhu, X. Yang, X. Jiang and C. Li, Preparation of graphene-

TiO2 composites with enhanced photocatalytic activity, New J. Chem., 35,

353, 2011.

278 K. Zhu, T. B. Vinzant, N. R. Neale, A. J. Frank, Removing Structural

Disorder from Oriented TiO2 Nanotube Arrays:  Reducing the

Dimensionality of Transport and Recombination in Dye-Sensitized Solar

Cells, Nano Lett. 7, 3739, 2007.

279 J. R. Jennings, A. Ghicov, L. M. Peter, P. Schmuki, A. B. Walker, Oxidative

Pd(II)-Catalyzed C−H Bond Amination to Carbazole at Ambient

Page 29: Guidelines for PhD thesis - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/40981/14/14... · 2018. 7. 2. · the TiCl4 Treatment on Nanocrystalline TiO 2 Films in Dye-Sensitized

121

Temperature, J. Am. Chem. Soc. 130, 2008.

280 S. H. Kang, S. H. Choi, M. S. Kang, J. Y. Kim, H. S. Kim, T. Hyeon, Y. E.

Sung, Nanorod-Based Dye-Sensitized Solar Cells with Improved Charge

Collection Efficiency , Adv. Mater. 20, 54, 2008.

281 Li, N.; Liu, G.; Zhen, C.; Li, F.; Zhang, L.; Cheng, H. M. Battery Performance

and Photocatalytic Activity of Mesoporous Anatase

TiO2 Nanospheres/Graphene Composites by Template-Free Self-Assembly,

Adv. Funct. Mater. 21, 1717, 2011.

282 Asha A. M, Praveen,. Shanti Kumar V Nair, A. Sreekumaran Nair, Avinash

Balakrishnan, Electrospun continuous nanofibers based on TiO2-ZnO-

Graphene composite, RSC Advances, 3, 25312,2013.

283 K. Sujith, A. M. Asha, P. Anjali, N. Sivakumar, K. R.V. Subramanian, S. V.

Nair and A. Balakrishnan, Fabrication of highly porous conducting PANI-C

composite fiber mats via electrospinning, Mater. Lett., 67, 376, 2012

284 M. Asha, K. Sujith, P. Anjali, N. Sivakumar, K. R.V. Subramanian, S. V. Nair

and A. Balakrishnan, Effect of surface nanomorphology and interfacial

galvanic coupling of PEDOT-Titanium counter electrodes on the stability of

dye-sensitized solar cell, J. Nanosci. Nanotechnol., 12, 1, 2012.

285 Chen, H. Qu, J. Zhu, Z. Luo, A. Khasanov, A.S. Kucknoor, N.

Haldolaarachchige, D. P. Young, S. Wei and Z. Guo, Polymer, 53, 4501,

2012.

286 Lau and Y. Mi, "A study of blending and complexation of poly (acrylic

acid)/poly (vinyl pyrrolidone), Polymer, 43, 823, 2002

287 Yoon, Y. W. Son and H. Cheong, Negative thermal expansion coefficient

thermal expansion coefficient of graphene measured by Raman spectroscopy,

Nano Lett., 11, 3227, 2011.

288 R. Hummer, P. J. Heaney and J. E. Post, Thermal expansion of anatase and

rutile between 300 and 575 K using synchrotron powder Xray diffraction.

Powder Diffr., 22, 352, 2007.

Page 30: Guidelines for PhD thesis - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/40981/14/14... · 2018. 7. 2. · the TiCl4 Treatment on Nanocrystalline TiO 2 Films in Dye-Sensitized

122

289 M. Wang, C. Huang, Y. Cao, Q. Yu, Z. Deng, Y. Liu, Z. Huang, J. Huang,

Q. Huang, W. Guo and J. Liang, Synthesis and characterization of titanium-

containing graphite-like carbon films with low internal stress and superior

tribological properties, J. Phys. D: Appl. Phys., 42, 2004.

290 Chen, J. S.; Wang, Z.; Dong, X. C.; Chen, P.; Lou, X. W. D. Graphene-

wrapped TiO2 hollow structures with enhanced lithium storage capabilities,

Nanoscale, 3, 2158, 2011.

291 Asha A. M, Praveen,. Shanti Kumar V Nair, A. Sreekumaran Nair, Avinash

Balakrishnan, Electrospun continuous nanofibers based on TiO2-ZnO-

Graphene composite, RSC Advances, ,3, 25312,2013.

292 K. Keis, C. Bauer, G. Boschloo, et al., Journal of Photochemistry and

Photobiology A,148, 1–3, 57, 2002.

293 D. W. Bahnemann, Durability of Ag-T i O2 Photocatalysts Assessed for the

Degradation of Dichloroacetic Acid, Israel Journal of Chemistry, vol. 33, pp.

115, 1993.

294 A. Hagfeldt, M. Gr_tzel, Light-Induced Redox Reactions in NanoCrystalline

Systems, Chem. Rev., 95, 49, 1995

295 Peng, X.; Tang, F.; Copple, A. Engineering the work function of armchair

graphene nanoribbons using strain and functional species: A first principles

study. J. Phys. Condens. Matter, 24, 075501, 2012

296 Jiang, J.; Krauss, T.D.; Brus, L. Electrostatic force microscopy

characterization of trioctylphosphine oxide self-assembled monolayers on

graphite. J. Phys. Chem. B, 104, 11936, 2000.

297 Shin, H.J.; Choi, W.M.; Choi, D.; Han, G.H. Control of electronic structure of

graphene by various dopants and their effects on a nanogenerator. J. Am.

Chem. Soc., 132, 15603, 2010.

298 Nduwimana, A.; Wang, X.-Q. Energy gaps in supramolecular functionalized

graphene nanoribbons. ACS Nano 6, 101, 2012

Page 31: Guidelines for PhD thesis - INFLIBNETshodhganga.inflibnet.ac.in/bitstream/10603/40981/14/14... · 2018. 7. 2. · the TiCl4 Treatment on Nanocrystalline TiO 2 Films in Dye-Sensitized

123

299 Williams, M.D.; Samarakoon, D.K.; Hessc, D.W.; Wang, X.-Q. Tunable

bands in biased multilayer epitaxial grapheme. Nanoscale, 4, 2962, 2012

300 S. J. Roh, R. S. Mane, S. K. Min, W. J. Lee, C. D. Lokhande, S. H. Han,

Achievement of 4.51% conversion efficiency using ZnO recombination

barrier layer in based dye-sensitized solar cells,Appl. Phys. Lett., 89, 253512,

2006

301 S. Y. Huang, G. Schlichthorl, A. J. Nozik, M. Gr_tzel, A. J. Frank, Charge

recombination in dye-sensitized nanocrystalline TiO2 solar cells, J. Phys.

Chem. B, 101, 2576, 1997.

302 H. B. Choi, S. O. J. J. Ko, G. H. Gao, H. S. Kang, M. S. Kang, M. K.

Nazeeruddin, M. Gr_tzel, Angew. Chem, 121, 6052, 2009

303 M. Adachi, M. Sakamoto, J. T. Jiu, Y. K. Ogata, S. Isoda, Dye-sensitized

solar cells based on a single- crystalline TiO2 nanorod film. J. Phys. Chem. B,

110, 13872, 2006.

304 J. Bisquert, Impedance spectroscopy of solid-state and photoelectrochemical

solar cellsemphasizing negative capacitance behavior,Phys. Chem. Chem.

Phys., 5, 5360, 2003.

305 X. Cheng, H. Liu, X. Yu, Q. Chen, J. Li, P. Wang, A. Umar and Qiang Wang,

, Preparation of highly ordered TiO2 nanotube array photoelectrode for the

photoelectrocatalytic degradation of methyl blue: activity and mechanism

study, Sci. Adv Mater. 5, 1563, 2013

306 S. Sun, L. Gao, and Y. Liu, Improved Energy Conversion Efficiency of

TiO2 Thin Films Modified with Ta2O5 in Dye-Sensitized Solar Cells, Appl.

Phys. Lett. 96, 083110, 2010

307 B. O‘regan and M. Gra¨tzel , A low-cost, high-efficiency solar cell based on

dye-sensitized colloidal TiO2 films, Nature. 353, 737, 1991.

308 Y.X. Zhang, B. Gao, G. Li Puma, A.K. Ray and H.C. Zeng, Self-Assembled

Au/TiO2/CNTs Ternary Nanocomposites for Photocatalytic Applications, Sci.

Adv. Mater. 503, 2, 2010.