ground water remedial bedrock characterizationcharacterization needs for a leaky, multiunit bedrock...

27
Ground Water Remedial Investigation Bedrock Characterization Andrew Michalski Michalski and Associates, Inc.

Upload: others

Post on 10-Jul-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Ground Water Remedial Bedrock CharacterizationCharacterization Needs FOR A LEAKY, MULTIUNIT BEDROCK 1. Identify major transmissive bedding fractures (aquifer units) and the intervening

Ground Water Remedial InvestigationBedrock Characterization

Andrew MichalskiMichalski and Associates, Inc.

Page 2: Ground Water Remedial Bedrock CharacterizationCharacterization Needs FOR A LEAKY, MULTIUNIT BEDROCK 1. Identify major transmissive bedding fractures (aquifer units) and the intervening

WHAT’S INCLUDED IN THE BEDROCKTECHNICAL GUIDANCE?

CONCEPTUALGW FLOW MODELS

FOR BEDROCKSITES

BEDROCKCHARACTERIZATION

TOOLS

- POROUS MEDIUM

- DISCRETE FRACTURE

- HYBRID MODELS

FLOW-SENSITIVE CHARACTERIZATION TOOLS ARE NEEDED.

2

Page 3: Ground Water Remedial Bedrock CharacterizationCharacterization Needs FOR A LEAKY, MULTIUNIT BEDROCK 1. Identify major transmissive bedding fractures (aquifer units) and the intervening

GENERIC CONCEPTUAL MODELFOR THE NEWARK BASIN & SEDIMENTARY BEDROCK SITES

• Few dipping bedding fractures with larger apertures act as discrete aquifers (high T, low S) and preferential flow pathways.

• Such aquifer units occur at uneven intervals and tend to lose their aquifer properties updip and downdip of their prime extent areas.

3

LMAS MODEL WITH WEATHERED ZONE & SATURATED OVERBURDEN(Michalski, 1990)

Page 4: Ground Water Remedial Bedrock CharacterizationCharacterization Needs FOR A LEAKY, MULTIUNIT BEDROCK 1. Identify major transmissive bedding fractures (aquifer units) and the intervening

GENERIC CONCEPTUAL MODELFOR THE NEWARK BASIN & SEDIMENTARY BEDROCK SITES

• The gw flow is bedding-parallel, with prevailing flow direction along the strike of bedding;

• Sub-vertical joints provide pathways for leakage between the bedding fractures. Note: Thick aquitard units have complex structure and flow;.

4

Page 5: Ground Water Remedial Bedrock CharacterizationCharacterization Needs FOR A LEAKY, MULTIUNIT BEDROCK 1. Identify major transmissive bedding fractures (aquifer units) and the intervening

GENERIC CONCEPTUAL MODELFOR THE NEWARK BASIN & SEDIMENTARY BEDROCK SITES

• The weathered bedrock zone typically exhibit higher porosity/storage (S) but reduced permeability (K). Up‐dip extensions of the bedding fractures into the weathered zone connect this zone and the overburden (if present) with the multiunit bedrock;  

5

Page 6: Ground Water Remedial Bedrock CharacterizationCharacterization Needs FOR A LEAKY, MULTIUNIT BEDROCK 1. Identify major transmissive bedding fractures (aquifer units) and the intervening

GENERIC CONCEPTUAL MODELFOR THE NEWARK BASIN & SEDIMENTARY BEDROCK SITES

THE TWO DEEPER WELLS, COMPLETED TO THE SAME DEPTH, ARE OPEN TO DIFFERENT DIPPING AQUIFER UNITS. INCORRECT GW FLOW DIRECTION IS OBTAINED FROM WATER LEVELS TAKEN IN SUCH WELLS.

ONLY WELLS COMPLETED INTO THE SAME AQUIFER UNIT SHOULD BE USED TO DETERMINE HORIZONTAL GW FLOW DIRECTION.

6

Page 7: Ground Water Remedial Bedrock CharacterizationCharacterization Needs FOR A LEAKY, MULTIUNIT BEDROCK 1. Identify major transmissive bedding fractures (aquifer units) and the intervening

Characterization NeedsFOR A LEAKY, MULTIUNIT BEDROCK

1. Identify major transmissive bedding fractures (aquifer units) and the intervening aquitards.

2. For each aquifer unit of interest, determine:

• Hydraulic heads (water levels, vertical and horizontal gradients);

• Contaminant concentrations (delineation), and• Hydraulic parameters T and -if needed - S.

3. Assess flow disturbance caused by nearby supply wells and open-hole segments of existing monitoring wells.

7

Page 8: Ground Water Remedial Bedrock CharacterizationCharacterization Needs FOR A LEAKY, MULTIUNIT BEDROCK 1. Identify major transmissive bedding fractures (aquifer units) and the intervening

HOW TO IDENTIFY TRANSMISSIVE BEDROCK FRACTURES?

OUT OF HUNDREDS OF FRACTURES OBSERVED IN CORES OR OUTCROPS – VERY FEW ARE HYDRAULICALLY ACTIVE, SO VISUAL METHODS WILL NOT SUFFICE.

INSTALLATION OF TEMPORARY TEST HOLES (TTH) WITH LONG OPEN HOLES CREATES HYDRAULIC SHORT-CIRCUITING OF TRANSMISSIVE FRACTURES. IT REVEALS LOCATIONS OF SUCH FRACTURES AND OFFERS THE MOST RELIABLE MEANS OF THEIR IDENTIFICATION AND CHARACTERIZATION.

8

Page 9: Ground Water Remedial Bedrock CharacterizationCharacterization Needs FOR A LEAKY, MULTIUNIT BEDROCK 1. Identify major transmissive bedding fractures (aquifer units) and the intervening

HYDRAULICS OF VERTICAL CROSS-FLOWSWITHIN A LONG OPEN HOLE

Consider two transmissive bedding fractures are cross-connected by drilling a long open hole.

s

s

ss

wrRln

sT2Q ii

i

wrRln

sT2Q oo

o

oi

ooiic TT

THTHH

i

o

o

i

TT

ss

OUTIN QQ

cii HHs

coo HHs

9

SOURCE:MICHALSKI & KLEPP, 1990

Page 10: Ground Water Remedial Bedrock CharacterizationCharacterization Needs FOR A LEAKY, MULTIUNIT BEDROCK 1. Identify major transmissive bedding fractures (aquifer units) and the intervening

TESTING MENU FOR TTHs

10

• BOREHOLE GEOPHYSICS• VERTICAL FLOW MEASUREMENTS• DEPTH-DISCRETE SAMPLING• PACKER TESTING

Best results in conjunction with air‐rotary drilling of TTHs (observation of dust suppression depth, water producing fractures, logging of cuttings, penetration rate, etc.)

Wet drilling methods –use of foreign water ‐may impact the testing results. 

Page 11: Ground Water Remedial Bedrock CharacterizationCharacterization Needs FOR A LEAKY, MULTIUNIT BEDROCK 1. Identify major transmissive bedding fractures (aquifer units) and the intervening

3‐14Williams, J. 2002, Application of Advanced Geophysical Logging Methods in the Characterization of a Fractured‐Sedimentary Bedrock Aquifer. USGS Water‐Resources Investigations Report 00‐4083.

SOURCE: WILLIAMS, 2002; Fig 6

BOREHOLE GEOPHYSICS: BOREHOLE IMAGING

SUBSTITUTE FOR CORING

FRACTURE ORIENTATION

AID IN CORELATION

11

Page 12: Ground Water Remedial Bedrock CharacterizationCharacterization Needs FOR A LEAKY, MULTIUNIT BEDROCK 1. Identify major transmissive bedding fractures (aquifer units) and the intervening

BOREHOLE GEOPHYSICS: FLUID EC, T & CALIPER LOGS

Indentations on fluid EC and T logs point to possible locations of hydraulically active fractures.

Enlarged hole diameter on the caliper logs identifies weak or fractured strata. Relevant for flowmeter data and the placement of packers.

12

Page 13: Ground Water Remedial Bedrock CharacterizationCharacterization Needs FOR A LEAKY, MULTIUNIT BEDROCK 1. Identify major transmissive bedding fractures (aquifer units) and the intervening
Page 14: Ground Water Remedial Bedrock CharacterizationCharacterization Needs FOR A LEAKY, MULTIUNIT BEDROCK 1. Identify major transmissive bedding fractures (aquifer units) and the intervening

BOREHOLE GEOPHYSICS: GAMMA LOG

USEFUL FOR STRATIGRAPHIC CORRELATIONS BETWEEN TTHsAND STRIKE & DIP DETERMINATION

STANDARD LOGGING SUIT ALSO INCLUDE SP AND RESISTIVITY LOGS.

14

Page 15: Ground Water Remedial Bedrock CharacterizationCharacterization Needs FOR A LEAKY, MULTIUNIT BEDROCK 1. Identify major transmissive bedding fractures (aquifer units) and the intervening

VERTICAL FLOW MEASUREMENTSCritical Characterization Aspect

E‐04

E‐03

E‐02

E‐01

E‐00

E+01

E+02 AMBIENT FLOW

gpm

HRHP Flowmeter Range

Range Measured by Salt Tracing in Open Holes in Newark Basin  

FLOWMETERSNeed to use a high‐resolution heat‐pulse(HRHP) flowmeter with a flow diverter (shroud) to achieve the claimed lower measurement range of 0.02 gpm.  Some commercial flowmeters measure flows >0.4 gpm, and would not detect vertical flows in the majority of open holes.

SALT TRACINGDescribed in APPENDIX B

FLOWMETERS MEASURE INSTANT FLOW AT DISCRETE LOCATIONS WITHIN AN OPEN HOLEWHILE SALT TRACING PROVIDES  CONTINUOS FLOW  MEASUREMENTS OVER LONGER TIMES.  

15

Page 16: Ground Water Remedial Bedrock CharacterizationCharacterization Needs FOR A LEAKY, MULTIUNIT BEDROCK 1. Identify major transmissive bedding fractures (aquifer units) and the intervening

VERTICAL FLOW MEASUREMENT VIA SALT TRACINGExample of Salt Tracing Test Record and Interpretation

• Salt tracer solution was injected at 47 ft, and its first image was obtained  with a downhole EC probe 10 min later (dark blue shape ).

• A series of subsequent  tracer images at various  elapsed times shown reveals a downward tracer migration, and two major fracture inflows ~ 100 ft.

• Plotting the series of tracer images on one graph helps in tracer velocity calculations (shown in pencil).

• Flow = Velocity x Unit cross‐sectional  storage

16

Page 17: Ground Water Remedial Bedrock CharacterizationCharacterization Needs FOR A LEAKY, MULTIUNIT BEDROCK 1. Identify major transmissive bedding fractures (aquifer units) and the intervening

DEPTH‐DISCRETE SAMPLING 

1. COLLECT GRAB GW SAMPLES IN THE TTH ABOVE AND BELOW EACH INFLOW FRACTURE – NOT AT THE FRACTURE (MIXING ZONE);

2. CALCULATE CONTAMINANT CONCENTRATION IN EACH FRACTURE, BASED ON MEASURED FLOWS AND CONCENTRATIONS IN THE GRAB SAMPLES ABOVE AND BELOW.

Discussed in APPENDIX C

POWERFULL SCREENING TOOL TO QUICKLY ASSES VERTICAL CONTAMINANT DISTRIBUTION, IDENTIFY THE MOST CONTAMINATED FRACTURE AND CROSS-FLOW IMPACTS ON EXIT FRACTURE(S).

17

Page 18: Ground Water Remedial Bedrock CharacterizationCharacterization Needs FOR A LEAKY, MULTIUNIT BEDROCK 1. Identify major transmissive bedding fractures (aquifer units) and the intervening

AMBIENT FLOW SAMPLE NO. CT CF PCE TCE 1,1DCEgpm and Depth

0.20

PACKER 57'‐67' 25 2.3 0.38J 3.4 0.35J

0.18 GW‐04 160 14 ND(10) 14 ND(10)70'

PACKER 90'‐100' 163 15.9 1.2J 8.9 1.3J UNIT BCalculated Conc. 182 16 15

0.027 GW‐03 38 3.2 1.3 11 1.1110'

PACKER 115'‐125' 19 2 2 17 1.4 UNIT CCalculated Conc. 55 4 2 13

0.01 GW‐02 9.8 1.1 0.55J 6.9 ND(1)140'

PACKER 153'‐163' NS NS NS NS NS

GW‐01 10 1.2 0.39J 6.2 ND(1)165'

CONTAMINANT CONCENTRTIONS

BOC @ 22.4

40' fracture

47' fracture

62' fracture

94' fracture

120' fracture

158' Fracture

EXAMPLE OF MEASURED AMBIENT FLOWS AND DEPTH‐DISCRETE SAMPLING RESULTS.

ALSO SHOWN IS COMPARISON OF THE CALCULATED CONCENTRATIONS WITH SUBSEQUENT PACKER SAMPLING ANALYTICAL RESULTS

18

Page 19: Ground Water Remedial Bedrock CharacterizationCharacterization Needs FOR A LEAKY, MULTIUNIT BEDROCK 1. Identify major transmissive bedding fractures (aquifer units) and the intervening

PACKER TESTING

CAPABILITIES:

• PACKER SAMPLING• VERTICAL HEAD PROFILING• TRANSMISSIVITY DETERMINATION• LEAKAGE ASSESSMENT• PUMPING TESTS WITH EXISTING WELLS

USED AS OBSERVATION WELLS

UTILIZE ALL CHARACTERIZATION CAPABILITIES- NOT ONLY ROUTINE PACKER SAMPLING.

Packer tests discussed in APPENDIX D.

19

Page 20: Ground Water Remedial Bedrock CharacterizationCharacterization Needs FOR A LEAKY, MULTIUNIT BEDROCK 1. Identify major transmissive bedding fractures (aquifer units) and the intervening

-12

-10

-8

-6

-4

-2

0

2

4

6

8

10

12

10:10

10:13

10:15

10:18

10:20

10:23

10:25

10:28

10:30

10:33

10:35

10:38

10:40

10:43

10:45

10:48

10:50

10:53

10:55

10:58

Hyd

raul

ic H

ead

Cha

nge,

ft

PACKER TEST - Z3 (65'-75')

Above TZ Test Zone (TZ) Below TZ

P

Pumping @ 1.1gpmPackers inflated

PACKER TESTING RECORD EXAMPLE FOR A TEST ZONE STRADDLING A MINOR BEDDING FRACTURE

20

T – TransmissivityQ – Pumping Rates - DrawdownL – Test Interval Lengthr – Hole Radius

s

Hea

d

Page 21: Ground Water Remedial Bedrock CharacterizationCharacterization Needs FOR A LEAKY, MULTIUNIT BEDROCK 1. Identify major transmissive bedding fractures (aquifer units) and the intervening

▼HIGHER

INFLOW

INFLOW

INFLOW

EXIT

    HYDRAULIC HEADLOWER

PACKER TESTING

VERTICAL HEAD PROFILE FROM PACKER TESTS CONDUCTED IN A TTH

21

Page 22: Ground Water Remedial Bedrock CharacterizationCharacterization Needs FOR A LEAKY, MULTIUNIT BEDROCK 1. Identify major transmissive bedding fractures (aquifer units) and the intervening

USE OF PACKER TESTING FOR INTERWELL PUMPING TESTSRESPONSE OF OBSERVATION WELLS IN CLUSTERS “A” (730 ft away)

& “B” (700 ft away) DURING A 24-HOUR PERIOD THAT INCLUDED PUMPING OF PACKER-ISOLATED BEDDING FRACTURE @ 149 ft IN A TTH

‐5

‐4

‐3

‐2

‐1

0

1

2

3

4

5

0:00

1:00

2:00

3:00

4:00

5:00

6:00

7:00

8:00

9:00

10:00

11:00

12:00

13:00

14:00

15:00

16:00

17:00

18:00

19:00

20:00

21:00

22:00

23:00

0:00WAT

ER LEV

EL ELEVA

TION, feet m

sl

MW‐A1 (730 ft) MW‐A2 (730 ft) MW‐A3 (730 ft)MW‐B1 (700 ft) MW‐B2 (700 ft) MW‐B3 (700 ft)

PUMPING PERIOD144'‐154' INTERVAL @4 GPM

PUMPING TEST ABORTED

22

Page 23: Ground Water Remedial Bedrock CharacterizationCharacterization Needs FOR A LEAKY, MULTIUNIT BEDROCK 1. Identify major transmissive bedding fractures (aquifer units) and the intervening

PACKER TESTING – INTERWELL PUMPING TESTSRESPONSE OF OBS. WELL MW-B2 TO PACKER TEST PUMPING

ANALYZED ON DRAWDOWN v.LOG OF TIME GRAPH

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

1.20

1.30

1.40

1.50

1 10 100

Drawdo

wn, ft

Time Since Pumping Started, min

q = 4 gpmΔs = 3.6 ftT = 264*4/3.6 = 290gpd/ftt0 = 25 minr = 700 ftS = 1.8E‐06

THIS VERIFIES THE CONTINUITY OF THE 149 FT FRACTURE AND THE OBS WELL AND ALLOWS FOR CALCULATION OF AQUIFER PARAMETERS FOR THIS FRACTURE (AQUIFER UNIT).

23

Page 24: Ground Water Remedial Bedrock CharacterizationCharacterization Needs FOR A LEAKY, MULTIUNIT BEDROCK 1. Identify major transmissive bedding fractures (aquifer units) and the intervening

PLACEMENT OF TTHsRELATIVE TO BEDROCK STRUCTURE AND SOURCE AREA

AT NEW CONTAMINATED SITES

24

MINIUM OF THREE TEST HOLES NEEDED FOR AN INITIAL INVESTIGATION CONDUCTED IN OUTSIDE-IN FASHION:

1ST TTH IS PLACED UPGRADIENT OF THE SOURCE

2ND TTH IS DOWNGRADIENT AND ALONG STRIKE

3RD TTH, DOWN-DIP OF THE SOURCE, IS DRILLED TO A GREATER DEPTH THAN TTH-1 AND 2; SEE THE CROSS-SECTION.

Page 25: Ground Water Remedial Bedrock CharacterizationCharacterization Needs FOR A LEAKY, MULTIUNIT BEDROCK 1. Identify major transmissive bedding fractures (aquifer units) and the intervening

CONVERTING TTHs TO SHORT-SCREEN MWs

At the completion of the testing program, convert TTHs to MWs. Monitoring targets may include: Exit units/fractures  Most contaminated Most transmissive

Once the bedrock hydrogeology is adequately characterized, installation of additional wells can be based on projections of monitoring targets. The projections require reliable determination of site‐specific dip and strike.

25

Page 26: Ground Water Remedial Bedrock CharacterizationCharacterization Needs FOR A LEAKY, MULTIUNIT BEDROCK 1. Identify major transmissive bedding fractures (aquifer units) and the intervening

RE-EVALUATION OF CONTAMINATED SITESWITH EXISTING MONITORING WELLS

Needed for sites with excessive open-hole segments and sites with generic flow models that de facto ignore bedrock structure, including sites with horizontal slicing of dipping bedrock into the “shallow”, “intermediate”, and “deep” aquifers. Steps to re-evaluate such sites:

Conduct supplemental testing in existing wells (borehole geophysics, or at least EC-T logging, salt tracing and depth-discrete sampling, if appropriate). Determine dip and strike of bedding.

Prepare a cross-section projecting onto it open/screened well intervals and locations of identified conductive fractures (initial site hydrogeologic model).

Identify data gaps, needs for additional wells and correcting well construction in problem wells.

When adding new wells, consider at least one TTH with a comprehensive testing program.

Demonstrate the continuity of aquifer units and the validity of the site model by observed responses to short-term pumping/hydraulic stresses.

26

Page 27: Ground Water Remedial Bedrock CharacterizationCharacterization Needs FOR A LEAKY, MULTIUNIT BEDROCK 1. Identify major transmissive bedding fractures (aquifer units) and the intervening

PREFERENCE FOR SHORT OPEN-HOLE SEGMENTS/WELL SCREENSLESS THAN 25 FT ALLOWED

A short (10‐15 ft) open‐hole or screen should only straddle aquifer units. Avoid screen placement in vertical gradient zones, as exemplified by a MW on the left.

V. slow downward flow was measured via salt tracing in this 23‐ft long open hole in weathered bedrock: 0.0021gpm=3gpd=90gal/quarter

GW quality in this well was controlled by clean inflow (ND) from the upper well portion. Low‐flow sampling was unable to detect contamination present in the receiving zone at the bottom.

27