gravitational waves: an overview - umd · 2009. 12. 14. · • mass-quadrupole approximation: hij...

34
Gravitational Waves: an Overview Alessandra Buonanno Department of Physics, University of Maryland Phys675: Introduction to Relativity, Gravitation and Cosmology

Upload: others

Post on 27-Feb-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Gravitational Waves: an Overview - UMD · 2009. 12. 14. · • Mass-quadrupole approximation: hij ∼ G Rc4 Q¨ ij Qij = µ(xi xj − r 2 δ ij) h ∝ M5/3 ω2/3 R cos2Φ for quasi-circular

Gravitational Waves: an Overview

Alessandra Buonanno

Department of Physics, University of Maryland

Phys675: Introduction to Relativity, Gravitation and Cosmology

Page 2: Gravitational Waves: an Overview - UMD · 2009. 12. 14. · • Mass-quadrupole approximation: hij ∼ G Rc4 Q¨ ij Qij = µ(xi xj − r 2 δ ij) h ∝ M5/3 ω2/3 R cos2Φ for quasi-circular

Alessandra Buonanno December 10, 2009

Properties of gravitational waves

• Stretch and squeeze are ∆L = h(t) L− transverse to direction of propagation

− equal and opposite along orthogonal axis (trace-free)

• Gravitons are spin-2 particles

• Two polarizations: h+ and h×

− GW theory: polarizations rotated by 45o

− EM theory: polarizations rotated by 90o

• h+ and h× are double time integral of Riemann tensor

hij ∼ Ri0j0 ∼ ∂2ijΦ Φ ⇒ non-static tidal potential

Phys675: Introduction to Relativity, Gravitation and Cosmology 1

Page 3: Gravitational Waves: an Overview - UMD · 2009. 12. 14. · • Mass-quadrupole approximation: hij ∼ G Rc4 Q¨ ij Qij = µ(xi xj − r 2 δ ij) h ∝ M5/3 ω2/3 R cos2Φ for quasi-circular

Alessandra Buonanno December 10, 2009

Interaction between GW and ring of free-falling particles

GW propagating along z-axis

• Case: h+ 6= 0

h× = 0

λGW

• Case: h× 6= 0

h+ = 0

λGW

Phys675: Introduction to Relativity, Gravitation and Cosmology 2

Page 4: Gravitational Waves: an Overview - UMD · 2009. 12. 14. · • Mass-quadrupole approximation: hij ∼ G Rc4 Q¨ ij Qij = µ(xi xj − r 2 δ ij) h ∝ M5/3 ω2/3 R cos2Φ for quasi-circular

Alessandra Buonanno December 10, 2009

Force pattern for h× and h+

x

y

z

x

y

z

Force pattern of GWs are invariant under 180o degree, by contrast

force patterns of EM waves are invariant under 360o degree

Phys675: Introduction to Relativity, Gravitation and Cosmology 3

Page 5: Gravitational Waves: an Overview - UMD · 2009. 12. 14. · • Mass-quadrupole approximation: hij ∼ G Rc4 Q¨ ij Qij = µ(xi xj − r 2 δ ij) h ∝ M5/3 ω2/3 R cos2Φ for quasi-circular

Alessandra Buonanno December 10, 2009

How to measure gravitational waves

Use light beams to measure the stretching and squeezing induced by GWs

∆L = L h ∼ 10−16 cm

being L = 4km and h ∼ 10−21

∆φ ∼ 10−8 rad

Phys675: Introduction to Relativity, Gravitation and Cosmology 4

Page 6: Gravitational Waves: an Overview - UMD · 2009. 12. 14. · • Mass-quadrupole approximation: hij ∼ G Rc4 Q¨ ij Qij = µ(xi xj − r 2 δ ij) h ∝ M5/3 ω2/3 R cos2Φ for quasi-circular

Alessandra Buonanno December 10, 2009

Multipolar decomposition of waves in linear gravity

• Multipole expansion in terms of mass moments (IL) and mass-current

moments (JL) of the source

h ∼

can′t oscillate︷ ︸︸ ︷G

c2

I0

r+

can′t oscillate︷ ︸︸ ︷

G

c3

I1

r+

mass quadrupole︷ ︸︸ ︷

G

c4

I2

r+ · · ·

· · · +G

c4

J1

r︸ ︷︷ ︸can′t oscillate

+G

c5

J2

r︸ ︷︷ ︸current quadrupole

+ · · ·

• Typical strength: h ∼ Gc4

M L2

P 21r ∼

G(Ekin/c2)c2 r

If Ekin/c2 ∼ 1M⊙, depending on r ⇒ h ∼ 10−23–10−17

Phys675: Introduction to Relativity, Gravitation and Cosmology 5

Page 7: Gravitational Waves: an Overview - UMD · 2009. 12. 14. · • Mass-quadrupole approximation: hij ∼ G Rc4 Q¨ ij Qij = µ(xi xj − r 2 δ ij) h ∝ M5/3 ω2/3 R cos2Φ for quasi-circular

Alessandra Buonanno December 10, 2009

Quadrupole nature of GW emission in linear gravity

EM theory: Luminosity ∝ d2

d = ex ⇒ electric dipole moment

• GW theory: electric dipole moment ⇒ mass dipole moment

d =∑

i mi xi ⇒ d =∑

i mi xi = P

Conservation of momentum ⇒ no mass dipole radiation exists in GR

• GW theory: magnetic dipole moment ⇒ current dipole moment

µ =∑

i mi xi × xi = J

Conservation of angular momentum ⇒ no current dipole radiation exists in GR

Phys675: Introduction to Relativity, Gravitation and Cosmology 6

Page 8: Gravitational Waves: an Overview - UMD · 2009. 12. 14. · • Mass-quadrupole approximation: hij ∼ G Rc4 Q¨ ij Qij = µ(xi xj − r 2 δ ij) h ∝ M5/3 ω2/3 R cos2Φ for quasi-circular

Alessandra Buonanno December 10, 2009

Comparison between GW and EM luminosity

LGW = G5c5 (

...I 2)

2 I2 ∼ ǫM r2

r → typical source’s dimension, M → source’s mass, ǫ → deviation from sphericity

...I 2 ∼ ω3 ǫ M r2 with ω ∼ 1/P ⇒ LGW ∼ G

c5 ǫ2 ω6 M2 r4

LGW ∼ c5

G ǫ2(

G M ωc3

)6(

r c2

G M

)4

⇒ c5

G = 3.6 × 1059 erg/sec (huge!)

• For a steel rod of M = 490 tons, r = 20 m and ω ∼ 28 rad/sec:

GMω/c3 ∼ 10−32, rc2/GM ∼ 1025 → LGW ∼ 10−27 erg/sec ∼ 10−60LEMsun!

• As Weber noticed in 1972, if we introduce RS = 2GM/c2 and ω = (v/c) (c/r)

LGW = c5

G ǫ2(

vc

)6 (rSr

)⇒︸︷︷︸

v∼c, r∼rS

LGW ∼ ǫ2 c5

G ∼ 1026 LEMsun!

Phys675: Introduction to Relativity, Gravitation and Cosmology 7

Page 9: Gravitational Waves: an Overview - UMD · 2009. 12. 14. · • Mass-quadrupole approximation: hij ∼ G Rc4 Q¨ ij Qij = µ(xi xj − r 2 δ ij) h ∝ M5/3 ω2/3 R cos2Φ for quasi-circular

Alessandra Buonanno December 10, 2009

GWs on the Earth: comparison with other kind of radiation

Supernova at 20 kpc:

• From GWs: ∼ 400 ergcm2 sec

(fGW1kHz

)2 (h

10−21

)2during few msecs

• From neutrino: ∼ 105 ergcm2 sec

during 10 secs

• From optical radiation: ∼ 10−4 ergcm2 sec

during one week

Phys675: Introduction to Relativity, Gravitation and Cosmology 8

Page 10: Gravitational Waves: an Overview - UMD · 2009. 12. 14. · • Mass-quadrupole approximation: hij ∼ G Rc4 Q¨ ij Qij = µ(xi xj − r 2 δ ij) h ∝ M5/3 ω2/3 R cos2Φ for quasi-circular

Alessandra Buonanno December 10, 2009

Electromagnetic astronomy versus gravitational-wave astronomy

EM astronomy GW astronomy

− accelerating charges; time changing dipole − accelerating masses; time changing quadr.

− incoherent superposition of emissions

from electrons, atoms and molecules

− coherent superposition of radiation

from bulk dynamics of dense source

− direct information about thermodynamic

state

− direct information of system’s

dynamics

− wavelength small compared to source − wavelength large compared to source

− absorbed, scattered, dispersed by matter − very small interaction with matter

− frequency range: 10 MHz and up − frequency range: 10 kHz and down

Phys675: Introduction to Relativity, Gravitation and Cosmology 9

Page 11: Gravitational Waves: an Overview - UMD · 2009. 12. 14. · • Mass-quadrupole approximation: hij ∼ G Rc4 Q¨ ij Qij = µ(xi xj − r 2 δ ij) h ∝ M5/3 ω2/3 R cos2Φ for quasi-circular

Alessandra Buonanno December 10, 2009

GW frequency spectrum extends over many decades

CMB

Pulsar timing

LISA

LIGO/Virgo/GEO/TAMA

10−16

10 10 Hz−2

10−8

h

Phys675: Introduction to Relativity, Gravitation and Cosmology 10

Page 12: Gravitational Waves: an Overview - UMD · 2009. 12. 14. · • Mass-quadrupole approximation: hij ∼ G Rc4 Q¨ ij Qij = µ(xi xj − r 2 δ ij) h ∝ M5/3 ω2/3 R cos2Φ for quasi-circular

Alessandra Buonanno December 10, 2009

Indirect observation of gravitational waves

Neutron Binary System: PSR 1913 +16 - Timing Pulsars

Hulse & Taylor discovery (1974)

Separated by ∼ 106 Km, m1 = 1.4M⊙,

m2 = 1.36M⊙, eccentricity = 0.617

∼ 8 hours

∼ 59 msec

• Prediction from GR: rate of change of orbital period

• Emission of gravitational waves:

− due to loss of orbital energy

− orbital decay in agreement with GR at the level of 0.5%

Phys675: Introduction to Relativity, Gravitation and Cosmology 11

Page 13: Gravitational Waves: an Overview - UMD · 2009. 12. 14. · • Mass-quadrupole approximation: hij ∼ G Rc4 Q¨ ij Qij = µ(xi xj − r 2 δ ij) h ∝ M5/3 ω2/3 R cos2Φ for quasi-circular

Alessandra Buonanno December 10, 2009

Hulse-Taylor binary: cumulative shift of periastron time

To show agreement with GR, they compared the observed orbital

phase with a theoretical template phase

If fb varies slowly with time, then to first order in a Taylor expansion

Φb(t) = 2π fb t + πfb t2

Assuming that tP is the periastron passage time defined as

Φ(tp) = 2πN N being an integer

2πN = 2πfb tp + πfb t2p ⇒ tp − N/fb = −12fb/fb t2

Phys675: Introduction to Relativity, Gravitation and Cosmology 12

Page 14: Gravitational Waves: an Overview - UMD · 2009. 12. 14. · • Mass-quadrupole approximation: hij ∼ G Rc4 Q¨ ij Qij = µ(xi xj − r 2 δ ij) h ∝ M5/3 ω2/3 R cos2Φ for quasi-circular

Alessandra Buonanno December 10, 2009

Hulse-Taylor binary: cumulative shift of periastron time

[from Taylor & Weisberg 2000] [from Kramer et al. 2005]

Phys675: Introduction to Relativity, Gravitation and Cosmology 13

Page 15: Gravitational Waves: an Overview - UMD · 2009. 12. 14. · • Mass-quadrupole approximation: hij ∼ G Rc4 Q¨ ij Qij = µ(xi xj − r 2 δ ij) h ∝ M5/3 ω2/3 R cos2Φ for quasi-circular

Alessandra Buonanno December 10, 2009

Known double pulsar binaries

PSR J0737-3039 [Burgay et al. 03; Lyne et al. 2004]

rot. period A 22.7 ms

rot. period B 2773.6 ms

orb. period 2 h and 45 min (will merge in 85 Myr!)

e = 0.088

distance ∼ 0.6kpc (close!)

∆φ = 16.900(2)deg/yr (large!) P = −1.20(8)10−12

Phys675: Introduction to Relativity, Gravitation and Cosmology 14

Page 16: Gravitational Waves: an Overview - UMD · 2009. 12. 14. · • Mass-quadrupole approximation: hij ∼ G Rc4 Q¨ ij Qij = µ(xi xj − r 2 δ ij) h ∝ M5/3 ω2/3 R cos2Φ for quasi-circular

Alessandra Buonanno December 10, 2009

Direct observation with resonant-mass detectors

• Pioneering work by

Joe Weber at Maryland

Phys675: Introduction to Relativity, Gravitation and Cosmology 15

Page 17: Gravitational Waves: an Overview - UMD · 2009. 12. 14. · • Mass-quadrupole approximation: hij ∼ G Rc4 Q¨ ij Qij = µ(xi xj − r 2 δ ij) h ∝ M5/3 ω2/3 R cos2Φ for quasi-circular

Alessandra Buonanno December 10, 2009

Resonant-mass detectors in the world

Resonant bar or sphere detectors (GW frequency ∼ 1 kHz)

Nautilus (Rome) Explorer (CERN) Schenberg (Brasil) MiniGRAIL (Belgium)

Allegro (Louisiana) Niobe (Perth) Auriga (Padova)

Phys675: Introduction to Relativity, Gravitation and Cosmology 16

Page 18: Gravitational Waves: an Overview - UMD · 2009. 12. 14. · • Mass-quadrupole approximation: hij ∼ G Rc4 Q¨ ij Qij = µ(xi xj − r 2 δ ij) h ∝ M5/3 ω2/3 R cos2Φ for quasi-circular

Alessandra Buonanno December 10, 2009

International network of GW interferometers(frequency band ∼ 10–103 Hz)

LIGO at Livingston (Lousiana) ⇒

⇐ LIGO at Hanford (Washington State)

Phys675: Introduction to Relativity, Gravitation and Cosmology 17

Page 19: Gravitational Waves: an Overview - UMD · 2009. 12. 14. · • Mass-quadrupole approximation: hij ∼ G Rc4 Q¨ ij Qij = µ(xi xj − r 2 δ ij) h ∝ M5/3 ω2/3 R cos2Φ for quasi-circular

Alessandra Buonanno December 10, 2009

VIRGO (France-Italy) ⇒

⇐ GEO 600 (UK-Germany)

TAMA 300 (Japan)

Phys675: Introduction to Relativity, Gravitation and Cosmology 18

Page 20: Gravitational Waves: an Overview - UMD · 2009. 12. 14. · • Mass-quadrupole approximation: hij ∼ G Rc4 Q¨ ij Qij = µ(xi xj − r 2 δ ij) h ∝ M5/3 ω2/3 R cos2Φ for quasi-circular

Alessandra Buonanno December 10, 2009

Sensitivity of LIGO during run S5

√Sh ∆f ∼ h

h ∼ ∆L/L

∆f ∼ f

Phys675: Introduction to Relativity, Gravitation and Cosmology 19

Page 21: Gravitational Waves: an Overview - UMD · 2009. 12. 14. · • Mass-quadrupole approximation: hij ∼ G Rc4 Q¨ ij Qij = µ(xi xj − r 2 δ ij) h ∝ M5/3 ω2/3 R cos2Φ for quasi-circular

Alessandra Buonanno December 10, 2009

A few LIGO/VIRGO/.... specifications and technical challenges

• Monitor test masses (∼ 11 kg) with

precision of ∼ 10−16 cm with laser’s

wavelength of 10−4 cm

• Remove/subtract all non-gravitational

forces such as thermal noise, seismic

noise, suspension noise, etc.

• Beam tube vacuum level ∼ 10−9 torr

Phys675: Introduction to Relativity, Gravitation and Cosmology 20

Page 22: Gravitational Waves: an Overview - UMD · 2009. 12. 14. · • Mass-quadrupole approximation: hij ∼ G Rc4 Q¨ ij Qij = µ(xi xj − r 2 δ ij) h ∝ M5/3 ω2/3 R cos2Φ for quasi-circular

Alessandra Buonanno December 10, 2009

Typical noises in ground-based detectors

Frequency (Hz)

SHOT

RADIATION PRESSURE

-62

INITIAL INTERFEROMETER SENSITIVITY

1 10 100 1000 1000010

10

10

10

h(f

) [

Hz

]

-1/2

-25

-23

-21

-19

GR

AV

ITY G

RA

DIE

NT N

OIS

E

RESIDUAL GAS, 10 Torr H2

STRAY LIGHTFACILITY

SE

ISM

IC

TEST MASS INTERNAL

SUSPEN

SION

THER

MA

L

RESIDUAL GAS, 10 TORR H

-9

INITIAL LIGO

Phys675: Introduction to Relativity, Gravitation and Cosmology 21

Page 23: Gravitational Waves: an Overview - UMD · 2009. 12. 14. · • Mass-quadrupole approximation: hij ∼ G Rc4 Q¨ ij Qij = µ(xi xj − r 2 δ ij) h ∝ M5/3 ω2/3 R cos2Φ for quasi-circular

Alessandra Buonanno December 10, 2009

LISA: Laser Interferometer Space Antenna (frequency band: 10−4 − 0.1 Hz)

LISA science goals complementary to ground-based interferometer ones

ESA/NASA mission in 2016?

Phys675: Introduction to Relativity, Gravitation and Cosmology 22

Page 24: Gravitational Waves: an Overview - UMD · 2009. 12. 14. · • Mass-quadrupole approximation: hij ∼ G Rc4 Q¨ ij Qij = µ(xi xj − r 2 δ ij) h ∝ M5/3 ω2/3 R cos2Φ for quasi-circular

Alessandra Buonanno December 10, 2009

A few LISA specifications and technical challenges

• Distance between spacecraft ∼ 5 millions of km

• Monitor test masses inside spacecrafts with a

precision of ∼ 10−9 cm (h ∼ 10−21)

• Nd:YAG laser with wavelength ∼ 10−4 cm and power ∼ 1 Watt

• Drag-free system to guarantee that only gravitational forces

outside the spacecraft act on the proof masses

• Drag-free performances ∼ 10−15 m/sec2 [LISA Pathfinder in 2010]

Phys675: Introduction to Relativity, Gravitation and Cosmology 23

Page 25: Gravitational Waves: an Overview - UMD · 2009. 12. 14. · • Mass-quadrupole approximation: hij ∼ G Rc4 Q¨ ij Qij = µ(xi xj − r 2 δ ij) h ∝ M5/3 ω2/3 R cos2Φ for quasi-circular

Alessandra Buonanno December 10, 2009

Binaries of black holes and/or neutron stars on circular orbit

x1x2

x3

Φ

Treating the two compact bodies as point particles

with relative distance x and reduced mass µ:

x1 = r cosΦ and x2 = r sinΦ

Qij = µ (xi xj −13δij x2)

Q11 = µr2 (cos2 Φ − 1/3), Q22 = µr2 (sin2 Φ − 1/3)

Q33 = −µr2/3, Q12 = µr2 sinΦ cosΦ

Φ =√

GMr3 = ω [Newton law: ω2 r = GM

r2 ]

taking 3 time derivatives of Q ⇒ LGW = −dEdt = 32

5G4

c5µ2 M3

r5

Phys675: Introduction to Relativity, Gravitation and Cosmology 24

Page 26: Gravitational Waves: an Overview - UMD · 2009. 12. 14. · • Mass-quadrupole approximation: hij ∼ G Rc4 Q¨ ij Qij = µ(xi xj − r 2 δ ij) h ∝ M5/3 ω2/3 R cos2Φ for quasi-circular

Alessandra Buonanno December 10, 2009

Binary coalescence time

E = 12µv2 − Gµ M

r = −Gµ M2r ⇒ r = −Gµ M

2E

r = drdE

dEdt = −64

5Gµ M2

r3 integrating ⇒ r(t) =(r40 −

2565 GµM2 ∆τcoal

)1/4

If r(tf) ≪ r0 ⇒ ∆τcoal = 5256

r40

Gµ M2

Examples:

• LIGO/VIRGO/GEO/TAMA source: M = (10 + 10)M⊙ at r0 ∼ 500 km,

fGW ∼ 40Hz, T0 ∼ 0.05sec ⇒ ∆τcoal ∼ 1 sec

• LISA source: M = (106 + 106)M⊙ at r0 ∼ 200 × 106 km,

fGW ∼ 4.5 × 10−5 Hz, T0 ∼ 11 hours ⇒ ∆τcoal ∼ 1 year

Phys675: Introduction to Relativity, Gravitation and Cosmology 25

Page 27: Gravitational Waves: an Overview - UMD · 2009. 12. 14. · • Mass-quadrupole approximation: hij ∼ G Rc4 Q¨ ij Qij = µ(xi xj − r 2 δ ij) h ∝ M5/3 ω2/3 R cos2Φ for quasi-circular

Alessandra Buonanno December 10, 2009

Gravitational waves from compact binaries

• Mass-quadrupole approximation: hij ∼G

Rc4 Qij Qij = µ (xi xj − r2 δij)

h ∝ M5/3 ω2/3

R cos 2Φ

for quasi-circular orbits: ω2 ∼ Φ2

= GMr3

Chirp: The signal continuously changes

its frequency and the power emitted

at any frequency is very small!

chirp

time

h

h ∼ M5/3 f2/3

R for f ∼ 100 Hz, M = 20M⊙

R at 20 Mpc ⇒ h ∼ 10−21

Phys675: Introduction to Relativity, Gravitation and Cosmology 26

Page 28: Gravitational Waves: an Overview - UMD · 2009. 12. 14. · • Mass-quadrupole approximation: hij ∼ G Rc4 Q¨ ij Qij = µ(xi xj − r 2 δ ij) h ∝ M5/3 ω2/3 R cos2Φ for quasi-circular

Alessandra Buonanno December 10, 2009

Typical features of coalescing black-hole binaries

0 50 100 150 200 250 300t/M

-0.05

0.00

0.05

ψ4

(from Pretorius 06)

•Inspiral: quasi-circular orbits

Throughout the inspiral TRR ≫ Torb ⇒ natural adiabatic parameterωω2 = O

(v5

c5

)

For compact bodiesv2

c2 ∼ GMc2r

⇒ PN approximation: slow motion and weak field

“Chirping” if Tobs >∼ω/ω

•Inspiral: spin-precessing orbits

TRR ≫ Tprec ≫ Torb; ωGW = {ωprec, 2ω}

•Inspiral: eccentric orbits

TRR ≫ Tperi prec ≫ Torb; ωGW = {N ω, · · · }

•Plunge-merger-ringdown

Numerical relativity; close-limit approximation; post-Newtonian resummation techniques

Phys675: Introduction to Relativity, Gravitation and Cosmology 27

Page 29: Gravitational Waves: an Overview - UMD · 2009. 12. 14. · • Mass-quadrupole approximation: hij ∼ G Rc4 Q¨ ij Qij = µ(xi xj − r 2 δ ij) h ∝ M5/3 ω2/3 R cos2Φ for quasi-circular

Alessandra Buonanno December 10, 2009

Waveforms including spin effects

Maximal spins M = 10M⊙ + 10M⊙S

S 2

NewtL1

-0.10

-0.05

0.00

0.05

0.10

h

-0.10

-0.05

0.00

0.05

0.10

h

time time

Phys675: Introduction to Relativity, Gravitation and Cosmology 28

Page 30: Gravitational Waves: an Overview - UMD · 2009. 12. 14. · • Mass-quadrupole approximation: hij ∼ G Rc4 Q¨ ij Qij = µ(xi xj − r 2 δ ij) h ∝ M5/3 ω2/3 R cos2Φ for quasi-circular

Alessandra Buonanno December 10, 2009

Massive BH binaries

Massive BH binaries form following

the mergers of galaxies and

pregalactic structures

MS 1054-03 (cluster of galaxies) at z = 0.83:

about 20% are merging!

(a) → 16 most luminous galaxies in the cluster

(b) → 8 fainter galaxies

Masses and merger rates as function of

redshift

Phys675: Introduction to Relativity, Gravitation and Cosmology 29

Page 31: Gravitational Waves: an Overview - UMD · 2009. 12. 14. · • Mass-quadrupole approximation: hij ∼ G Rc4 Q¨ ij Qij = µ(xi xj − r 2 δ ij) h ∝ M5/3 ω2/3 R cos2Φ for quasi-circular

Alessandra Buonanno December 10, 2009

Image of NGC6240 taken by Chandra showing a butterfly shaped galaxy

product of two smaller galaxies (two active giant BHs)

Phys675: Introduction to Relativity, Gravitation and Cosmology 30

Page 32: Gravitational Waves: an Overview - UMD · 2009. 12. 14. · • Mass-quadrupole approximation: hij ∼ G Rc4 Q¨ ij Qij = µ(xi xj − r 2 δ ij) h ∝ M5/3 ω2/3 R cos2Φ for quasi-circular

Alessandra Buonanno December 10, 2009

Massive BH binariesRelativity:

• From inspiraling post-Newtonian waveforms → precision tests of GR

• From merger waveforms (num. relativity) → tests of non-linear gravity

• Tests of cosmic censorship (is the final object a black hole?)

and second law of BH mechanics (increase of horizon area)

Astrophysics:

• Cosmic history of massive BH formation from very high

redshift to the present time

Very high S/N (very large z); high accuracy in determining binary

parameters, but event rates uncertain 0.1–100 yr−1

Phys675: Introduction to Relativity, Gravitation and Cosmology 31

Page 33: Gravitational Waves: an Overview - UMD · 2009. 12. 14. · • Mass-quadrupole approximation: hij ∼ G Rc4 Q¨ ij Qij = µ(xi xj − r 2 δ ij) h ∝ M5/3 ω2/3 R cos2Φ for quasi-circular

Alessandra Buonanno December 10, 2009

Extreme mass-ratio inspiraling binaries

Small body spiraling into central body of ∼ 105–107 M⊙ out

to ∼ Gpc distance

Relativity:

• Relativistic orbits (test of GR)

• Map of massive body’s external spacetime geometry. Extract multiple

moments. Test the BH no hair theorem (is it a black hole?)

Astrophysics:

• Probe astrophysics of dense clusters around BH’s in galactic nuclei

• Existence and population of BH’s in galactic nuclei

• Infer massive body’s spin and mass with accuracy 10−3–10−5; sky

position determined within 1o; distance-to-source’s accuracy of several

10%

Phys675: Introduction to Relativity, Gravitation and Cosmology 32

Page 34: Gravitational Waves: an Overview - UMD · 2009. 12. 14. · • Mass-quadrupole approximation: hij ∼ G Rc4 Q¨ ij Qij = µ(xi xj − r 2 δ ij) h ∝ M5/3 ω2/3 R cos2Φ for quasi-circular

Alessandra Buonanno December 10, 2009

Phys675: Introduction to Relativity, Gravitation and Cosmology 33