gravitational-wave detectors - desy · gravitational-wave detection mirror 1 mirror 2 ~ km photo...

23
Gravitational-Wave Detectors Roman Schnabel Institut für Laserphysik Zentrum für Optische Quantentechnologien Universität Hamburg Roman Schnabel, 02 / September/ 2016 University of Hamburg 2 Outline Gravitational waves (GWs) Resonant bar detectors Laser Interferometers - Quasi-free test mass mirrors - Photo-electric detection The GW detector GEO600 with squeezed light

Upload: others

Post on 22-May-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Gravitational-Wave Detectors - DESY · Gravitational-Wave Detection Mirror 1 Mirror 2 ~ km Photo diode 9 1) Quasi-free test mass mirrors GW induced distance change • Laser interferometers

1

Gravitational-Wave Detectors

Roman Schnabel

Institut für Laserphysik Zentrum für Optische Quantentechnologien Universität Hamburg

Roman Schnabel, 02 / September/ 2016 University of Hamburg 2

Outline

•  Gravitational waves (GWs)

•  Resonant bar detectors

•  Laser Interferometers - Quasi-free test mass mirrors - Photo-electric detection

•  The GW detector GEO600 with squeezed light

Page 2: Gravitational-Wave Detectors - DESY · Gravitational-Wave Detection Mirror 1 Mirror 2 ~ km Photo diode 9 1) Quasi-free test mass mirrors GW induced distance change • Laser interferometers

2

GW150914 Gravitational-wave Event from Colliding Black Holes

Roman Schnabel

Institut für Laserphysik Zentrum für Optische Quantentechnologien Universität Hamburg

Roman Schnabel, 02 / September/ 2016 University of Hamburg 4

LIGO Data of Sept. 14th, 2015

Page 3: Gravitational-Wave Detectors - DESY · Gravitational-Wave Detection Mirror 1 Mirror 2 ~ km Photo diode 9 1) Quasi-free test mass mirrors GW induced distance change • Laser interferometers

3

Roman Schnabel, 02 / September/ 2016 University of Hamburg 5

LIGO Data of Sept. 14th, 2015

Results (numerical solution of Einstein‘s equations)

Distance from Earth: 1.3 billion light years.

Roman Schnabel, 02 / September/ 2016 University of Hamburg

Gravitational waves

6

L

+Δ L Gra

vitat

iona

l wav

e

λ

Binary system

To Earth

fBS

Page 4: Gravitational-Wave Detectors - DESY · Gravitational-Wave Detection Mirror 1 Mirror 2 ~ km Photo diode 9 1) Quasi-free test mass mirrors GW induced distance change • Laser interferometers

4

Roman Schnabel, 02 / September/ 2016 University of Hamburg 7

•  Weber bars, fres~ 1kHz

Gravitational Wave Detectors

Auriga, Italy 3 m long aluminum cylinder

2.3 tons

Roman Schnabel, 02 / September/ 2016 University of Hamburg

4 km LIGO Gravitational-Wave Detector

8

Page 5: Gravitational-Wave Detectors - DESY · Gravitational-Wave Detection Mirror 1 Mirror 2 ~ km Photo diode 9 1) Quasi-free test mass mirrors GW induced distance change • Laser interferometers

5

Roman Schnabel, 02 / September/ 2016 University of Hamburg

Laser

Gravitational-Wave Detection

Mirror 1

Mirror 2

~ km

Photo diode

9

1) Quasi-free test mass mirrors

GW induced distance change

•  Laser interferometers

2) Laser light |α�

Roman Schnabel, 02 / September/ 2016 University of Hamburg 10

GEO-HF: - 30kW - DC readout - OMC - Tuned, broadband SR - Squeezed Light

The Gravitational-Wave Detector GEO 600

Page 6: Gravitational-Wave Detectors - DESY · Gravitational-Wave Detection Mirror 1 Mirror 2 ~ km Photo diode 9 1) Quasi-free test mass mirrors GW induced distance change • Laser interferometers

6

Roman Schnabel, 02 / September/ 2016 University of Hamburg 11

�Free� Mirrors

Roman Schnabel, 02 / September/ 2016 University of Hamburg 12

Suspended Mirrors in LIGO (40 kg each)

Page 7: Gravitational-Wave Detectors - DESY · Gravitational-Wave Detection Mirror 1 Mirror 2 ~ km Photo diode 9 1) Quasi-free test mass mirrors GW induced distance change • Laser interferometers

7

Roman Schnabel, 02 / September/ 2016 University of Hamburg

Laser

Gravitational-Wave Detection

Mirror 1

Mirror 2

2) Laser light |α�

~ km

3) Interference

4) Photo-electric effect

Photo diode

13

Photo-electric current modulated at GW frequency

(“unbiased estimator”)

1) Quasi-free test mass mirrors

GW induced distance change

Roman Schnabel, 02 / September/ 2016 University of Hamburg

Statistic of Truly Random Photons

14

Time intervals

Pho

tons

per

tim

e in

terv

al

N

Looks like a signal…

Page 8: Gravitational-Wave Detectors - DESY · Gravitational-Wave Detection Mirror 1 Mirror 2 ~ km Photo diode 9 1) Quasi-free test mass mirrors GW induced distance change • Laser interferometers

8

Roman Schnabel, 02 / September/ 2016 University of Hamburg

Statistic of Truly Random Photons

15

Time intervals

Pho

tons

per

tim

e in

terv

al

N

…but isn’t, just photon shot noise!

Roman Schnabel, 02 / September/ 2016 University of Hamburg

Shot Noise

Coherent state

⇒ ˆ N = N = α 2=10000

Photon number N

Prob

abili

ty [r

el. u

nits

]

16

α = 100

~ NN~ 1

N~ 1

PLaserShot-noise

Signal

N − N N + N

N

Page 9: Gravitational-Wave Detectors - DESY · Gravitational-Wave Detection Mirror 1 Mirror 2 ~ km Photo diode 9 1) Quasi-free test mass mirrors GW induced distance change • Laser interferometers

9

Roman Schnabel, 02 / September/ 2016 University of Hamburg

Increasing the Light Power

High power laser

Mirror 1

Mirror 2

Photo diode

Photo-electric current

Light absorption/heating

17

Power-recycling mirror

Roman Schnabel, 02 / September/ 2016 University of Hamburg

Is there a possibility to increase the signal/quantum noise–ratio without increasing the laser power?

18

Yes! On the basis of squeezed light!

[Caves, Phys. Rev. D 23, 1693 (1981)]

Page 10: Gravitational-Wave Detectors - DESY · Gravitational-Wave Detection Mirror 1 Mirror 2 ~ km Photo diode 9 1) Quasi-free test mass mirrors GW induced distance change • Laser interferometers

10

Roman Schnabel, 02 / September/ 2016 University of Hamburg 19

Introduction of „squeezed states“ of electro-magnetic fields:

H. P. Yuen, Two-photon coherent states of the radiation field, Phys. Rev. A 13, 2226–2243 (1976)

Roman Schnabel, 02 / September/ 2016 University of Hamburg 20

GEO-HF: - 30kW - DC readout - OMC - Tuned, broadband SR - Squeezed Light

The Gravitational Wave Detector GEO 600

Page 11: Gravitational-Wave Detectors - DESY · Gravitational-Wave Detection Mirror 1 Mirror 2 ~ km Photo diode 9 1) Quasi-free test mass mirrors GW induced distance change • Laser interferometers

11

Roman Schnabel, 02 / September/ 2016 University of Hamburg

Statistic of truly random Photons

21

Time intervals

Pho

tons

per

tim

e in

terv

al

N

(Poissonian) Shot noise

Roman Schnabel, 02 / September/ 2016 University of Hamburg

Statistic of quantum-correlated Photons

22

Time intervals

Pho

tons

per

tim

e in

terv

al

N

Squeezed shot noise (Sub-poissonian)

A “nonclassical” effect! The semi-classical model fails:

First, light propagates and interferes as a wave and, second,

particles appear randomly During energy transfer

Paradoxical!

Page 12: Gravitational-Wave Detectors - DESY · Gravitational-Wave Detection Mirror 1 Mirror 2 ~ km Photo diode 9 1) Quasi-free test mass mirrors GW induced distance change • Laser interferometers

12

Roman Schnabel, 02 / September/ 2016 University of Hamburg

Squeezing factor: 3 dB

Squeezing factor: 10 dB

“Squeezed” Counting Statistics

Photon number N

Prob

abili

ty [r

el. u

nits

]

23

Noise squeezing

Paradoxical!

Poisson statistics

Roman Schnabel, 02 / September/ 2016 University of Hamburg 24

First generation of squeezed states of light (-7%, -0.3 dB):

R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, J. F. Valley, Observation of squeezed states generated by four-wave mixing in an optical cavity. Phys. Rev. Lett. 55, 2409 (1985)

First generation of squeezed states of light with PDC (-50%, -3 dB):

L.- A. Wu, H. J. Kimble, J. L. Hall, H. Wu, Generation of squeezed states by parametric down conversion. Phys. Rev. Lett. 57, 2520 (1986)

In terms of S/N: 3 dB squeezing = doubling the light power›

1985: First Generation of Squeezed Light

Page 13: Gravitational-Wave Detectors - DESY · Gravitational-Wave Detection Mirror 1 Mirror 2 ~ km Photo diode 9 1) Quasi-free test mass mirrors GW induced distance change • Laser interferometers

13

Roman Schnabel, 02 / September/ 2016 University of Hamburg

“Squeezing” Laboratories

First squeezed light: [Slusher et al., PRL 55, 2409 (1985)]

Research labs with squeezed light (not complete):

-  Kimble (CalTech): teleportation: [Furuzawa et al., SCIENCE 282, 706 (1998)]

-  Grangier (Orsay); kitten: [Ourjoumtsev et al., SCIENCE, 312, 83 (2006)]

-  Schiller and Mlynek (Konstanz): tomography: [Nature 387, 471 (1997)]

-  Bachor and Lam (Canberra): 6dB at 1064nm [J. Opt. B 1, 469 (1999)]

-  Leuchs (Erlangen); ~7 dB pulsed [Opt. Lett. 33, 116 (2008)]

-  Polzik (Copenhagen), [Neergaard-Nielsen et al., PRL 97, 083604 (2006)]

-  Furusawa (Tokyo); 9 dB: [Takeno et al., Opt. Express 15, 4321 (2007)]

-  Fabre (Paris); Zhang, Peng (Shanxi); Andersen (Copenhagen); Mavalvala (MIT)

-  Nussenzveig (Sao Paulo); Pfister (Virginia); ...

25

Roman Schnabel, 02 / September/ 2016 University of Hamburg 26

Squeezing at frequencies in the GW detection band (10 Hz to 10 kHz) -  Control beam as noise source identified [Bowen, RS et al., J. Opt. B 4, 421 (2002)], [RS et al., Opt. Comm. 240, 185 (2004)] -  First Audioband squeezing [McKenzie et al., PRL 93, 161105 (2004)] -  New control scheme [Vahlbruch, RS et al., PRL 97, 011101 (2006)] -  6 dB over complete band [Vahlbruch, RS et al., NJP 9, 371 (2007] Compatibility with GW detector techniques -  Power-recycling [McKenzie et al., PRL 88, 231102 (2002).] - Signal-recycling [Vahlbruch, RS et al., PRL 95, 211102 (2005)] - Suspended interferometer [Goda et al., Nat. Phys. 4, 472 (2008).] Strong continuous wave squeezing (>10 dB) at 1064nm -  [Vahlbruch, RS et al., PRL 100, 033602 (2008)] - [M. Mehmet, RS et al., PRA 81, 013814 (2010)]

Squeezing Issues for GW Detection

Squeezing at frequencies in the GW detection band (10 Hz to 10 kHz) -  Control beam as noise source identified [Bowen, RS et al., J. Opt. B 4,

421 (2002)], [RS et al., Opt. Comm. 240, 185 (2004)] -  First Audioband squeezing [McKenzie et al., PRL 93, 161105 (2004)] -  New control scheme [Vahlbruch, RS et al., PRL 97, 011101 (2006)] -  6 dB over complete band [Vahlbruch, RS et al., NJP 9, 371 (2007] Compatibility with GW detector techniques -  Power-recycling [McKenzie et al., PRL 88, 231102 (2002).] - Signal-recycling [Vahlbruch, RS et al., PRL 95, 211102 (2005)] - Suspended interferometer [Goda et al., Nat. Phys. 4, 472 (2008).] Strong continuous wave squeezing (>10 dB) at 1064nm -  [Vahlbruch, RS et al., PRL 100, 033602 (2008)] - [M. Mehmet, RS et al., PRA 81, 013814 (2010)]

Page 14: Gravitational-Wave Detectors - DESY · Gravitational-Wave Detection Mirror 1 Mirror 2 ~ km Photo diode 9 1) Quasi-free test mass mirrors GW induced distance change • Laser interferometers

14

Roman Schnabel, 02 / September/ 2016 University of Hamburg 27

Design of the �GEO600 Squeezer�

[Henning Vahlbruch, PhD thesis, Hannover, 2008] - Gravitational Wave International Committee (GWIC) Thesis Prize 2008 - S-AMOP DPG Thesis Prize 2010

Roman Schnabel, 02 / September/ 2016 University of Hamburg

The GEO600 Squeezed Light Laser

28

Alexander Khalaidovski and Henning Vahlbruch, 2009/2010 Real-time control system: Nico Lastzka and Christian Gräf

Page 15: Gravitational-Wave Detectors - DESY · Gravitational-Wave Detection Mirror 1 Mirror 2 ~ km Photo diode 9 1) Quasi-free test mass mirrors GW induced distance change • Laser interferometers

15

Roman Schnabel, 02 / September/ 2016 University of Hamburg 29

Standing wave cavity

Generation of Squeezed Light

χ2-nonlinear crystal: MgO:LiNbO3 or PPKTP

Pump field input (cw, 532nm)

Squeezed field output (cw, 1064nm) by parametric down-conversion (PDC)

Roman Schnabel, 02 / September/ 2016 University of Hamburg 30

Generation of Squeezed Light

Nonlinear dielectric polarisation of matter by light (Taylor-expansion)

Pi = ε0 χ ijE j + χ ijk(2)EjEk + χ ijkl

(3)EjEkEl + hijk(2)BkEj + hijkl

(3)BkBlEj +...( )

SHG, THG, Kerr effect, Faraday effect Cotton-Mouton effect Parametric Four wave mixing down-conversion, PDC (OPO,OPA)

zyxlkji ,,,...,,, =

2nd order terms in detail:

( ) ( ) ( ) ( )∑ −=−jk

kkjjkjiijkii EEP ωωωωωχεω ,,)2(0

)2(

0=++− kji ωωω

Page 16: Gravitational-Wave Detectors - DESY · Gravitational-Wave Detection Mirror 1 Mirror 2 ~ km Photo diode 9 1) Quasi-free test mass mirrors GW induced distance change • Laser interferometers

16

Roman Schnabel, 02 / September/ 2016 University of Hamburg 31

Parametric amplification (degenerate): Graphical description how the ground state uncertainty is converted into a squeezed vacuum [J. Bauchrowitz, T. Westphal, R.S., Am. J. Phys. 81, 767 (2013)]

The ground state uncertainty is squeezed, when the pump field shows a minimum,

Roman Schnabel, 02 / September/ 2016 University of Hamburg

Wigner Function of Squeezed Light

32

Measured: - 11.5 dB / +16 dB@5MHz

[Mehmet et al., PRA 81, 013814 (2010)]

Phase-space quasi-probability

distribution of a squeezed vacuum

state

Page 17: Gravitational-Wave Detectors - DESY · Gravitational-Wave Detection Mirror 1 Mirror 2 ~ km Photo diode 9 1) Quasi-free test mass mirrors GW induced distance change • Laser interferometers

17

Roman Schnabel, 02 / September/ 2016 University of Hamburg

The GEO600 Squeezed Light Laser

[H. Vahlbruch, A. Khalaidovski, N. Lastzka, C. Gräf, K. Danzmann, and R. Schnabel, The GEO600 squeezed light source, Class. Quantum Grav. 27, 084027 (2010)] Alexander Khalaidovski: Stefano Braccini Thesis Prize 2011.

33

Roman Schnabel, 02 / September/ 2016 University of Hamburg

Transport to the GEO600 GW Detector

34

Page 18: Gravitational-Wave Detectors - DESY · Gravitational-Wave Detection Mirror 1 Mirror 2 ~ km Photo diode 9 1) Quasi-free test mass mirrors GW induced distance change • Laser interferometers

18

Roman Schnabel, 02 / September/ 2016 University of Hamburg

Obse

rvator

y nois

e, ca

librat

ed to

GW

-strai

n [1/

√ Hz

]

10-22

10-21

10-20

1kFrequency [Hz]

5k4k3k2k400 800500

GEO600 Spectral Density 2010

35

Photon shot noise (Poisson statistics)

Roman Schnabel, 02 / September/ 2016 University of Hamburg

GEO600: Squeezed Light in Application

36

Observatory noise without squeezed light

Obse

rvator

y nois

e, ca

librat

ed to

GW

-strai

n [1/

√ Hz

]

10-22

10-21

10-20

1kFrequency [Hz]

5k4k3k2k400 800500

Obse

rvator

y nois

e, ca

librat

ed to

GW

-strai

n [1/

√ Hz

]

10-22

10-21

10-20

1kFrequency [Hz]

5k4k3k2k400 800500

Observatory noise with 10 dB squeezing

(and 38% loss) Optimum quantum approach! [Demkowicz-Dobrzanski, Banaszek, Schnabel, PRA 88, 041802(R) (2013)]

Page 19: Gravitational-Wave Detectors - DESY · Gravitational-Wave Detection Mirror 1 Mirror 2 ~ km Photo diode 9 1) Quasi-free test mass mirrors GW induced distance change • Laser interferometers

19

Roman Schnabel, 02 / September/ 2016 University of Hamburg 37

Shot noise

squeezed

This is not just a proof of principle!

GEO600 regularly uses squeezed light during its

observational runs. [Grote et al., PRL 110, 181101

(2013)]

An application of nonclassical quantum

metrology today!

Roman Schnabel, 02 / September/ 2016 University of Hamburg 38

LSC, Nature Photonics 7, 613–619 (2013)

Page 20: Gravitational-Wave Detectors - DESY · Gravitational-Wave Detection Mirror 1 Mirror 2 ~ km Photo diode 9 1) Quasi-free test mass mirrors GW induced distance change • Laser interferometers

20

Roman Schnabel, 02 / September/ 2016 University of Hamburg 39

Shot Noise and Radiation Pressure Noise

Quantum noise in phase quadrature

Standard quantum limit

(SQL)

Shot noise

Radiation pressure noise

[Caves 1981]

Squeezed shot noise, 20dB (Alternatively 100x

laser power)

X1 X2

(Both signal Normalized)

Roman Schnabel, 02 / September/ 2016 University of Hamburg 40

(Light power, coherent state) [Caves, Phys. Rev. D 45, 75 (1980)]

Shot Noise and Radiation Pressure Noise

Page 21: Gravitational-Wave Detectors - DESY · Gravitational-Wave Detection Mirror 1 Mirror 2 ~ km Photo diode 9 1) Quasi-free test mass mirrors GW induced distance change • Laser interferometers

21

Roman Schnabel, 02 / September/ 2016 University of Hamburg 41

Standard Quantum Limit (SQL)

Shot noise

Radiation pressure

noise

[Jaekel, Reynaud 1990]

QND-Regime

Squeezing SN and RPN

Squeezed Light Input (8dB) €

ˆ X 1€

ˆ X 2

Roman Schnabel, 02 / September/ 2016 University of Hamburg

Laser

Gravitational-Wave Detection

Mirror 1

Mirror 2

2) Laser light |α�

~ km

3) Interference

4) Photo-electric effect

Photo diode

42

Photo-electric current modulated at GW frequency

(“unbiased estimator”)

1) Quasi-free test mass mirrors

GW induced distance change

Page 22: Gravitational-Wave Detectors - DESY · Gravitational-Wave Detection Mirror 1 Mirror 2 ~ km Photo diode 9 1) Quasi-free test mass mirrors GW induced distance change • Laser interferometers

22

Roman Schnabel, 02 / September/ 2016 University of Hamburg

Calibration of Photo Diode Quantum Efficiency

43

Total Efficiency: (97.5 ± 0.1)% à PD: (99.5 ± 0.5)%

(99.05 ± 0.45)%

99

.8%

[H. Vahlbruch, MM, KD, RS, Phys. Rev. Lett., accepted (2016)]

Roman Schnabel, 02 / September/ 2016 University of Hamburg

The Einstein Telescope

44

•  10 km arms

•  under ground

•  Cryo-cooled silicon mirrors

•  10 dB squeezed light at 1064 nm and 1550 nm

European design study

[M. Punturo et al., Class. Quantum Grav. 084007 (2010)]

Page 23: Gravitational-Wave Detectors - DESY · Gravitational-Wave Detection Mirror 1 Mirror 2 ~ km Photo diode 9 1) Quasi-free test mass mirrors GW induced distance change • Laser interferometers

23

Roman Schnabel, 02 / September/ 2016 University of Hamburg 45

Summary / Outlook

•  Squeezed light can be used to calibrate photo detectors

•  The GW detector GEO600 uses squeezed light in observational runs.

•  Most likely, squeezed light will be used in all future GW detectors.

•  The nonclassical (paradoxical) part of quantum mechanics will improve the detection of gravitational waves.