gravitational instability & planetesimal formation instability & planetesimal formation...

25
Chris Ormel (2016) [Star & Planet Formation || Lecture 9: Gravitational instability and planetesimal formation] 1/25 Gravitational instability & planetesimal formation HR8799 Marois et al. 2010 67P/Churyumov– Gerasimenko

Upload: phamthuan

Post on 20-May-2019

223 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Gravitational instability & planetesimal formation instability & planetesimal formation HR8799 Marois et al. 2010 67P/Churyumov– Gerasimenko Chris Ormel (2016) [Star & Planet Formation

Chris Ormel (2016) [Star & Planet Formation || Lecture 9: Gravitational instability and planetesimal formation] 1/25

Gravitational instability & planetesimal formation

HR8799Marois et al. 2010

67P/Churyumov–Gerasimenko

Page 2: Gravitational instability & planetesimal formation instability & planetesimal formation HR8799 Marois et al. 2010 67P/Churyumov– Gerasimenko Chris Ormel (2016) [Star & Planet Formation

Chris Ormel (2016) [Star & Planet Formation || Lecture 9: Gravitational instability and planetesimal formation] 2/25

Gravitational instability and planetesimal formation

● Dispersion relation– for thin disks, Toomre-Q – giant planet formation– planetesimal formation: Goldreich-Ward (GW)

mechanism

● Collective effects– Collective particle velocities, Kelvin-Helmholtz instability,

Streaming instability

Page 3: Gravitational instability & planetesimal formation instability & planetesimal formation HR8799 Marois et al. 2010 67P/Churyumov– Gerasimenko Chris Ormel (2016) [Star & Planet Formation

Chris Ormel (2016) [Star & Planet Formation || Lecture 9: Gravitational instability and planetesimal formation] 3/25

From last week...

Sticking of micron-size grains ✓– low Δv– large vstick

Sticking of mm/cm-size pebbles ?– Δv increases (turbulence, drift)– vstick decrease

Meter-size boulders unlikely to stick– “meter size” (τp~1) barrier– caveat: fractal growth (?)

Perhaps growth by sticking stalls(bouncing, fragmentation)

However: (even small) particles can settle into a very thin midplane

The dust-dominated midplane may become gravitationally-unstable and collapses (fragments) into planetesimals!

hgasmidplane

Page 4: Gravitational instability & planetesimal formation instability & planetesimal formation HR8799 Marois et al. 2010 67P/Churyumov– Gerasimenko Chris Ormel (2016) [Star & Planet Formation

Chris Ormel (2016) [Star & Planet Formation || Lecture 9: Gravitational instability and planetesimal formation] 4/25

– dispersion relation for thin disks:

ω2 = κ2 -2πGΣk +k2cs2

– giant planet formation

– planetesimal formation

Blackboard

Page 5: Gravitational instability & planetesimal formation instability & planetesimal formation HR8799 Marois et al. 2010 67P/Churyumov– Gerasimenko Chris Ormel (2016) [Star & Planet Formation

Chris Ormel (2016) [Star & Planet Formation || Lecture 9: Gravitational instability and planetesimal formation] 5/25

Dispersion relation results

Gas Solids

Name Disk instability Goldreich-Wardmechanism

Important scales λc = 2cs2/GΣgas

(most unstable λ)λc= 4π2Σp/Ω

2

(λ>λc unstable)

Condition instability QT < 1Also: cooling gas

hp < λc

Outcome Gas giants Planetesimals

Problem: – Need massive disk– rapid cooling– too massive planets?

Kelvin-Helmholtz (KH) turbulence

Page 6: Gravitational instability & planetesimal formation instability & planetesimal formation HR8799 Marois et al. 2010 67P/Churyumov– Gerasimenko Chris Ormel (2016) [Star & Planet Formation

Chris Ormel (2016) [Star & Planet Formation || Lecture 9: Gravitational instability and planetesimal formation] 6/25

Kelvin-Helmholtz turbulence

Kevin Schaal/youtube

Page 7: Gravitational instability & planetesimal formation instability & planetesimal formation HR8799 Marois et al. 2010 67P/Churyumov– Gerasimenko Chris Ormel (2016) [Star & Planet Formation

Chris Ormel (2016) [Star & Planet Formation || Lecture 9: Gravitational instability and planetesimal formation] 7/25

Page 8: Gravitational instability & planetesimal formation instability & planetesimal formation HR8799 Marois et al. 2010 67P/Churyumov– Gerasimenko Chris Ormel (2016) [Star & Planet Formation

Chris Ormel (2016) [Star & Planet Formation || Lecture 9: Gravitational instability and planetesimal formation] 8/25

Page 9: Gravitational instability & planetesimal formation instability & planetesimal formation HR8799 Marois et al. 2010 67P/Churyumov– Gerasimenko Chris Ormel (2016) [Star & Planet Formation

Chris Ormel (2016) [Star & Planet Formation || Lecture 9: Gravitational instability and planetesimal formation] 9/25

Page 10: Gravitational instability & planetesimal formation instability & planetesimal formation HR8799 Marois et al. 2010 67P/Churyumov– Gerasimenko Chris Ormel (2016) [Star & Planet Formation

Chris Ormel (2016) [Star & Planet Formation || Lecture 9: Gravitational instability and planetesimal formation] 10/25

Dust-dominant layer

midplane (dust dominated)

z

r

gas dominant

SettlingParticles end up near z~0.

Collectively their density exceeds that of the gas: ρp>ρgas (in midplane)

dust dominate the dynamics →

midplane tends to Keplerian rotation and drags gas along

Difference of ~ηvK triggers KH-instability

midplane

layer above midplane (dust-free)

rotates:vK – ηvK

vK

z

φ

Page 11: Gravitational instability & planetesimal formation instability & planetesimal formation HR8799 Marois et al. 2010 67P/Churyumov– Gerasimenko Chris Ormel (2016) [Star & Planet Formation

Chris Ormel (2016) [Star & Planet Formation || Lecture 9: Gravitational instability and planetesimal formation] 11/25

Driving equations(Sometimes referred to as NSH-solutions, after Nagakawa et al. 1986)

Back reaction(Newton's 3rd law)

Pressure gradient(involves ηvK)

net accelerationin rotating frame(approximate 0)

solids:

gas:

4 equations, 4 unknown→ solve ur, uφ, vr vφ

as function of ρp, tstop

For the KH-instabilitywe are interested in uφ at midplane

Q: Instability when: A) uφ = 0B) uφ = -ηvK

Page 12: Gravitational instability & planetesimal formation instability & planetesimal formation HR8799 Marois et al. 2010 67P/Churyumov– Gerasimenko Chris Ormel (2016) [Star & Planet Formation

Chris Ormel (2016) [Star & Planet Formation || Lecture 9: Gravitational instability and planetesimal formation] 12/25

Solution

Z :dust-to-gas ratio “metallicity”τp :dimensionless tstopη :pressure gradient parameter

HW 1.10interpret limits

Z → 0τp→ 0, ∞

For the KHI uφ is the most relevant

uφ→ 0: midplane rotates Keplerian,vertical shear (KHI)

uφ→ –ηvK: midplane rotates subKeplerian, no vertical shear

Solids

Gas

Page 13: Gravitational instability & planetesimal formation instability & planetesimal formation HR8799 Marois et al. 2010 67P/Churyumov– Gerasimenko Chris Ormel (2016) [Star & Planet Formation

Chris Ormel (2016) [Star & Planet Formation || Lecture 9: Gravitational instability and planetesimal formation] 13/25

NSH solution

Whether or not the KHI is triggered depends on the Richardson number:

nominator buoyancy (stabilizing)

denominatorshear (destabilizing)

Ricrit

critical Richardson number; around unity; Ri > Ricrit for stability

Page 14: Gravitational instability & planetesimal formation instability & planetesimal formation HR8799 Marois et al. 2010 67P/Churyumov– Gerasimenko Chris Ormel (2016) [Star & Planet Formation

Chris Ormel (2016) [Star & Planet Formation || Lecture 9: Gravitational instability and planetesimal formation] 14/25

Recapitulate...Goal: planetesimal formation

particle collisionsuncertain (Δv ~ 10 m/sec)

GI of a dense solid layera.k.a. Goldreich-Ward mechansim

Requires:a very thin particle disk (hp < λc)

Problem:very thin particle layers will force the gas to move Keplerian and can trigger KHI when Ri < 1

No KHI:Disks avoid triggering KHI→ GW-mechanism viable

Planetesimals!

KHI triggered:→ Turbulence lofts particle back up (hp > λc); no GI

No planetesimals

Page 15: Gravitational instability & planetesimal formation instability & planetesimal formation HR8799 Marois et al. 2010 67P/Churyumov– Gerasimenko Chris Ormel (2016) [Star & Planet Formation

Chris Ormel (2016) [Star & Planet Formation || Lecture 9: Gravitational instability and planetesimal formation] 15/25

Streaming instability

KH-stable?In HW 1.11 you will assess w/r or not the GW-mechanism is viable

A: only for very massive disks

Alternative: One can conduct a linear perturbation analysis to the (KH-stable) NSH-solutions for the 2-fluid (dust+gas) mixture!

It turns out that the 2-fluid harbors exponentially-growing modes for ρp, especially for τp~1 particles. This is known as the streaming instability(Youdin & Goodman 2005)

Page 16: Gravitational instability & planetesimal formation instability & planetesimal formation HR8799 Marois et al. 2010 67P/Churyumov– Gerasimenko Chris Ormel (2016) [Star & Planet Formation

Chris Ormel (2016) [Star & Planet Formation || Lecture 9: Gravitational instability and planetesimal formation] 16/25

Streaming instability

Streaming instability (SI)Linear perturbation analysis (Youdin & Goodman 2005) quite technical.

SI occurs even in absence of self-gravity!

Best analogies are clusters of cyclists or geese that organize themselves in the optimal way to deal with the headwind!

Nonlinear effects occur when perturbations gets large; can best be investigates by hydrodynamical simulations

… and bound clumps when gravity is accounted for

Page 17: Gravitational instability & planetesimal formation instability & planetesimal formation HR8799 Marois et al. 2010 67P/Churyumov– Gerasimenko Chris Ormel (2016) [Star & Planet Formation

Chris Ormel (2016) [Star & Planet Formation || Lecture 9: Gravitational instability and planetesimal formation] 17/25

Streaming instability

Johansen, Klahr, & Henning (2011)

Initial condition: dense-layer of pebble-size particles: τp ~ 0.25–1

Unit of mass is Ceres (already 1,000 km)

Very big planetesimals form, but this may be a question of resolution

Page 18: Gravitational instability & planetesimal formation instability & planetesimal formation HR8799 Marois et al. 2010 67P/Churyumov– Gerasimenko Chris Ormel (2016) [Star & Planet Formation

Chris Ormel (2016) [Star & Planet Formation || Lecture 9: Gravitational instability and planetesimal formation] 18/25

Streaming instability

Johansen, Klahr, & Henning (2011)

Initial condition: dense-layer of pebble-size particles: τp ~ 0.25–1

Unit of mass is Ceres (already 1,000 km)

Very big planetesimals form, but this may be a question of resolution

Page 19: Gravitational instability & planetesimal formation instability & planetesimal formation HR8799 Marois et al. 2010 67P/Churyumov– Gerasimenko Chris Ormel (2016) [Star & Planet Formation

Chris Ormel (2016) [Star & Planet Formation || Lecture 9: Gravitational instability and planetesimal formation] 19/25

Streaming instability

Johansen, Klahr, & Henning (2011)

Initial condition: dense-layer of pebble-size particles: τp ~ 0.25–1

Unit of mass is Ceres (already 1,000 km)

Very big planetesimals form, but this may be a question of resolution

Page 20: Gravitational instability & planetesimal formation instability & planetesimal formation HR8799 Marois et al. 2010 67P/Churyumov– Gerasimenko Chris Ormel (2016) [Star & Planet Formation

Chris Ormel (2016) [Star & Planet Formation || Lecture 9: Gravitational instability and planetesimal formation] 20/25

Homework set changes

● New deadline: Tuesday 13:00 (sharp! no delays/exceptions!)

● No more scans!● Bonus questions (updated problem set on BB)

Page 21: Gravitational instability & planetesimal formation instability & planetesimal formation HR8799 Marois et al. 2010 67P/Churyumov– Gerasimenko Chris Ormel (2016) [Star & Planet Formation

Chris Ormel (2016) [Star & Planet Formation || Lecture 9: Gravitational instability and planetesimal formation] 21/25

Project (2 more weeks)

Communicate!

Page 22: Gravitational instability & planetesimal formation instability & planetesimal formation HR8799 Marois et al. 2010 67P/Churyumov– Gerasimenko Chris Ormel (2016) [Star & Planet Formation

Chris Ormel (2016) [Star & Planet Formation || Lecture 9: Gravitational instability and planetesimal formation] 22/25

Exercise 1.9

Bonus HWcompare the (specific) energy across a scale λ

e.g. Etherm ~ λ2 cs2

only Toomre-Q criterion

Page 23: Gravitational instability & planetesimal formation instability & planetesimal formation HR8799 Marois et al. 2010 67P/Churyumov– Gerasimenko Chris Ormel (2016) [Star & Planet Formation

Chris Ormel (2016) [Star & Planet Formation || Lecture 9: Gravitational instability and planetesimal formation] 23/25

Exercise 1.10 (HW)

(a)–(c) You get kudos only for the physical interpretation! (“What does it mean”)

(d) More challenging. Take τp= 0 and show that this effectively lowers η. Consider the definition of η to see why you get a reduced headwind?

Page 24: Gravitational instability & planetesimal formation instability & planetesimal formation HR8799 Marois et al. 2010 67P/Churyumov– Gerasimenko Chris Ormel (2016) [Star & Planet Formation

Chris Ormel (2016) [Star & Planet Formation || Lecture 9: Gravitational instability and planetesimal formation] 24/25

Exercise 1.11 (HW)

This is a challenging exercise. See HW-notes for instructions!

You should “estimate” the gradients involved in the definition of Ri, e.g.,

dρ → Δρ = …dz → Δz = …duφ→ Δuφ = ...

Page 25: Gravitational instability & planetesimal formation instability & planetesimal formation HR8799 Marois et al. 2010 67P/Churyumov– Gerasimenko Chris Ormel (2016) [Star & Planet Formation

Chris Ormel (2016) [Star & Planet Formation || Lecture 9: Gravitational instability and planetesimal formation] 25/25

Exercise 1.12 (HW)

This is another n*σ*Δv exercise.

You can assume that Δv is given by the eccentricity of the planetesimals (dispersion-dominated regime)