goal: fast and robust velocity estimation p1p1 p2p2 p3p3 p4p4 our approach: alignment probability...

86
Goal: Fast and Robust Velocity Estimation P 1 P 2 P 3 P 4 Our Approach: Alignment Probability Spatial Distance Color Distance (if available) Probability of Occlusion Annealed Dynamic Histograms Combining 3D Shape, Color, and Motion for Robust Anytime Tracking David Held, Jesse Levinson, Sebastian Thrun, and Silvio Savarese

Upload: sophia-skinner

Post on 21-Dec-2015

216 views

Category:

Documents


0 download

TRANSCRIPT

  • Slide 1
  • Goal: Fast and Robust Velocity Estimation P1P1 P2P2 P3P3 P4P4 Our Approach: Alignment Probability Spatial Distance Color Distance (if available) Probability of Occlusion Annealed Dynamic Histograms Combining 3D Shape, Color, and Motion for Robust Anytime Tracking David Held, Jesse Levinson, Sebastian Thrun, and Silvio Savarese
  • Slide 2
  • Goal: Fast and Robust Velocity Estimation Combining 3D Shape, Color, and Motion for Robust Anytime Tracking David Held, Jesse Levinson, Sebastian Thrun, and Silvio Savarese Baseline: Centroid Kalman Filter Local Search Poor Local Optimum! t+1t Baseline: ICP Annealed Dynamic Histograms
  • Slide 3
  • Goal: Fast and Robust Velocity Estimation P1P1 P2P2 P3P3 P4P4 Our Approach: Alignment Probability Spatial Distance Color Distance (if available) Probability of Occlusion Combining 3D Shape, Color, and Motion for Robust Anytime Tracking David Held, Jesse Levinson, Sebastian Thrun, and Silvio Savarese Annealed Dynamic Histograms
  • Slide 4
  • Motivation Quickly and robustly estimate the speed of nearby objects
  • Slide 5
  • Laser Data Camera Images System
  • Slide 6
  • Laser Data Camera Images System Previous Work (Teichman, et al)
  • Slide 7
  • System Laser Data Camera Images This Work Velocity Estimation Previous Work (Teichman, et al)
  • Slide 8
  • Velocity Estimation t
  • Slide 9
  • t+1t
  • Slide 10
  • Velocity Estimation t+1t
  • Slide 11
  • Velocity Estimation t+1t
  • Slide 12
  • Velocity Estimation t+1t
  • Slide 13
  • ICP Baseline
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Local Search Poor Local Optimum! ICP Baseline
  • Slide 18
  • Tracking Probability
  • Slide 19
  • Velocity Estimation t
  • Slide 20
  • t+1t
  • Slide 21
  • Velocity Estimation t+1t
  • Slide 22
  • Velocity Estimation t+1t
  • Slide 23
  • Velocity Estimation t+1t
  • Slide 24
  • Velocity Estimation t+1t
  • Slide 25
  • Velocity Estimation t+1t XtXt
  • Slide 26
  • Velocity Estimation t+1t XtXt
  • Slide 27
  • Measurement Model Motion Model Tracking Probability
  • Slide 28
  • Measurement Model Motion Model Tracking Probability Constant velocity Kalman filter
  • Slide 29
  • Measurement Model Tracking Probability Motion Model
  • Slide 30
  • Measurement Model Tracking Probability Motion Model
  • Slide 31
  • Measurement Model Tracking Probability Motion Model
  • Slide 32
  • Measurement Model Tracking Probability Motion Model
  • Slide 33
  • Measurement Model Tracking Probability Motion Model
  • Slide 34
  • Measurement Model Tracking Probability Motion Model
  • Slide 35
  • Measurement Model Tracking Probability Motion Model
  • Slide 36
  • Measurement Model Tracking Probability Motion Model
  • Slide 37
  • Measurement Model Tracking Probability Motion Model
  • Slide 38
  • Measurement Model Tracking Probability Motion Model
  • Slide 39
  • Measurement Model Tracking Probability Motion Model
  • Slide 40
  • Measurement Model Tracking Probability Motion Model k
  • Slide 41
  • Measurement Model Tracking Probability Motion Model Sensor noise Sensor resolution k
  • Slide 42
  • Slide 43
  • Delta Color Value Probability Color Probability
  • Slide 44
  • Including Color
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Delta Color Value Probability
  • Slide 50
  • Including Color Delta Color Value Probability
  • Slide 51
  • Including Color Delta Color Value Probability
  • Slide 52
  • Probabilistic Framework 3D Shape Color Tracking Motion History
  • Slide 53
  • Tracking Probability P1P1 P2P2 P3P3 P4P4
  • Slide 54
  • vyvy vxvx ? ? ? ? ?
  • Slide 55
  • vyvy vxvx
  • Slide 56
  • Dynamic Decomposition vyvy vxvx
  • Slide 57
  • vyvy vxvx
  • Slide 58
  • vyvy vxvx
  • Slide 59
  • vyvy vxvx Derived from minimizing KL-divergence between approximate distribution and true posterior
  • Slide 60
  • Annealing Inflate the measurement model
  • Slide 61
  • Annealing Inflate the measurement model
  • Slide 62
  • Annealing Inflate the measurement model
  • Slide 63
  • Algorithm 1.For each hypothesis A.Compute the probability of the alignment Measurement Model Motion Model
  • Slide 64
  • Algorithm 1.For each hypothesis A.Compute the probability of the alignment B.Finely sample high probability regions Measurement Model Motion Model
  • Slide 65
  • Algorithm 1.For each hypothesis A.Compute the probability of the alignment B.Finely sample high probability regions C.Go to step 1 to compute the probability of new hypotheses Measurement Model Motion Model
  • Slide 66
  • Annealing More time More accurate
  • Slide 67
  • Anytime Tracker
  • Slide 68
  • Choose runtime based on: Total runtime requirements Importance of tracked object...
  • Slide 69
  • Comparisons
  • Slide 70
  • Slide 71
  • Slide 72
  • Kalman Filter
  • Slide 73
  • Kalman Filter ADH Tracker (Ours)
  • Slide 74
  • Models
  • Slide 75
  • Quantitative Evaluation 2
  • Slide 76
  • Sampling Strategies
  • Slide 77
  • Advantages over Radar
  • Slide 78
  • Conclusions 3D Shape Color Tracking Motion History Robust to Occlusions, Viewpoint Changes
  • Slide 79
  • Conclusions 3D Shape Color Tracking Motion History Robust to Occlusions, Viewpoint Changes Runs in Real-time Robust to Initialization Errors
  • Slide 80
  • Slide 81
  • Delta Color Value Probability Color Probability
  • Slide 82
  • Error vs Number of Points
  • Slide 83
  • Error vs Distance
  • Slide 84
  • Error vs Number of Frames
  • Slide 85
  • Slide 86