gluconeogénesis (1)

Upload: selbor951

Post on 08-Jan-2016

213 views

Category:

Documents


0 download

DESCRIPTION

gluconeogénesis (1)gluconeogénesis (1)gluconeogénesis (1)gluconeogénesis (1)gluconeogénesis (1)

TRANSCRIPT

Metabolismo Hidratos de Carbono

Metabolismo Hidratos de CarbonoGluconeognesis

2FIGURE 14-15 Carbohydrate synthesis from simple precursors. The pathway from phosphoenolpyruvate to glucose 6-phosphate is common to the biosynthetic conversion of many different precursors of carbohydrates in animals and plants. The path from pyruvate to phosphoenolpyruvate leads through oxaloacetate, an intermediate of the citric acid cycle, which we discuss in Chapter 16. Any compound that can be converted to either pyruvate or oxaloacetate can therefore serve as starting material for gluconeogenesis. This includes alanine and aspartate, which are convertible to pyruvate and oxaloacetate, respectively, and other amino acids that can also yield three- or four-carbon fragments, the so-called glucogenic amino acids (Table 14-4; see also Figure 18-15). Plants and photosynthetic bacteria are uniquely able to convert CO2 to carbohydrates, using the glyoxylate cycle (p. 639).

4

5

6FIGURE 14-16 Opposing pathways of glycolysis and gluconeogenesis in rat liver. The reactions of glycolysis are on the left side, in red; the opposing pathway of gluconeogenesis is on the right, in blue. The major sites of regulation of gluconeogenesis shown here are discussed later in this chapter, and in detail in Chapter 15. Figure 14-19 illustrates an alternative route for oxaloacetate produced in mitochondria.

7FIGURE 14-16 (part 1) Opposing pathways of glycolysis and gluconeogenesis in rat liver. The reactions of glycolysis are on the left side, in red; the opposing pathway of gluconeogenesis is on the right, in blue. The major sites of regulation of gluconeogenesis shown here are discussed later in this chapter, and in detail in Chapter 15. Figure 14-19 illustrates an alternative route for oxaloacetate produced in mitochondria.

8FIGURE 14-16 (part 2) Opposing pathways of glycolysis and gluconeogenesis in rat liver. The reactions of glycolysis are on the left side, in red; the opposing pathway of gluconeogenesis is on the right, in blue. The major sites of regulation of gluconeogenesis shown here are discussed later in this chapter, and in detail in Chapter 15. Figure 14-19 illustrates an alternative route for oxaloacetate produced in mitochondria.

9

11

12Regulacin

1516

17

18FIGURE 15-17b Regulation of fructose 2,6-bisphosphate level. (b) Both enzyme activities are part of the same polypeptide chain, and they are reciprocally regulated by insulin and glucagon.

Ciclo de CoriRuta glucosa Lactato glucosa19

Ciclo de la Glucosa-Alanina20