gld calorimetry 2005/mar/03 k. kawagoe / kobe-u. introduction current design –to be optimized for...

16
GLD Calorimetry 2005/Mar/03 K. Kawagoe / Kobe-U

Upload: sabina-park

Post on 05-Jan-2016

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: GLD Calorimetry 2005/Mar/03 K. Kawagoe / Kobe-U. Introduction Current design –To be optimized for Particle Flow Algorithm (PFA) aiming at 30%/sqrt(E)

GLD Calorimetry

2005/Mar/03K. Kawagoe / Kobe-U

Page 2: GLD Calorimetry 2005/Mar/03 K. Kawagoe / Kobe-U. Introduction Current design –To be optimized for Particle Flow Algorithm (PFA) aiming at 30%/sqrt(E)

Introduction

• Current design– To be optimized for Particle Flow Algorithm (PF

A) aiming at 30%/sqrt(E) resolution for jets– ECAL: W/Scinti with SiPM analog readout– HCAL: Pb(Fe)/Scinti with SiPM (semi-) digital r

eadout– Other options ?

• SiW ?? (no manpower…)

Page 3: GLD Calorimetry 2005/Mar/03 K. Kawagoe / Kobe-U. Introduction Current design –To be optimized for Particle Flow Algorithm (PFA) aiming at 30%/sqrt(E)

The “GLD” model under consideration

SiVTX pixel (cold version)

HCAL(Pb(Fe)/scinti or digital)

W/Scinti ECAL

TPC(Jet chamber as option)

Si intermedi.-Trk

SC-coil

SiVTX pixel

Pb/scinti HCAL

Pb/Scinti ECAL

Jet chamber

Si intermedi.-Trk

SC-coil

“GLC” design (ACFA) “GLD” (world-wide)

Page 4: GLD Calorimetry 2005/Mar/03 K. Kawagoe / Kobe-U. Introduction Current design –To be optimized for Particle Flow Algorithm (PFA) aiming at 30%/sqrt(E)

• Area of EM CAL (Barrel + Endcap)– SiD: ~40 m2 / layer– TESLA: ~80 m2 / layer– GLD: ~100 m2 / layer– (GLC: ~130 m2 /layer)

GLD

~2.1m

Comparison of size of EM CAL surface

Page 5: GLD Calorimetry 2005/Mar/03 K. Kawagoe / Kobe-U. Introduction Current design –To be optimized for Particle Flow Algorithm (PFA) aiming at 30%/sqrt(E)

Layout of scintillator layers• We have an experience of

– Strip-array ECAL (20cm x 1cm)– Small tile ECAL (4cm x 4cm)

• Ghost clusters from strip-array layers would be easily removed with additional small-tile layers (effective cell size 1cm x 1cm).

• This idea SHOULD be well confirmed by full simulation studies.– If NOT, we would need ECAL with smaller tiles

(2cm x 2cm or less ?)• Strip & Tile CAL can be achieved with SiPM

readout (directly attached to WLS fibers) .

Page 6: GLD Calorimetry 2005/Mar/03 K. Kawagoe / Kobe-U. Introduction Current design –To be optimized for Particle Flow Algorithm (PFA) aiming at 30%/sqrt(E)

Common layout for ECAL and HCAL

Page 7: GLD Calorimetry 2005/Mar/03 K. Kawagoe / Kobe-U. Introduction Current design –To be optimized for Particle Flow Algorithm (PFA) aiming at 30%/sqrt(E)

Number of readout channels

• With 20cm x 1cm strips and 4cm x 4cm tiles

• ECAL prototype– 650 analog readout channels

• Calorimetry for the real detector– ECAL: ~2.0M analog readout channels.– HCAL: ~5.5M (semi-)digital readout channels– A big challenge !!

• Number of channels could easily change the order depending on the strip/tile size.

Page 8: GLD Calorimetry 2005/Mar/03 K. Kawagoe / Kobe-U. Introduction Current design –To be optimized for Particle Flow Algorithm (PFA) aiming at 30%/sqrt(E)

R&D issues

• Design optimization (scintillator shape and size)– to remove “ghost” clusters– to match tracks and clustersfor particle flow algorithm

• Photo-sensors (SiPM)• Readout electronics• Gain monitoring system • Mechanical structure

Page 9: GLD Calorimetry 2005/Mar/03 K. Kawagoe / Kobe-U. Introduction Current design –To be optimized for Particle Flow Algorithm (PFA) aiming at 30%/sqrt(E)

Possible schedule (as of Sep. 2004, very very

preliminary)• 2004-2005

– Design optimization– R&D of SiPM (DPPD)– R&D of readout electronics

• 2005-2006– Construction of an ECAL test module– Tests with cosmic-rays

• 2006-2008– Test beam studies of the ECAL test module

“standalone”– Test beam studies in combination with CALICE

HCAL

Page 10: GLD Calorimetry 2005/Mar/03 K. Kawagoe / Kobe-U. Introduction Current design –To be optimized for Particle Flow Algorithm (PFA) aiming at 30%/sqrt(E)

Simulation studies

• Jupiter simulation– Weekly acfa-sim-j TV meeting– CAL and MUD structures are implemented.– Ready for physics studies ?– Study of particle flow algorithm (S. Yamamoto)

• G4 Simulation with simple structure– Energy resolution by M.C. Chuan (Tohoku)– Strip-array ECAL (Tsukuba)– DigiCAL simulation (Shinshu)– Clustering/particle flow algorithm (Kobe)

Page 11: GLD Calorimetry 2005/Mar/03 K. Kawagoe / Kobe-U. Introduction Current design –To be optimized for Particle Flow Algorithm (PFA) aiming at 30%/sqrt(E)

Hardware studies

• Scintillator strips/tiles– Being studied in Niigata

• SiPM– Being developed in Hamamatsu– Being tested in Niigata and Kobe

• Readout electronics– Being designed by M. Tanaka at KEK

Page 12: GLD Calorimetry 2005/Mar/03 K. Kawagoe / Kobe-U. Introduction Current design –To be optimized for Particle Flow Algorithm (PFA) aiming at 30%/sqrt(E)

Mon power in Japan

• Japanese staffs– KEK (J. Kanzaki)– Kobe U. (K. Kawagoe)– Konan U. (F. Kajino)– Niigata U. (H. Miyata)– Shinshu U. (T. Takeshita)– Tsukuba U. (S. Kim, H. Matsunaga)

• No core staffs at KEK– Problem in keeping activity – Problem in getting budget from KEK

Page 13: GLD Calorimetry 2005/Mar/03 K. Kawagoe / Kobe-U. Introduction Current design –To be optimized for Particle Flow Algorithm (PFA) aiming at 30%/sqrt(E)

Budget crisis in FY2005• No money for CAL R&D via KEK ILC group

– Because we have no core staffs at KEK• Japan-US program failed for CAL R&D

– (Partly) because we have no core staffs at KEK• We currently have

– Kakenhi (Takeshita, 2004+2005)– KEK Collaborative development research (Takeshita, 2004+200

5)– Japan-Germany joint project (CAL+TPC, travel money, 2005+200

6)• We are applying / going to apply

– Several Kakenhi proposals– Japan-Russia joint project (with JINR)– Japan-Korea joint project ??

Page 14: GLD Calorimetry 2005/Mar/03 K. Kawagoe / Kobe-U. Introduction Current design –To be optimized for Particle Flow Algorithm (PFA) aiming at 30%/sqrt(E)

International collaborations• Korea

– Kyungpook National U. (K. Cho, D.H. Kim, Y.D. Oh, J.S. Suh )– Seoul National U. (S. Kim )– SungKunKwan U. (I. Yu)– Monthly Japan-Korea TV meeting (2005 Feb ~ )– Japan-Korea CAL meeting in Daegu (2005 July)– They are going to make their own EM prototype

• W-plates, Scintillator, SiPM, electronics• CAL simulation with Mokka

• Russia– JINR (P. Evtukhovitch, et al.) – Peter will visit Japan for 2 months in 2005.– ISTC3000 failed. Planning to apply a new proposal to ISTC.– Applying to the new Japan-Russia joint project (JSPS)

• Good relation with CALICE– Communication with Analog HCAL group at DESY– Tsukuba DC for SiW ECAL beamtest at DESY (2005 Feb ~, a half year)– Japan-Germany joint project approved (2005+2006, CAL + TPC)– Japan-France joint project ?

Page 15: GLD Calorimetry 2005/Mar/03 K. Kawagoe / Kobe-U. Introduction Current design –To be optimized for Particle Flow Algorithm (PFA) aiming at 30%/sqrt(E)

CAL-related talks at LCWS05• From Japan

– H. Miyata: R&D of calorimeter using striplet/cube scintillators with SiPM

– T. Takeshita: Progress of photosensors for scintillator– H. Matsunaga: Simulation study of scintillator-based calorimeter– N. Nakajima: Correlation matrix method for Pb/Scinti sampling ca

lorimeter– T. Takeshita for M. Tanaka: Electronics for scintillator-based calo

rimeter (title to be confirmed)• From Korea

– D.H. Kim: The status of the scintillator-based calorimetry R&D activities in Korea

– S. Nam: CERN beam test of Silicon-Tungsten calorimeter test module

Page 16: GLD Calorimetry 2005/Mar/03 K. Kawagoe / Kobe-U. Introduction Current design –To be optimized for Particle Flow Algorithm (PFA) aiming at 30%/sqrt(E)

Summary• Our default calorimeter design

– ECAL W+Scinti+SiPM, analog readout– HCAL Pb(Fe)+Scinti+SiPM, (semi-)digital readout

• R&D issues– Design optimization– Scinti./SiPM– Readout electronics– Gain monitoring– Mechanical structure

• Schedule– Test beam for ECAL prototype in 2006 ?

• International collaborations growing• Lack of

– Core staffs at KEK– Budget for prototype/test beam