girder design

4
 B. DESIGN FOOTING GIRDER Ref. Co de : NSCP Mark : FG1 D.End Center C. End CONST ANT VA!ES " #-D$0 #-D$0 #-D$0 %% & 40.00 '' : %on%rete %o(er f)% & 24.00 N*''+ : %o',re(e tren f2 & 414.00 N*''+ : e2d tren/t n t 600 f( & 275.00 N*''+ : e2d tren/t n t 4 & 0.50 60.786 0.78 : red9%ton fa%tor fo #8 : torona2 an/2e 400  3 0.01; : 'a<. tee2 rato #-D$0 #-D$0 #-D$0 0.00=# : 'n. tee2 rato D10>180 D10>$00 D10>180 FORM!AS " A. MAXIMUM ULTIMATE DESIGN FORCES M9 & 4 f)% 3 d+ ? @1-0.85? : e. for n/2-renf o%aton Mo'ent @M9 Sear T oron A<a2 0.78 < 0.1;; @f)% 3 d : ear %a,. of 9nre To, Botto' V9 T9 P9 V & : ear %a,. of tee2 @kN-' @kN-' @kN @kN-' @kN A(* & V * @f( d : ear renfor%e'e d.end 122.28 93.88 104.11 81.59 67.33 At * & : toron renfor%e' %enter 23.94 94.78 66.73 81.59 T%r & : treo2d toron d.end 122.28 93.88 104.11 81.59 A%,6 P% , & @3< 6 @$3 $ : /ro area 6 /ro @,2eae refe r to 9''ar of /rder tre . A2 & : add. 2on/t9dna2 B. FLEXURE DESIGN RESULTS : (ACI !".8.4# !".1 0.5# !".21.12 .4.1$ o%aton T o, Bar @,29 T orona2 on/t9dna2 Stee26 f r e)d. Botto' Bar @ ,29 Torona2 on/t9dna2 Stee26 ρ F9rned Re'ark ρ F9rned @? f)%*f @''+ t da. A,ro( @? f)%*f @''+ t da. A d.end 0.00== 518.$ # -D$0 1$8;.;# Ok 0.00$8 518.$ # -D$0 1$ %enter 0.000; 518.$ # -D$0 1$8;.;# Ok 0.00$; 518.$ # -D$0 1$ %.end 0.00== 518.$ # -D$0 1$8;.;# Ok 0.00$8 518.$ # -D$0 1$ C. CRAC% CONTROL C&EC% RESUL TS : (ACI !".10.6 $ o%aton To, Bar Botto' Bar f & 0.;f Re'ark f & 0.;f @N*''+ @'' @'' @'' @'' @'' @ d. end $# .# 0 $ 0.7 =0# .; # 10 =.= = Ok. $# .# 0 $ 0 .7 =0#. ; # 10 %enter $#.#0 $0.7 =0#.; # 10=.== Ok. $#.#0 $0.7 =0#.; # 10 %.end $#.#0 $0.7 =0#.; # 10=.== Ok. $#.#0 $0.7 =0#.; # 10 D. S&EAR DESIGN : (ACI !". 11.5# !".21.12.3# !". 21.12.4.2 ' !". 21.12.4.3$ (T)! *+ o%aton Sear Renfor%e'ent Sear Ca,a%t Re9red Ma<. Strr9,*Te S,a%n/ V Sre @'' @kN @kN @'' @'' @'' @ d.end $ -D10 180 187. 0 ;;. 87 78. $= 1$=. #8 0. 00 n.a $#0. 00 =$0.0 0 %enter $ -D10 $00 187. 0 .7; 100 .= 0 1$=. #8 0. 00 n.a $#0 .00 =$0. 0 0 %.end $ -D10 180 187. 0 ;;. 87 78 .$ = 1$=. #8 0. 00 n.a $#0 .00 =$0. 0 0 @Note : te 'a<. de/n 2oad fa%tor for e'% a22 3e do932ed d9rn/ ana2. Ma<. trr9, ,a%n/ at %enter a22 3e d*$ on2. θ & o ρ 'a<  & ρ 'n  & φV% & @Vd - φV% * φ T9 * @$ φ Ao f( %ot θ # φ @f%) 1*$ @A%, $  * P%, @At*P @f( * f2%ot $ θ A2 'n  & 0.#18 @f%) 1*$  A%, * f2 - @At*P f( * f2 A & ρ 3d A & ρ 3d Note : en ρ  ρ 'n 6 9e ρ 'n  to deter 'ne re9red A" Effe%t(e de,t d & - d " @ - 'ean 3ar a 22 3e arran /ed n t ?o 2aer. 1 'a< $ 'a< t. of 3ar n 1t 2aer  a%t 1 'a< $ 'a< t. of 3ar n 1t 2aer  @N*'' $ Note : a%t   te %enter to %enter ,a%n/ of re3ar near te e<tre'e tenon f3er of %on%rete. 1 'a<  & 5#8# * f - $.8%% " $ 'a<  & 78;;7 * f Ht.*Da. of e/ S ,ro( A( ,ro( A('n 1 A('n $  φV% $#<Teφ 1;<Manφ @'' $ @%' $ @%' $

Upload: raymond

Post on 01-Nov-2015

3 views

Category:

Documents


0 download

DESCRIPTION

GIRDER DESIGN MANUAL

TRANSCRIPT

A

B. DESIGN FOOTING GIRDERFRef. Code : NSCP C101-01Mark : FG1

D.EndCenterC. EndCONSTANT VALUES ;4-D204-D204-D20cc =40.00mm: concrete coverf'c =24.00N/mm: compressive strength - concretefyl =414.00N/mm: yield strength in steel - bending600hfyv =275.00N/mm: yield strength in steel - shear =0.90,0.75, 0.75: reduction factor for bending/shear/torsionq =45o: torsional angle400 brmax =0.0186: max. steel ratio4-D204-D204-D20rmin =0.0034: min. steel ratioD10@150D10@200D10@150FORMULAS ; A. MAXIMUM ULTIMATE DESIGN FORCESMu = f'c b d w (1-0.59w): eq. for singly-reinforced memberLocationMoment (Mu)ShearTorsionAxialfVc =0.75 x 0.166 (f'c) b d: shear cap. of unreinforced concreteTopBottomVuTuPuVs =(Vd - fVc ) / f: shear cap. of steel(kN-m)(kN-m)(kN)(kN-m)(kN)Av/ s =Vs / (fyv d): shear reinforcementd.end 122.2893.88104.1181.5967.33At / s =Tu / (2 f Ao fyv cot q): torsion reinforcementcenter23.9494.7866.7381.59Tcr =4 f (fc')1/2(Acp2 / Pcp): threshold torsiond.end122.2893.88104.1181.59Acp, Pcp =(bx h) , (2b + 2h): gross area , gross perimeter of section(please refer to summary of girder stresses for the actual staad forces).Al =(At/s)Ph (fyv / fyl)cot2q: add. longitudinal steel due to torsionAlmin =0.415 (fc')1/2 Acp / fyl - (At/s)Ph fyv / fylB. FLEXURE DESIGN RESULTS : (ACI sec.8.4, sec.10.5, sec.21.12.4.1)LocationTop Bar (*plus Torsional Longitudinal Steel, if req'd.)Bottom Bar (*plus Torsional Longitudinal Steel, if req'd.)r*As = r bdFurnishedRemarksr*As = r bdFurnishedRemarks(w f'c/fy)(mm)qtydia.Asprov(w f'c/fy)(mm)qtydia.AsprovFormulas ;d.end 0.0033915.284"-20"01256.64Ok0.0025915.284"-20"01256.64Okcenter0.0006915.284"-20"01256.64Ok0.0026915.284"-20"01256.64Okc.end0.0033915.284"-20"01256.64Ok0.0025915.284"-20"01256.64OkNotes : When r < rmin , use rmin to determine required As; Effective depth d = h - ds; ( ) - means bars shall be arranged in two layers.

C. CRACK CONTROL CHECK RESULTS : (ACI sec.10.6)LocationTop Bar Bottom Bar fs = 0.6fys1 maxs2 maxqty. of bar in 1st layers actRemarksfs = 0.6fys1 maxs2 maxqty. of bar in 1st layers actRemarks(N/mm)(mm)(mm)(mm)(N/mm2)(mm)(mm)(mm)d.end 248.40280.78304.64103.33Ok.248.40280.78304.64103.33Ok.center248.40280.78304.64103.33Ok.248.40280.78304.64103.33Ok. c.end248.40280.78304.64103.33Ok.248.40280.78304.64103.33Ok.Note : s act is the center to center spacing of rebars near the extreme tension fiber of concrete. s1 max = 94584 / fs - 2.5cc ; s2 max = 75667 / fs

D. SHEAR DESIGN : (ACI sec. 11.5, sec.21.12.3, sec. 21.12.4.2 & sec. 21.12.4.3)(Type of Seismic Risk : High)LocationQty./Dia. of LegsSprovShear ReinforcementShear CapacityRequired*Max. Stirrup/Tie SpacingRemarkAvprovAvmin1Avmin2fVcVsSreq24xTief16xMainfd/4(mm)(mm2)(cm2)(cm2)(kN)(kN)(mm)(mm)(mm)(mm)d.end 2"-10"0150157.0866.5775.23123.450.00n.a240.00320.00253.00Ok.327.212637799948center2"-10"0200157.0888.76100.30123.450.00n.a240.00320.00253.00Ok.327.212637799948c.end2"-10"0150157.0866.5775.23123.450.00n.a240.00320.00253.00Ok.327.212637799948(Note : the max. design load factor for seismic shall be doubled during analysis. Max. stirrup spacing at center shall be d/2 only.)

E. TORSION DESIGN : (ACI sec.11.6)LocationLimitEnc. AreaShear,VTorsion,TV + TPh / 8RemarkAdd. Longitudinal BarSide BarsRemarkTcr / 4AoAv/sAt/ss reqs maxAlAl minAlper side / 4Asb(kN-m)(mm2)(mm2/mm)(mm2/mm)(mm)(mm)(mm2)(mm2)(mm2)(qty-dia.)d.end 8.791168380.000.25313.21192.00Ok.255.85923.34230.832"-12"0N.Gcenter8.791168380.000.25313.21192.00N.G255.85923.34230.832"-12"0N.Gc.end8.791168380.000.25313.21192.00Ok.255.85923.34230.832"-12"0N.G(Note : Torsion effect shall be neglected when Tu< Tcr/4 ; Ao = 0.85Aoh ; Aoh = x1 y1 ; Ph = 2x1 + 2y1 ; x1,y1 = center to center dimesion of stirrups)

E.1 Check Allowable Axial Load (ACI sec.21.3.1.1)E.2 Check Crushing of Concrete Compression Struts (ACI sec.11.6.3.1)Allow.Axial, P = Agf'c/10 =576.00kN > Pu Ok.[(Vumax/bd)2 + (TumaxPh/1.7Aoh2)2]1/2