german np catalyst-tc

1
CATALYTIC EFFECTS OF Tс IONS ON THE Np- HYDRAZINIUM - NITRIC ACID SYSTEM Daria Nikolaevna Tumanova 1 , Konstantin Eduardovich German 1 , Philippe Moisy 2 Michael Lecomte 2 and Vladimir Fedorovich Peretrukhin 1 1- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of RAS, Leninsky pr. 31/4, Moscow, Russia; e-mail : [email protected] 2- DEN, CEA Marcoule, BP 17171 - 30207 BAGNOLS sur CEZE Cedex France AIMS Two main PUREX Products: Pu & U Supplement possible products Np, Tc, Pd, MA.. Interest in Np-237 – Source for Pu-238 (cosmic conquests, heart electric source… ) Np(V) – much more stable compared to all An in Russian reprocessing is redistributed in two streams Tc (FP) accumulation with increase of burn-up Technetium causes problems: Variable Tc species in PUREX solutions : various complexes of Tc(VII) and variable oxidation states Tc(VI,V, IV) Redistribution in different both product and waste streams Already known : catalytic Tc effects on U, Pu and hydrazine redox reactions Limited data for Np-Tc interaction : In absence of Tc the reaction of Np(V) with hydrazine is very slow Investigation of Np(V) chemical behavior in presence of Tc(VII) and Tc(V) in hydrazine – HNO3 system Determination of the reaction orders in Np, Tc, N 2 H 5 + , H + 400 500 600 700 800 900 1000 1100 0 ,00 0 ,04 0 ,08 0 ,12 0 ,16 0 ,20 0 ,24 0 ,28 0 ,32 0 ,36 0 ,40 0 ,44 D w a vele n gth ,nm 400 500 600 700 800 900 1000 1100 0,00 0,04 0,08 0,12 0,16 0,20 0,24 0,28 0,32 0,36 0,40 0,44 D w avelength,n m 400 500 600 700 800 900 1000 1100 0 ,00 0 ,04 0 ,08 0 ,12 0 ,16 0 ,20 0 ,24 0 ,28 0 ,32 0 ,36 0 ,40 0 ,44 D w ave le ngth,nm 400 500 600 700 800 900 1000 1100 0,0 0 0,0 4 0,0 8 0,1 2 0,1 6 0,2 0 0,2 4 0,2 8 0,3 2 0,3 6 0,4 0 0,4 4 D w aveleng th ,n m N 2 H 5 + +Tc(VII) Np (V) Tc(IV)- Tc(V) Tc(IV) Np(V) Tc(V) Np(IV) 0 20 40 60 80 0,0 0,1 0,2 0,3 0,4 D tim e,m in 200 400 0,0 0 0,1 5 0,3 0 D tim e,m in N p(V )reduction to N p(IV)catalized by Tc in variable Tc concentration (1-storderin Tc) y = 1,0589x + 0,2618 R 2 = 0,9952 0 0,2 0,4 0,6 0,8 1 1,2 1,4 0 0,2 0,4 0,6 0,8 1 Lg(C (Tc)) Lg(K0) 0 0,2 0,4 0,6 0,8 1 1,2 1,4 0 0,2 0,4 0,6 0,8 Lg(CHNO3) Lg(K 0 ) N p(V)reduction to N p(IV)catalized by Tc in variable [HN O3] )(3.7-th orderin CHNO3 till 3.5 M) Chem ical mechanism changed y = 3,68x -0,99 R 2 = 0,988 N p(V)reduction to N p(IV)catalized by Tc in ([HNO3]+ [N aNO 3]= 5 M )(1-storderin aH+) y = 1,0099x + 0,7416 R 2 = 0,9966 1 1,05 1,1 1,15 1,2 1,25 1,3 1,35 0,2 0,3 0,4 0,5 0,6 lg(aH+) LgK o Np(V) reduction with N 2 H 5 + catalyzed by Tc(V) follows : zero order in Np(V) 1-st order in Tc , 1-st order in H + at constant ionic forth (HNO 3 + NaNO 3 = 5M) The Use of previously prepared Tc(V) as a catalist in Np(V) reduction with N 2 H 5 + provide the immediate start-up of the reaction with no induction period Determination of the dependence of Np(V) reduction with N 2 H 5 + catalyzed by Tc(V) over Tc, H + , ( HNO 3 and NaNO 3 ) concentrations (temp = 36 o C) Determination of the dependence of Np(V) reduction with N 2 H 5 + catalyzed by Tc(VII) over Tc, H + , ( HNO 3 and NaNO 3 ) concentrations (temp = 45 o C) 4 3 2 3 5 2 4 NH HN N Tc HNO H N TcO IV V VI Np(V) Tc(IV)- Tc(V) Absorption at 980 nm is completely due to Np(V) (checked also by the peak at 1095 nm) in some complex with the reduced Tc Convolution of the absorption at 970 nm is less than calculated from Np(V) reduction = Np(IV) is probably bounded (10exp-5)Tc-Np-N2H 5NO 3-1.6H NO 3 0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 950 1000 1050 1100 Wavelength,nm D 2 3 4 5 6 7 8 9 10 11 0 2 4 6 8 Time,min [Np(V)], m M /l 10,0 mM Tc 15,3 mM Tc 20,1 mM Tc 31,1 mM Tc 8,02 mM Tc 12,5 mM Tc N p(V)reduction by hydrazine catalyzed by previously prepared Tc(V) [Tc], mM K 0 , *10 4 mol/l*min 8.02 1.0 10.0 1.3 12.5 1.8 15.3 2.3 20.1 3.0 31.1 4.7 C(Np)=1,6*10 -3 M/l, С(Tc)=1,15*10 -3 M/l, C(HNO 3 )=1,67 M/l, C 0 (N 2 H 5 NO 3 )=0,3 M/l, t=45 0 C,l=1 cm – d[Np V ]/dτ = d[Np IV (total)]/dτ = k 3 ·[Np V ] = k 3 ·([ Np IV ] – [ Np IV ]) 0 10 20 30 -3,8 -3,6 -3,4 -3,2 -3,0 lg(C ) tim e,m in k 3 =2*10 -2 min -1 1-st order in the consumed Np(V) 0 10 20 30 -4 ,5 -4 ,2 -3 ,9 B D ata2B P o lyno m ialF itofD ata 2_B lg(C ) tim e,m in Not evident for the appearing Np(IV) Np(IV) forms probably A complex with Tc (V) 3 ] [ O Tc Np Tc Np V IV IV V Tc(IV) and Tc(V) form a catalytic cycle with stationary concentration of the latter in the process of Np(V) reduction with N 2 H 5 +

Upload: konstantin-german

Post on 14-Aug-2015

39 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: German np catalyst-tc

CATALYTIC EFFECTS OF Tс IONS ON THE Np-HYDRAZINIUM - NITRIC ACID SYSTEM

 Daria Nikolaevna Tumanova1 , Konstantin Eduardovich German1, Philippe Moisy2

Michael Lecomte2 and Vladimir Fedorovich Peretrukhin1

1- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of RAS,

Leninsky pr. 31/4, Moscow, Russia; e-mail : [email protected]

2- DEN, CEA Marcoule, BP 17171 - 30207 BAGNOLS sur CEZE Cedex France

AIMS

Two main PUREX Products: Pu & U

Supplement possible products Np, Tc, Pd, MA..

Interest in Np-237 – Source for Pu-238 (cosmic conquests, heart electric source… )

Np(V) – much more stable compared to all An

in Russian reprocessing is redistributed in two streams

Tc (FP) accumulation with increase of burn-up Technetium causes problems:Variable Tc species in PUREX solutions : various complexes

of Tc(VII) and variable oxidation states Tc(VI,V, IV) Redistribution in different both product and waste streams Already known : catalytic Tc effects on U, Pu and hydrazine

redox reactions Limited data for Np-Tc interaction

KNOWN: In absence of Tc the reaction of Np(V) with hydrazine is very slow

Investigation of Np(V) chemical behavior in presence of Tc(VII) and Tc(V) in hydrazine – HNO3 system Determination of the reaction orders in Np, Tc, N2H5

+, H+

400 500 600 700 800 900 1000 11000,00

0,04

0,08

0,12

0,16

0,20

0,24

0,28

0,32

0,36

0,40

0,44

D

wavelength,nm 400 500 600 700 800 900 1000 11000,00

0,04

0,08

0,12

0,16

0,20

0,24

0,28

0,32

0,36

0,40

0,44

D

wavelength,nm

400 500 600 700 800 900 1000 11000,00

0,04

0,08

0,12

0,16

0,20

0,24

0,28

0,32

0,36

0,40

0,44

D

wavelength,nm

400 500 600 700 800 900 1000 11000,00

0,04

0,08

0,12

0,16

0,20

0,24

0,28

0,32

0,36

0,40

0,44

D

wavelength,nm

N2H5+

+Tc(VII)Np (V)

Tc(IV)- Tc(V)Tc(IV)Np(V)Tc(V) Np(IV)

0 20 40 60 800,0

0,1

0,2

0,3

0,4

D

time,min

200 4000,00

0,15

0,30

D

time,min

Np(V) reduction to Np(IV) catalized by Tc in variable Tc concentration (1-st order in Tc)

y = 1,0589x + 0,2618

R2 = 0,9952

0

0,2

0,4

0,6

0,8

1

1,2

1,4

0 0,2 0,4 0,6 0,8 1

Lg(C(Tc))

Lg(K

0)

0

0,2

0,4

0,6

0,8

1

1,2

1,4

0 0,2 0,4 0,6 0,8

Lg(CHNO3)

Lg(K

0)

Np(V) reduction to Np(IV) catalized by Tc in variable [HNO3] ) (3.7-th order in CHNO3 till 3.5 M)

Chemical mechanism changed

y = 3,68x - 0,99R2 = 0,988

Np(V) reduction to Np(IV) catalized by Tc in ( [HNO3] + [NaNO3] = 5 M ) (1-st order in aH+)

y = 1,0099x + 0,7416

R2 = 0,9966

1

1,05

1,1

1,15

1,2

1,25

1,3

1,35

0,2 0,3 0,4 0,5 0,6

lg(aH+)

LgK

o

• Np(V) reduction with N2H5+

catalyzed by Tc(V) follows : zero order in Np(V) 1-st order in Tc, 1-st order in H+ at constant ionic forth(HNO3 + NaNO3 = 5M)

The Use of previously prepared Tc(V) as a catalist in Np(V) reduction with N2H5

+ provide the immediate start-up of the reaction with no induction period

Determination of the dependence of Np(V) reduction with N 2H5+ catalyzed by Tc(V) over Tc, H+ , ( HNO3 and NaNO3 ) concentrations (temp = 36oC)

Determination of the dependence of Np(V) reduction with N2H5+ catalyzed by Tc(VII) over Tc, H+ , ( HNO3 and NaNO3 ) concentrations (temp = 45oC)

4323524 NHHNNTcHNOHNTcO IVVVI

Np(V)Tc(IV)- Tc(V)

• Absorption at 980 nm is completely due to Np(V) (checked also by the peak at 1095 nm) in some complex with the reduced Tc

• Convolution of the absorption at 970 nm is less than calculated from Np(V) reduction = Np(IV) is probably bounded

(10exp-5)Tc-Np-N2H5NO3-1.6HNO3

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

950 1000 1050 1100

Wavelength, nm

D

23456789

1011

0 2 4 6 8

Time, min

[Np(

V)],

mM

/l

10,0 mM Tc

15,3 mM Tc20,1 mM Tc

31,1 mM Tc8,02 mM Tc

12,5 mM Tc

Np(V) reduction by hydrazine catalyzed by previously prepared Tc(V)

[Tc], mM K0, *104 mol/l*min

8.02 1.0

10.0 1.3

12.5 1.8

15.3 2.3

20.1 3.0

31.1 4.7

C(Np)=1,6*10-3 M/l,С(Tc)=1,15*10-3 M/l, C(HNO3)=1,67 M/l,C0(N2H5NO3)=0,3 M/l, t=450C,l=1 cm

– d[NpV]/dτ = d[NpIV(total)]/dτ = k3·[NpV] = k3·([ NpIV]∞ – [ NpIV])

0 10 20 30-3,8

-3,6

-3,4

-3,2

-3,0

lg(C

)

time,min

k3=2*10-2 min-1

1-st order in the consumed Np(V)

0 10 20 30

-4,5

-4,2

-3,9

B Data2B Polynomial Fit of Data2_Blg

(C)

time,min

Not evident for the appearing Np(IV)

Np(IV) forms probably A complex with Tc (V)

3][ OTcNpTcNp VIVIVV

Tc(IV) and Tc(V) form a catalytic cyclewith stationary concentration of the latter in the process of Np(V) reduction with N2H5

+