geometry of the beam element in space - home - springer978-94-015-9044-0/1.pdf · 322 geometry of...

18
Appendix A Geometry of the beam element in space We consider a 2-node beam element in space equiped with a local coordinate system x'Y' z' placed at its center. We seek to derive the matrix of direction cosines To beetwen the local coordinate x'y'z' and the global coordinate xyz. The beam element comprises two nodes with global coordinates Xl, YI, Zl and X2, Y2, Z2, respectively. In order to orient the middle surface we must define an extra point P* with global coordinates x*, y*, z* so that points P*, 1, 2, form a plane that passes through the middle plane of the beam element. We define the differences of the global coordinates for nodes 1,2 as [ X2 - Xl] [XI2] Y2 - YI = Yl2 , z2 - zl zl2 (A.l) and the differences of the global coordinates between point P* and node 1 as [ X* - Xl] Y: - YI = Z - Zl [ Xle] Yle . Zle (A.2) In addition

Upload: lamliem

Post on 28-Jul-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

Appendix A

Geometry of the beam element in space

We consider a 2-node beam element in space equiped with a local coordinate system x'Y' z' placed at its center. We seek to derive the matrix of direction cosines To beetwen the local coordinate x'y'z' and the global coordinate xyz.

The beam element comprises two nodes with global coordinates Xl, YI, Zl and X2, Y2, Z2, respectively. In order to orient the middle surface we must define an extra point P* with global coordinates x*, y*, z* so that points P*, 1, 2, form a plane that passes through the middle plane of the beam element. We define the differences of the global coordinates for nodes 1,2 as

[X2 - Xl] [XI2] Y2 - YI = Yl2 , z2 - zl zl2

(A.l)

and the differences of the global coordinates between point P* and node 1 as

[X* - Xl] Y: - YI = Z - Zl

[Xle] Yle . Zle

(A.2)

In addition

322 Geometry of the beam element in space

[Xl - X*] [xel] Yl - Y: = Yel . Zl - Z Zel

(A.3)

The entries of the first row in To comprise components of the unit vector

[CXIX] 1 [X12]

PX' = Cx'Y = l Y12 ,

CX' Z Z12

(A.4)

where

1 = VX~2 + Y~2 + z~2' (A.5)

The unit vector perpendicular to the beam's surface is defined as

[CZIX] 0.... 0.... 1 [Y12 Zle - Z12Yle] .... 12 X Ie

PZI = Czl y = 20 20 Z12 Xle - X12 Zle ,

CZI z X12Yle - Y12Xle

(A.6)

where 0 is the area of the triangle formed by the two nodes and the extra point defined as

in which

1 0= -JC12 + C2 2 + C3 2 ,

2

[Cl] [Y12Zel - Yel Z12] C2 = Z12Xel - Zel X12 .

C3 X12Yel - XelY12

Finally, the components of the unit vector Pyl are simply given by

[CyIX] [CZIYCXIZ - CZIZCX1Y]

Pyl Cyl y = PZI X Pxl = CZ'ZCX' X - CZ'XCX' Z •

CyIZ CzlxCxly - CzlyCxlx

(A.7)

(A.8)

(A.9)

323

We are now in the position to define the matrix of direction cosines via

[cx, X cx' Y cx' zl

To = cy'x Cy'y cy'z .

Cz'x Cz'y Cz'z

(A.lO)

Note that matrix To is derived in an identical manner for the 3-node shell element by simply replacing the extra point P* with node 1, and the beam nodes 1, 2 with the triangular nodes 2, 3, respectively.

Appendix B

Contents of floppy disk

Included with in the floopy disk accompanying the book is a model com­puter program for static and buckling analyses of isotropic and laminated composite beams, frames and large three-dimensional beam assemblies. The name of the program is beam1.f and is written in standard Fortran 77. It can be compiled and run on any computer with Fortran 77. The pro­gram was originally written and compiled on a Sun Sparcstation 10 using the command £17 beam1.f.

In addition to the source code, four example problems are provided to familiarize the user with the input data and the execution of the computer program. All axamples were described in the text.

The following files are included in the floopy disk:

1. beam1.f: Main computer program.

2. parcb.h: A short file setting the problem parameters.

3. meshb.dat: A file containing the four test problems, namely

• static analysis of an L-shaped isotropic beam {example in Fig. 5.12}

• static analysis of an isotropic frame {example in Fig. 5.13}

• static analysis of a {45/ -45/ -45/45} cantilver composite beam {example in Fig. 5.20}

• buckling analysis of a {45/ -45/0/90}8 composite beam {example in Fig. 5.22}

Bibliography

[1] I.S. Sokolnikoff. Mathematical Theory of Elasticity. McGraw-Hill, 1956.

[2] J.S. Przemieniecki. Theory of Matrix Structural Analysis. Dover Pub­lications. Inc., New York, 1985.

[3] T.R. Tauchert. Energy Principles in Structural Mechanics. McGraw­Hill Inc., New York, 1974.

[4] P.L. Gould. Introduction to Linear Elasticity. 2nd ed.,Springer-Verlag New York, Inc., 1994.

[5] R. Courant. Variational methods for the solution of problems of equi­librium and vibration. Bull. Am. Math. Soc., 49:1-43, 1943.

[6] W. Prager and J.L. Synge. Approximation in elasticity based on the concept of function space. Q.J. Appl. Math., 5:241-269, 1947.

[7] J. Argyris, S. Kelsey and S. Bagat. A constant strain triangular ele­ment for the matrix displacement method. Imperial College Internal Report, 1955.

[8] J. Argyris, S. Kelsey and S. Bagat. The triangular membrane element for the matrix displacement method and the analysis of complex wings. Imperial College Internal Report, August 1955.

[9] J. Argyris. Energy theorems and structural analysis. Aircraft En­gineering, pages reprinted by Butterworth's Scientific Publications, 1960, 5th reprint 1977, 26 (1954) 347-356, 383-387; 27 (1955) 42-58, 80-94, 125-134,145-158.

[10] J. Argyris and S. Kelsey. Energy theorems and structural analysis. Aircraft Engineering, pages reprinted by Butterworth's Scientific Pub­lications 1960, 5th reprint 1977, 26 (1954) 410-422.

328 BIBLIOGRAPHY

[11] RW. Clough. The finite element method: A personal view of its original formulation. in From Finite elements to the Troll platform, Ivar Holland 70th anniversary, pages 89-97, 1994.

[12] M.J. Turner, RW. Clough, RW. Martin and L. Topp. Stiffness and deflection analysis of complex structures. J. Aero. Sci., 25:805-823, 1956.

[13] RW. Clough. The finite element method in plane stress analysis. Proc. 2nd ASCE Conf. on Electronic Computation, Pitsburg, Pa., Sept. 1960.

[14] J. Argyris. Continua and discontinua. Oppening address to the Interna­tional conference on matrix methods of structural mechanics, Dayton, Ohio, Wright-Patterson U.S.A.F. Base, pages 1-198, 1965.

[15] J. Argyris and D.W. Scharpf. Some general considerations on the natural mode technique, part i, small displacements, part ii, large dis­placements. Aero. J. Roy. Aero. Soc., 73:219-226, 361-368, 1969.

[16] J. Argyris and L. Tenek. Natural mode method: A practicable and novel approach to the global analysis of laminated composite plates and shells. Appl. Mech. Rev., 49:381-400, 1996.

[17] J. Argyris and L. Tenek. Recent advances in computational ther­mostructural analysis of composite plates and shells with strong non­linearities. Appl. Mech. Rev., 50:285-306, 1997.

[18] KK Gupta and J.L. Meek. A brief history of the beginning of the finite element method. Int. J. Numer. Meth. Engrg., 39:3761-3774, 1996.

[19] O.C. Zienkiewicz and Y.K Cheung. The Finite Element Method in Continuum and Structural Mechanics, volume 1. McGraw-Hill, New York, 1965.

[20] RW. Clough. Original formulation of the finite eleemnt method. ASCE Structures Congress Session on Computer Utilization in Struc­tural Eng., pages 1-10, 1989.

[21] O.C. Zienkiewicz and Y.K Cheung. Finite elements in the solution of field problems. The Engineer, 220:507-510, 1965.

BIBLIOGRAPHY 329

[22] O.C. Zienkiewicz and RL. Taylor. The Finite Element Method, vol­ume 1. McGraw-Hill, fourth edition, 1991.

[23] O.C. Zienkiewicz. Origins, milestones and directions of the finite ele­ment method - a personal view. Archives of Comput. Meth. Engnrg., 2:1-48, 1995.

[24] Lord Rayleigh. On the theory of resonance. Trans. Roy. Soc., A161:77-118, London, 1870.

[25] W. Ritz. Uber einer neue methode zur losung gewissen variations­probleme der mathematischen physik. J. Reine angew. Math., 135:1-61, 1909.

[26] B. Siuru and J.D. Busick. Future Flight: The next generation of air­craft technology. TAB AERO, Blue Ridge Summit, PA, 1994.

[27] RM. Jones. Mechanics of Composite Materials. Hemisphere, New York, 1975.

[28] J.M. Whitney. Structural Analysis of Laminated Anisotropic Plates. Technomic, Lancaster, 1987.

[29] L.R Calcote. The Analysis of Laminated Composite Structures. Van Nostrand Reinhold Co., NY, 1969.

[30] S.P. Timoshenko and J.N. Goodier. Theory of Elasticity. 3rd Edn., McGraw-Hill, New York, 1970.

[31] S. Timoshenko. Strength of materials, Part II. 2nd Edn., Van Nos­trand, Amsterdam, 1974.

[32] F.P. Beer and E.R Johnston Jr. Mechanics of Materials. Mc Graw­Hill, 1981.

[33] A. Venkatesh and K.P. Rao. A laminated anisotropic curved beam and shells stiffening element. Comput. Struct., 15:197-200, 1982.

[34] F. Yuan and RE. Miller. A new finite element for laminated composite beams. Comput. Struct., 31:737-745, 1989.

[35] S. Oral. A shear flexible finite element for nonuniform, laminated composite beams. Comput. Struct., 38:353-360, 1991.

330 BIBLIOGRAPHY

[36] A.T. Chen and T.Y. Yang. Static and dynamic formulation of a sym­metrically laminated beam finite element for a microcomputer. J. Compos. Mater., 19:459-475, 1985.

[37] A. Mattsson. A 2-node composite beam element. Master's thesis, University of Stuttgart, 1997.

[38] J. Argyris, L. Tenek and L. Olofsson. Tric: a simple but sophisti­cated 3-node triangular element based on 6 rigid-body and 12 strain­ing modes for fast computational simulations of arbitrary isotropic and laminated composite shells. Comput. Meth. Appl. Meeh. Engrg., 145:11-85, 1997.

[39] L. Tenek and J. Argyris. Computational aspects of the natural-mode finite element method. Comm. Num. Meth. Eng., 13, 1997.

[40] D.R.J. Owen and J.A. Figueiras. Anisotropic elasto-plastic finite ele­ment analysis ofthick and thin plates and shells. Int. J. Numer. Meth. Engrg., 19:541-566, 1983.

[41] J.H. Argyris, H. Balmer, J. St. Doltsinis, P.C. Dunne, M. Haase, M. Kleiber, G.A. Malejannakis, H.-P. Mlejnek, M. Muller and D.W. Scharf. Finite element method - the natural approach. Comput. Meth. Appl. Meeh. Engrg., 17/18:1-106, 1979.

[42] J.L. Meek. Matrix Structural Analysis. Mc Graw-Hill, 1971.

[43] W. Flugge. Stresses in shells, 2nd ed. Springer-Verlag, Berlin, 1973.

[44] S. Timoshenko and S. Woinowski-Krieger. Theory of Plates and Shells. McGraw-Hill, New York, 1959.

[45] J.H. Argyris, P.C. Dunne, G.A. Malejannakis and E. Schelkle. A simple triangular facet shell element with applications to linear and nonlinear equilibrium and inelastic stability problems. Comput. Meth. Appl. Meeh. Engrg., 10:371-403, 1977.

[46] J.H. Argyris and L. Tenek. A natural triangular layered element for bending analysis of isotropic, sandwich, laminated composite and hy­bride plates. Comput. Methods Appl. Meeh Engrg, 109:197-218, 1993.

[47] J.H. Argyris and L. Tenek. Buckling of multilayered composite plates by natural shear deformation matrix theory. Comput. Methods Appl. Meeh Engrg, 111:37-59, 1994.

BIBLIOGRAPHY 331

[48] J.H. Argyris and L. Tenek. Linear and geometrically nonlinear bending of isotropic and multilayered composite plates by the natural mode method. Comput. Meth. Appl. Meeh Engrg., 113:207-251, 1994.

[49] J.H. Argyris and L. Tenek. Nonlinear and chaotic oscillations of com­posite plates and shells under periodic heat load. Comput. Methods Appl. Meeh Engrg, 122:351-377, 1995.

[50] J.H. Argyris and L. Tenek. Postbuckling of composite laminates un­der compressive load and temperature. Comput. Methods Appl. Meeh Engrg, 128:49-80, 1995.

[51] J.H. Argyris and L. Tenek. An efficient and locking-free flat anisotropic plate and shell triangular element. Comput. Meth. Appl. Meeh. Engrg., 118:63-119, 1994.

[52] J .H. Argyris and L. Tenek. A practicable and locking-free laminated shallow shell triangular element of varying and adaptable curvature. Comput. Meth. Appl. Meeh. Engrg., 119:215-282, 1994.

[53] J.H. Argyris, L. Tenek and L. Olofsson. Nonlinear free vibrations of composite plates. Comput. Methods Appl. Meeh Engrg, 115:1-51, 1994.

[54] J .H. Argyris and L. Tenek. High-temperature bending, buckling and postbuckling of laminated composite plates using the natural mode method. Comput. Methods Appl. Meeh Engrg, 117:105-142, 1994.

[55] L. Olofsson. On the natural mode method. Master's thesis, University of Stuttgart, 1994.

[56] P.O. Marklund. A study of thick cylindrical laminates with pentahedra elements using the sub element technique. Master's thesis, University of Stuttgart, 1996.

[57] MACSYMA. Reference manual. Macsyma Inc., Arlington, MA, 1992.

[58] D.J. Allman. A compatible triangular element including vertex rota­tions for plane elasticity analysis. Computers and Structures, 19:1-8, 1984.

[59] D.J. Allman. A quadrilateral finite element including vertex rotations for plane elasticity analysis. Int. J. Num. Meth. Eng., 26:717-730, 1988.

332 BIBLIOGRAPHY

[60] D.J. Allman. Evaluation of the constant strain triangle with drilling rotations. Int. J. Num. Meth. Eng., 26:2645-2655, 1988.

[61] C.Y. Chiao Nonlinear Analysis of Plates. McGraw-Hill, NY, 1980.

[62] PK Sinha B Chattopadhyay and M Mukhopadhyay. Geometrically nonlinear analysis of composite stiffened plates using finite elements. Compos. Struet., 31:107-118, 1995.

[63] J.H Argyris and D.W. Scharpf. Large deflection analysis of prestressed networks. ASCE J. Struet. Div., 98:633-654, 1972.

[64] J.H Argyris and P.C. Dunne. A simple theory of geometrical stiffness with applications to beam and shell problems. lSD-Report No 183, Stuttgart, 1975.

[65] J.F. Zhu. Application of natural approach to nonlinear analysis of sandwich and composite plates and shells. Comput. Meth. Appl. Meeh. Engrg., 120:355-388, 1995.

[66] J.F. Zhu. A new consideration on the derivation of the geometrical stiffness matrix with the natural approach. Comput. Meth. Appl. Meeh. Engrg., 123:141-160, 1995.

[67] T.J.R. Hughes and W.K Liu. Nonlinear finite lement analysis of shells part ii: two-dimensional shells. Comput. Meth. Appl. Meeh. Engrg., 27:167-182, 1981.

[68] D. Lam KK Liu, E.S. Law and T. Belytschko. Resultant-stress degenerated-shell element. Comput. Meth. Appl. Meeh. Engrg., 55:259-300, 1986.

[69] J.C. Simo and D.D. Fox. On a stress resultant geometrically exact shell model. part ii: the linear theory; computational aspects. Comput. Meth. Appl. Meeh. Engrg., 73:53-92, 1989.

[70] T. Belytschko and I. Leviathan. Physical stabilization of the 4-node shell element with one-point quadrature. Comput. Meth. Appl. Meeh. Engrg., 113:321-350, 1994.

[71] KJ. Bathe and E.N. Dvorkin. A formulation of general shell elements­the use of mixed interpolation of tensorial components. Int. J. Numer. Meth. Eng., 22:697-722, 1986.

BIBLIOGRAPHY 333

[72] K.P. Rao. A rectangular laminated anisotropic shallow thin shell finite element. Comput. Meth. Appl. Mech. Engrg., 15:13-33, 1978.

[73] R.H. MacNeal and R.L. Harder. A proposed standard set of problems to test finite element accuracy. Finite Elements Anal. Des., 1:3-20, 1985.

[74] B.L. Wong T. Belytschko and H. Stolarski. Assumed strain stabiliza­tion procedure for the 9-node lagrange shell element. Int. J. Numer. Meth. Engrg., 28:385-414, 1989.

[75] N.D. Phan and J.N. Reddy. Analysis of laminated composite plates using a higher-order shear deformation theory. Int. J. Numer. Meth. Eng., 21:2201-2219, 1985.

[76] N.J. Pagano. Exact solutions for rectangular bidirectional composites and sandwich plates. J. Compos. Mater., 4:20-34, 1970.

[77] T. Kawai and N. Yoshimura. Analysis of large deflection of plates by the finite element method. Int. J. Numer. Meth. Engrg., 1:123-133, 1969.

[78] A.K Noor. Stability of multilayered composite plates. Fibre Sci. Tech­nol., 8:81-89, 1975.

[79] K-J Bathe. Finite Element Procedures in Engineering Analysis. Prentice-Hall, Englewood Cliffs, New Jersey, 1982.

[80] M. Papadrakakis. Solving Large-Scale Problems in Computational Me­chanics, volume 1. John Wiley and Sons, Ltd, 1993.

[81] M.A. Crisfield. Non-Linear Finite Element Analysis of Solids and Structures, volume 2: Advanced Topics. John Wiley and Sons, Ltd., West Sussex, England, 1993.

[82] E. Riks. An incremental approach to the solution of snapping and buckling problems. Int. J. Solids Structures, 15:524-551, 1979.

[83] M. A. Crisfield. A fast incremental/iterative solution procedure that handles "snap-through". Computers and Structures, 13:55-62, 1981.

[84] M. Papadrakakis. A truncated newton-Ianczos method for overcoming limit and bifurcation points. Int. J. Numer. Meth. Engrg., 29:1065-1077, 1990.

334 BIBLIOGRAPHY

[85] E. Hinton and D.R.J. Owen. Finite Element Software for Plates and Shells. Pineridge Press, Swansea, U.K., 1984.

[86] User's guide. FORTRAN 3.0.1. Sun Microsystems, Mountain View, California, 1994.

[87] User's guide. PATRAN - Vol. 1. PDA Engineering, Santa Ana, CA, 1984.

Index

accumulation, 217 algebraic operations, 263 angle-ply, 43 angle-ply laminate, 44 anisotropy ratios, 235 antisymmetrical bending mode, 61,

164 antisymmetrical bending terms, 182 antisymmetrical moments, 175 antisymmetrical rotations, 175 antisymmetrical shearing mode, 164 antisymmetrical shearing stiffness,

185 antisymmetrical shearing terms, 186 aspect ratio, 233 aspect ratios, 229 aspect ratios , 234 assembly loops, 313 assembly operation, 264 averaging procedures, 185 axial direct strain, 51 axial strain, 60 azimuth moments, 162

balanced, 42 balanced laminates, 43 beam element, 31 beam shearing coefficient, 63 biaxial symmetry, 231, 233 bidirectional laminate, 233 bifurcations, 267 binder, 37

body force, 2 body forces, 2 boundary conditions, 221, 230 buckling, 99, 119, 217, 234 buckling loads, 217, 261 buckling modes, 217, 240, 261

cantilever beam, 224 cantilever composite beam, 119,

302 cartesian moments, 215 cartesian nodal forces, 105, 216 cartesian strains, 140 central displacement, 218 clamped isotropic plate, 218 classical finite element methods,

25, 263 classical lamination theory, 41 classical plate of solution, 233 close form solutions, 239 CLT, 42 code structure, 301 collapse loads, 267 component stresses, 145, 204 composite, 37 composite beam columns, 119 composite beams, 119 composite cylinder, 240 composite laminate, 230 composite laminates, 42 composite material, 44 composite satellite, 119

336 INDEX

composite shell, 261 composite shells, 136 compressive loads, 119, 234 computational aspects, 261 computational efficiency, 264 computer program, 261, 320 computing time, 264 congruent operations, 171 congruent transformations, 191 convergence, 221, 232 convergence characteristics, 119,224 coordinate transformation, 213 CPU time list, 263 CRAY-C94, 261 critical buckling load, 119 critical load, 127, 239 critical pressure, 250 cross-ply laminate, 44, 233 cross-ply plate, 239 cylindrical arc-length, 267 cylindrical panel, 239 cylindrical roof, 220

deformation plot, 234 deformed beams, 227 deformed geometry, 100 design, viii direct, 2 direction cosines, 85, 167 double sinusoidal load, 230, 233

efficiency, 261 eigenvalue analyses, 261 eigenvalue problem, 217 elastic curve, 61 elasticity solution, 232 elements, 25 engineering shear strains, 10 equilibrium, 6, 85 error, 219

Euler formula, 119 exact solution, 221 experimental results, 234 external loads, 86

FEM, vii fiber reinforced composites, 38 fibers, 37 filaments, 37 finite element method, vii, 19, 20 finite element programming, 301 force method, 18 Fortran commands, 302

generalized forces, 166 geometrical forces, 212 geometrical stiffness, 20, 99, 208,

319 global arrays, 309 global cartesian coordinate, 166 global elemental vector, 84 Global equilibrium, 202 global force increments, 104 global load vector, 88 graphical visualization, 314

hemispherical shell, 221 heterogeneous medium, 44 High speed flight, 38 higher-order shear deformation the-

ory, 235 higher-order theory, 229 homogeneous coordinates, 176 hydrostatic pressure, 240

ill conditioning, 314 incremental, 267 inextensional bending modes, 221 initial load vectors, 89 input parameters, 302 integration formula, 182

interpolation matrix, 87 isoparametric, 267 isotropic beams, 114 isotropic column, 119 isotropic frames, 115 isotropy, 152 iterative, 267

jet propulsion, 18

Kirchhoff, 176

lamina, 44 laminated beam element, 52 lamination schemes, 250 large deflections, 233 limit points, 267 load factor, 217 load-displacement curves, 234 loading vector, 313 local coordinate system, 40 local coordinates, 154 locking, 63 lower order theory, 233

macromechanics, 44 material anisotropy ratio, 235 material coordinate system, 40, 52 material properties, 229 material transformations, 263 matrix, 37 matrix displacement method, 19 matrix materials, 39 matrix multiplications, 263 membrane forces, 216 membrane stresses, 100, 217 membrane theory of shells, 135 micromechanics, 44 middle plane, 321 middle surface, 321 minimum, 15

INDEX 337

model problem, 261, 302

natural coordinate system, 28, 191, 212

natural directions, 177 natural forces, 212 natural geometrical stiffness, 106,

216 natural modes, vii, 20, 48 natural stiffness matrix, 30, 57 natural strain energies, 96 natural straining modes, 56 natural thermal load, 91, 200 natural thermal load vector, 89,

198 Newton-Raphson, 268 normal, 2 normalized central displacement,

231 normalized deflection, 227 normalized form, 231 normalized solutions, 221 normalized stresses, 230 normalized values, 224 numerical quadratures, viii

opposite, 41 optimization, viii optimization procedures, 250 orthotropic layers, 230 orthotropic shell, 220

parallelization, 263, 264 partly simplified geometrical stiff-

ness, 108, 110 path, 267 physical lumping, 136 physical problem, 314 physical vectors, 11 Piecewise summation, 172 pinched cylinder, 220

338 INDEX

plane stress triangle, 31 Polymer composites, 37 postprocessing, 95 prestress state, 263 principal of virtual work, 13 principle of stationary energy, 15

quasi-isotropic, 119 quasi-isotropic laminate, 227 quasi-isotropic laminates, 44

rectangular laminate, 234 reference solution, 219 regional discretization, 17 reinforcement, 37 representative volume, 45 rigid body modes, vii, 52 rigid body moments, 101, 208, 212,

215 rigid body rotation, 215 rigid body rotations, 101, 208, 212,

221 rigid diaphragms, 250 rocket-like composite shell, 250 rosettes, 19 rotational geometrical stiffness, 103,

215

sandwich plate, 219, 229 shear, 2 shear correction factor, 78, 219 shear correction factors, 189, 219,

233 shear deformations, 175 shear locking, 48, 166 shear strains, 8 shell element, 32, 163 shell elements, 224 shell structures, 136 simplified geometrical stiffness, 105,

216

sinusoidal loading, 229 skyline, 261 skyline storage, 310 square laminate, 234 stationary, 15 statistics report, 261 stiffening or softening effect, 106 stiffness matrix, vii storage scheme, 310 strain energy, 84, 145 strain energy density, 11 strain modes, vii strain operator matrix, 29 strain rossete, 140 straining modes, vii, 163 stress tensor, 10 stress vector, 1 structural laminate, 41 structural mechanics, 21 surface forces, 2 surface load, 196 symbolic computation, 216 symmetric, 42 symmetric laminate, 42 symmetrical, 8 symmetrical bending mode, 60 symmetrical lamination, 93 symmetry, 220

tangent stiffness, 100 temperature, 89, 240 temperature increase, 239 tensor, 5, 8 tetrahedron element, 32 thermal load vector, 198 thermal strain, 200 thermoelastic coefficients, 90, 198 thermomechanical buckling, 239 three dimensional solution, 230 total natural strain, 144

total natural strains, 140 total potential energy, 15 total strain, 167 traction, 1 transformation matrix, 211 transverse shear deformation, 219 transverse shear strains,. 148 transverse shear stresses, 204 triangle, 18 truss element, 31

uniform pressure, 219 uniform pressure load, 227 unit extension, 57 unit matrix, 212 unit vector, 322 unstable branches, 267

vectorization, 263, 264 vertex rotation, 191 vertical displacement, 221 virtual displacements, 12 virtual work, 12, 13, 181, 196

warping, 224 weight sensitive structures, 38

INDEX 339

Mechanics SOUD MECHANICS AND ITS APPLICATIONS

Series Editor: G.M.L. Gladwell

44. D.A. Hills, P.A. Kelly, D.N. Dai and A.M. Korsunsky: Solution of Crack Problems. The Distributed Dislocation Technique. 1996 ISBN 0-7923-3848-0

45. V.A. Squire, R.J. Hosking, A.D. Kerr and P.J. Langhorne: Moving Loads on Ice Plates. 1996 ISBN 0-7923-3953-3

46. A. Pineau and A. Zaoui (eds.): IUTAM Symposium on Micromechanics of Plasticity and Damage of Multiphase Materials. Proceedings of the IUT AM Symposium held in Sevres, Paris, France. 1996 ISBN 0-7923-4188-0

47. A. Naess and S. Krenk (eds.): IUTAM Symposium on Advances in Nonlinear Stochastic Mechanics. Proceedings of the IUTAM Symposium held in Trondheim, Norway. 1996

ISBN 0-7923-4193-7 48. D. Ie§an and A. Scalia: Thermoelastic Deformations. 1996 ISBN 0-7923-4230-5 49. J. R. Willis (ed.): IUTAM Symposium on Nonlinear Analysis of Fracture. Proceedings of the

IUTAM Symposium held in Cambridge, UK 1997 ISBN 0-7923-4378-6 50. A. Preumont: Vibration Control of Active Structures. An Introduction. 1997

ISBN 0-7923-4392-1 51. G.P. Cherepanov: Methods of Fracture Mechanics: Solid Matter Physics. 1997

ISBN 0-7923-4408-1 52. D.H. van Campen (ed.): IUTAM Symposium on Interaction between Dynamics and Control in

Advanced Mechanical Systems. Proceedings of the IUTAM Symposium held in Eindhoven, The Netherlands. 1997 ISBN 0-7923-4429-4

53. N.A. Fleck and A.C.F. Cocks (eds.): IUTAM Symposium on Mechanics of Granular and Porous Materials. Proceedings of the IUTAM Symposium held in Cambridge, U.K. 1997

ISBN 0-7923-4553-3 54. J. Roorda and N.K. Srivastava (eds.): Trends in Structural Mechanics. Theory, Practice,

Education. 1997 ISBN 0-7923-4603-3 55. Yu. A. Mitropolskii and N. Van Dao: Applied Asymptotic Methods in Nonlinear Oscillations.

1997 ISBN 0-7923-4605-X 56. C. Guedes Soares (ed.): Probabilistic Methodsfor Structural Design. 1997

ISBN 0-7923-4670-X 57. D. Franyois, A. Pineau and A. Zaoui: Mechanical Behaviour of Materials. Volume I:

Elasticity and Plasticity. 1998 ISBN 0-7923-4894-X 58. D. Franyois, A. Pineau and A. Zaoui: Mechanical Behaviour of Materials. Volume II:

Viscoplasticity, Damage, Fracture and Contact Mechanics. 1998 ISBN 0-7923-4895-8 59. L. T. Tenek and J. Argyris: Finite Element Analysis for Composite Structures. 1998

ISBN 0-7923-4899-0

Kluwer Academic Publishers - Dordrecht / Boston / London