genome curation using apollo

114
Curating genes and genomes Apollo: a collaborative tool for genome curation Monica Munoz-Torres, PhD | @monimunozto Berkeley Bioinformatics Open-Source Projects (BBOP) Lawrence Berkeley National Laboratory | University of California Berkeley | U.S. Department of Energy BioInfoGenomicsWkshopv2 | Reed College, Portland, Oregon | 10 October, 2015

Upload: monica-munoz-torres

Post on 16-Apr-2017

518 views

Category:

Science


0 download

TRANSCRIPT

Page 1: Genome Curation using Apollo

Curating genes and genomesApollo: a collaborative tool for genome curation

Monica Munoz-Torres, PhD | @monimunozto

Berkeley Bioinformatics Open-Source Projects (BBOP)Lawrence Berkeley National Laboratory | University of California Berkeley | U.S. Department of Energy

BioInfoGenomicsWkshopv2 | Reed College, Portland, Oregon | 10 October, 2015

Page 2: Genome Curation using Apollo

OUTLINE

Web  Apollo  Collabora've  Cura'on  and    Interac've  Analysis  of  Genomes  

2 OUTLINE

•  Today  we  will  discover  how  to  extract  the  most  valuable  informa'on  about  a  genome  through  cura'on  efforts.  

Page 3: Genome Curation using Apollo

APOLLO DEVELOPMENT

APOLLO DEVELOPERS 3

h*p : / /GenomeA r c h i t e c t . o r g /    

Nathan Dunn

Eric Yao JBrowse, UC Berkeley

Christine Elsik’s Lab, University of Missouri

Suzi Lewis Principal Investigator

BBOP  

Moni Munoz-Torres

Stephen Ficklin GenSAS,

Washington State University

Colin Diesh Deepak Unni

Page 4: Genome Curation using Apollo

4

BY THE END OF THIS TALKyou will

v Be@er  understand  genome  cura'on  in  the  context  of  annota'on:    assembled  genome  à  automated  annota=on  à  manual  annota=on  

v Become  familiar  with  the  environment  and  func'onality  of  the  Apollo  genome  annota'on  edi'ng  tool.  

v Learn  to  iden'fy  homologs  of  known  genes  of  interest  in  a  newly  sequenced  genome.  

v Learn  about  corrobora'ng  and  modifying  automa'cally  annotated  gene  models  using  available  evidence  in  Apollo.  

What to expect

Page 5: Genome Curation using Apollo

Anatomy  of  a  genome    sequencing  project  

Page 6: Genome Curation using Apollo

6

Genome Sequencing Project

Anatomy of a genome sequencing project

Experimental design, sampling.

Comparative analyses

Consensus Gene Set

Manual Annotation

Automated Annotation

Sequencing Assembly

Synthesis & dissemination.

Page 7: Genome Curation using Apollo

CURATING GENOMESsteps involved

1  Genera=on  of  Gene  Models  calling  ORFs,  one  or  more  rounds  of  gene  predic'on,  etc.    

2  Annota=on  of  gene  models  Describing  func'on,  expression  pa@erns,  metabolic  network    memberships.  

 

3  Manual  annota=on  

CURATING GENOMES 7

Page 8: Genome Curation using Apollo

GENOME ANNOTATIONobjectives and uses

Curating Genomes 8

The  gene  set  of  an  organism  informs  a  variety  of  studies:  •  Gene  number,  GC%,  TE  composi'on,  repe''ve  regions.  •  Func'onal  assignments.  

•  Molecular  evolu'on,  sequence  conserva'on.  •  Gene  families.  •  Metabolic  pathways.  •  What  makes  an  organism  what  it  is?    

What  makes  a  bee  a  “bee”?  

Marbach et al. 2011. Nature Methods | Shutterstock.com | Alexander Wild

Page 9: Genome Curation using Apollo

First,  a  bio-­‐refresher  

Page 10: Genome Curation using Apollo

WHAT WE NEED TO KNOWfor manual annotation

To  remember…  Biological  concepts  to  be@er  understand  manual  annota'on  

10 FOOD FOR THOUGHT

•  GLOSSARY  from  con1g  to  splice  site  

 •  CENTRAL  DOGMA  

in  molecular  biology    •  WHAT  IS  A  GENE?  

defining  your  goal  

•  TRANSCRIPTION  mRNA  in  detail  

 •  TRANSLATION  

and  other  defini'ons  

•  GENOME  CURATION  steps  involved  

Page 11: Genome Curation using Apollo

11 CURATING GENOMES

WHAT WE KNOWin very general terms

Page 12: Genome Curation using Apollo

12 CURATING GENOMES

WHAT WE KNOWin very general terms

http://www.wisegeek.com/

5’  

3’  

5’  

3’  

Page 13: Genome Curation using Apollo

13 CURATING GENOMES

CENTRAL “DOGMA”of molecular biology

v  DNA  can  be  copied  to  DNA  (DNA  replica'on),    

v  DNA  informa'on  can  be  copied  into  mRNA  (transcrip'on),  and  

v  Proteins  can  be  synthesized  using  the  informa'on  in  mRNA  as  a  template  (transla'on).  

http://www.wisegeek.com/

Page 14: Genome Curation using Apollo

14 BIO-REFRESHER

What is a gene?

v  The  defini'on  of  a  gene  paints  a  very  complex  picture  of  molecular  ac'vity  and  it  is  a  con'nuously  evolving  concept.    

•  From  the  Sequence  Ontology  (SO):  “A  gene  is  a  locatable  region  of  genomic  sequence,  corresponding  to  a  unit  of  inheritance,  which  is  associated  with  regulatory  regions,  transcribed  regions  and/or  other  func'onal  sequence  regions”.      “Evolving  Concept”  at  h@p://goo.gl/LpsajQ  

Page 15: Genome Curation using Apollo

15 BIO-REFRESHER

What is a gene?

v  In  your  life'me,  the  Encyclopedia  of  DNA  Elements  (ENCODE)  project  updated  this  concept  yet  again.  Long  transcripts  &  dispersed  regula1on!  

   

“A  gene  is  a  DNA  segment  that  contributes  to  phenotype/func'on.  In  the  absence  of  demonstrated  func'on,  a  gene  may  be  characterized  by  sequence,  transcrip'on  or  homology.”  

 

https://www.encodeproject.org/

Page 16: Genome Curation using Apollo

16 BIO-REFRESHER

What is a gene?let’s think computationally!

v  Think  of  the  genome  as  an  operating system for  a  living  being  

•  Considering  that  the  nucleo'des  of  the  genome  are  put  together  into  a  code  that  is  executed  through  the  process  of  transcription  and  translation…

•  …  think  of  genes  as  subroutines  that  are  repe''vely  called  in  the  process  of  transcription

Gerstein et al., 2007. Genome Res.

Page 17: Genome Curation using Apollo

17 BIO-REFRESHER

What is a gene?considerations

v  Also  consider  :  •  A  gene  is  a  genomic  sequence  (DNA  or  RNA)  directly  encoding  

func'onal  product  molecules,  either  RNA  or  protein.  

•  If  several  func'onal  products  share  overlapping  regions,  we  take  the  union  of  all  overlapping  genomics  sequences  coding  for  them.  

•  This  union  must  be  coherent  –  i.e.,  processed  separately  for  final  protein  and  RNA  products  –  but  does  not  require  that  all  products  necessarily  share  a  common  subsequence.

Gerstein et al., 2007. Genome Res.

Page 18: Genome Curation using Apollo

18 BIO-REFRESHER

“The  gene  is  a  union  of  genomic  sequences  encoding  a  coherent  set  of  poten'ally    

overlapping  func'onal  products.”  

Gerstein et al., 2007. Genome Res

The  Gene:  a  moving  target.  

What is a gene?

Page 19: Genome Curation using Apollo

19 BIO-REFRESHER

TRANSLATIONreading frame

v  Reading  frame  is  a  manner  of  dividing  the  sequence  of  nucleo'des  in  mRNA  (or  DNA)  into  a  set  of  consecu've,  non-­‐overlapping  triplets  (codons).  

v  Three  frames  can  be  read  in  the  5’  à  3’  direc'on.  Given  that  DNA  has  two  an'-­‐parallel  strands,  an  addi'onal  three  frames  are  possible  to  be  read  on  the  an'-­‐sense  strand.  Six  total  possible  reading  frames  exist.  

v  In  eukaryotes,  only  one  reading  frame  per  sec'on  of  DNA  is  biologically  relevant  at  a  'me:  it  has  the  poten'al  to  be  transcribed  into  RNA  and  translated  into  protein.  This  is  called  the  OPEN  READING  FRAME  (ORF)  •  ORF  =  Start  signal  +  coding  sequence  (divisible  by  3)  +  Stop  signal  

v  The  sec'ons  of  the  mature  mRNA  transcribed  with  the  coding  sequence  but  not  translated  are  called  UnTranslated  Regions  (UTR);  one  at  each  end.  

Page 20: Genome Curation using Apollo

20

"Reading Frame" by Hornung Ákos - Wikimedia Commons

BIO-REFRESHER

TRANSLATIONreading frame

Page 21: Genome Curation using Apollo

21

"ORF" by Thatsonginc - Wikimedia Commons

BIO-REFRESHER

TRANSLATIONreading frame

Page 22: Genome Curation using Apollo

22 BIO-REFRESHER

TRANSLATIONreading frame: splice sites

v  The  spliceosome  catalyzes  the  removal  of  introns  and  the  liga'on  of  flanking  exons.  •  introns:  spaces  inside  the  gene,  not  part  of  the  coding  sequence  •  exons:  expression  units  (of  the  coding  sequence)  

v  Splicing  “signals”  (from  the  point  of  view  of  an  intron):    •  There  is  a  5’  end  splice  “signal”  (site):  usually  GT  (less  common:  GC)  •  And  a  3’  end  splice  site:  usually  AG  •  …]5’-­‐GT/AG-­‐3’[…  

 

v  It  is  possible  to  produce  more  than  one  protein  (polypep'de)  sequence  from  the  same  genic  region,  by  alterna'vely  bringing  exons  together=  alterna=ve  splicing.  For  example,  the  gene  Dscam  (Drosophila)  has  38,000  alterna'vely  spliced  mRNAs  =  isoforms  

Page 23: Genome Curation using Apollo

23

"Gene structure" by Daycd- Wikimedia Commons

BIO-REFRESHER

TRANSLATIONnow in your mind

•  Although  of  brief  existence,  understanding  mRNAs  is  crucial,    as  they  will  become  the  center  of  your  work.  

Page 24: Genome Curation using Apollo

24 BIO-REFRESHER

TRANSLATIONreading frame: phase

v  Introns  can  interrupt  the  reading  frame  of  a  gene  by  inser'ng  a  sequence  between  two  consecu've  codons  

   

v  Between  the  first  and  second  nucleo'de  of  a  codon  

 

v  Or  between  the  second  and  third  nucleo'de  of  a  codon  

"Exon and Intron classes”. Licensed under Fair use via Wikipedia

Page 25: Genome Curation using Apollo

25

"Protein synthesis" by Kelvinsong - Wikimedia Commons

CURATING GENOMES

TRANSLATIONin detail

Page 26: Genome Curation using Apollo

26 BIO-REFRESHER

HICCUPSin transcription and translation

v  The  presence  of  premature  Stop  codons  in  the  message  is  possible.  A  process  called  non-­‐sense  mediated  decay  checks  for  them  and  corrects  them  to  avoid:  incomplete  splicing,  DNA  muta'ons,  transcrip'on  errors,  and  leaky  scanning  of  ribosome  –  causing  changes  in  the  reading  frame  (frame  shiYs).  

v  Inser'ons  and  dele'ons  (indels)  can  cause  frame  shijs,  when  indel  is  not  divisible  by  three  (3).  As  a  result,  the  pep'de  can  be  abnormally  long,  or  abnormally  short  –  depending  when  the  first  in-­‐frame  Stop  signal  is  located.  

Page 27: Genome Curation using Apollo

Predic'on  &  Annota'on  

Page 28: Genome Curation using Apollo

28 Gene Prediction

GENE PREDICTION

v  The  iden'fica'on  of  structural  features  of  the  genome:    

•  Primarily  focused  on  protein-­‐coding  genes.    •  Predicts  also  transfer  RNAs  (tRNA),  ribosomal  RNAs  (rRNA),  

regulatory  mo'fs,  long  and  small  non-­‐coding  RNAs  (ncRNA),  repe''ve  elements  (masked),  etc.  

•  Two  methods  for  iden'fica'on.  •  Some  are  self-­‐trained  and  some  must  be  trained.  

Page 29: Genome Curation using Apollo

29 Gene Prediction

GENE PREDICTIONmethods for discovery

1)  Ab  ini,o:    -­‐  based  on  DNA  composi'on,    -­‐  deals  strictly  with  genomic  sequences  -­‐  makes  use  of  sta's'cal  approaches  to  search  for  coding  regions  and  typical  gene  signals.      •  E.g.  Augustus,  GENSCAN,    

geneid,  fgenesh,  etc.  

3’  

Nat Rev Genet. 2015 Jun;16(6):321-32. doi: 10.1038/nrg3920

Page 30: Genome Curation using Apollo

30

Nucleic Acids 2003 vol. 31 no. 13 3738-3741

Gene Prediction

GENE PREDICTIONmethods for discovery (ctd)

2)  Homology-­‐based:    -­‐  evidence-­‐based,    -­‐  finds  genes  using  either  similarity  searches  in  the  main  databases  or  experimental  data  including  RNAseq,  expressed  sequence  tags  (ESTs),  full-­‐length  complementary  DNAs  (cDNAs),  etc.      

•  E.g:  fgenesh++,  Just  Annotate  My  genome  (JAMg),  SGP2  

Page 31: Genome Curation using Apollo

31

GENE ANNOTATION

Integra'on  of  data  from  computa'onal  &  experimental  evidence  with  data  from  predic'on  tools,  to  generate  a  reliable  set  of  structural  annota=ons.      Involves:  1)  ab  ini1o  predic'ons  2)  assessment  of  biological  evidence  to  drive  the  gene  predic'on  process  3)  synthesis  of  these  results  to  produce  a  set  of  consensus  gene  models  

Gene Annotation

Page 32: Genome Curation using Apollo

32

In  some  cases  algorithms  and  metrics  used  to  generate  consensus  sets  may  actually  reduce  the  accuracy  of  the  gene’s  representa'on.  

GENE ANNOTATION

Gene  models  may  be  organized  into  “sets”  using:  v  automa'c  integra'on  of  predicted  sets  (combiners);  e.g:  GLEAN,  

EvidenceModeler  or  

v  tools  packaged  into  pipelines;  e.g:  MAKER,  PASA,  Gnomon,  Ensembl,  etc.  

Gene Annotation

Page 33: Genome Curation using Apollo

ANNOTATIONan imperfect art

No one is perfect, least of all automated annotation. 33

New  technology  brings  new  challenges:    •  Assembly  errors  can  cause  fragmented  

annota'ons  •  Limited  coverage  makes  precise  

iden'fica'on  a  difficult  task  

Image: www.BroadInstitute.org

Page 34: Genome Curation using Apollo

MANUAL ANNOTATIONimproving predictions

Precise  elucida=on  of  biological  features  encoded  in  the  genome  requires  careful  

examina=on  and  review.    

Schiex  et  al.  Nucleic  Acids  2003  (31)  13:  3738-­‐3741  

Automated Predictions

Experimental Evidence

Manual Annotation – to the rescue. 34

cDNAs,  HMM  domain  searches,  RNAseq,  genes  from  other  species.  

Page 35: Genome Curation using Apollo

35

BIOCURATIONstructural and functional adjustments

Iden=fies  elements  that  best  represent  the  underlying  biology  and  eliminates  elements  that  reflect  systemic  errors  of  automated  analyses.  

Assigns  func=on  through  compara've  analysis  of  similar  genome  elements  from  closely  related  species  using  literature,  databases,  and  experimental  data.  

MANUAL ANNOTATION

h@p://GeneOntology.org  

1  

2  

Page 36: Genome Curation using Apollo

GENOME ANNOTATIONan inherently collaborative task

APOLLO 36

Researchers  oDen  turn  to  colleagues  for  second  opinions  and  insight  from  those  with  exper1se  in  

par1cular  areas  (e.g.,  domains,  families).  

So  many  sequences,  but  not  enough  hands!  

Page 37: Genome Curation using Apollo

APOLLOcollaborative genome annotation editing tool

37

v  Web  based,  integrated  with  JBrowse.  v  Supports  real  'me  collabora'on!  v  Automa'c  genera'on  of  ready-­‐made    

computable  data.    v  Supports  annota'on  of  genes,    pseudogenes,    

tRNAs,  snRNAs,  snoRNAs,  ncRNAs,  miRNAs,  TEs,  and  repeats.  

v  Intui've  annota'on,  gestures,  and  pull-­‐down  menus  to  create  and  edit  transcripts  and  exons  structures,  insert  comments  (CV,  freeform  text),  associate  GO  terms,  etc.  

APOLLO

h@p://GenomeArchitect.org    

Page 38: Genome Curation using Apollo

APOLLO ARCHITECTUREsimple, flexible

ARCHITECTURE 38

Web-­‐based  client  +  annota'on-­‐edi'ng  engine  +  server-­‐side  data  service  

REST / JSON Websockets

Annotation Engine (Server)

Shiro

LDAP

OAuth

JBrowse Data Organism 2

Annotations

Security

Preferences

Organisms

Tracks

BAM BED VCF GFF3 BigWig

Annotators

Google Web Toolkit (GWT) / Bootstrap

JBrowse DOJO / jQuery JBrowse Data Organism 1

Load genomic evidence per selected organism

Single Data Store PostgreSQL, MySQL,

MongoDB, ElasticSearch

Apollo v2.0

Page 39: Genome Curation using Apollo

We  con'nuously   train  and  support  hundreds  of  geographically  dispersed  scien'sts   from   diverse   research   communi'es   in   conduc'ng   manual  annota'ons   efforts   to   recover   coding   sequences   in   agreement   with   all  available  biological  evidence  using  Apollo.    

39

LESSONS LEARNED

APOLLO

What  we  have  learned:    •  Collabora've  work  dis'lls  invaluable  knowledge  •  We  must  enforce  strict  rules  and  formats  •  We  must  evolve  with  the  data  •  NGS  poses  addi'onal  challenges  

Page 40: Genome Curation using Apollo

40

TRAINING CURATORSa little training goes a long way!

Provided  with  adequate  tools,  wet  lab  scien'sts  make  excep'onal  curators  who  can  easily  learn  to  maximize  the  genera'on  of  accurate,  biologically  supported  gene  models.  

APOLLO

Page 41: Genome Curation using Apollo

Apollo  

Page 42: Genome Curation using Apollo

42

APOLLOannotation editing environment

BECOMING ACQUAINTED WITH APOLLO

Color  by  CDS  frame,  toggle  strands,  set  color  scheme  and  highlights.  

Upload  evidence  files  (GFF3,  BAM,  BigWig),  add  combina=on  and  sequence  search  tracks.  

Query  the  genome  using  BLAT.  

Naviga'on  and  zoom.  

Search  for  a  gene  model  or  a  scaffold.  

Get  coordinates  and  “rubber  band”  selec'on  for  zooming.  

Login  

User-­‐created  annota'ons.   Annotator  

panel.  

Evidence  Tracks  

Stage  and  cell-­‐type  specific  transcrip'on  data.  

 h@p://genomearchitect.org/web_apollo_user_guide    

Page 43: Genome Curation using Apollo

Let’s  play!  

Page 44: Genome Curation using Apollo

Instructions 44 | 44

APOLLO ON THE WEBinstructions

Username:  [email protected]  

 Password:  usernumber  

Email   Password   Server   Begin  at  [email protected]   userone   1   1  [email protected]   usertwo   2   1  [email protected]   userthree   3   1  [email protected]   userfour   4   1  [email protected]   userfive   5   1  [email protected]   usersix   1   7  [email protected]   userseven   2   7  [email protected]   usereight   3   7  [email protected]   usernine   4   7  [email protected]   userten   5   7  [email protected]   usereleven   1   1  [email protected]   usertwelve   2   1  [email protected]   userthirteen   3   1  [email protected]   userfourteen   4   1  [email protected]   userfijeen   5   1  [email protected]   usersixteen   1   7  [email protected]   userseventeen   2   7  user.eigh@[email protected]   usereighteen   3   7  [email protected]   usernineteen   4   7  [email protected]   usertwenty   5   7  [email protected]   usertwentyone   1   1  [email protected]   usertwentytwo   2   1  [email protected]   usertwentythree   3   1  [email protected]   usertwentyfour   4   1  [email protected]   usertwentyfive   5   1  [email protected]   usertwentysix   1   7  [email protected]   usertwentyseven   2   7  [email protected]   usertwentyeight   3   7  [email protected]   usertwentynine   4   7  

Server   URL  1  h@p://52.26.7.239:8080/apollo/annotator/index  2  h@p://52.89.205.105:8080/apollo/annotator/index  3  h@p://52.89.230.210:8080/apollo/annotator/index  4  h@p://52.89.149.42:8080/apollo/annotator/index  5  h@p://52.89.233.118:8080/apollo/annotator/index  

Page 45: Genome Curation using Apollo

Cura'ng  with  Apollo  

Page 46: Genome Curation using Apollo

Becoming Acquainted with Web Apollo 46 | 46

GENERAL PROCESS OF CURATIONmain steps to remember

1.  Select  or  find  a  region  of  interest,  e.g.  scaffold.  2.  Select  appropriate  evidence  tracks  to  review  the  gene  model.  

3.  Determine  whether  a  feature  in  an  exis'ng  evidence  track  will  provide  a  reasonable  gene  model  to  start  working.  

4.  If  necessary,  adjust  the  gene  model.  

5.  Check  your  edited  gene  model  for  integrity  and  accuracy  by  comparing  it  with  available  homologs.  

6.   Comment  and  finish.  

Page 47: Genome Curation using Apollo

USER NAVIGATIONremovable side dock

HIGHLIGHTED IMPROVEMENTS 47

Annotations Organism Users Groups Admin Tracks Reference Sequence

Page 48: Genome Curation using Apollo

EDITS & EXPORTSannotation details, exon boundaries, data export

HIGHLIGHTED IMPROVEMENTS 48

1 2

Annotations

1

2

Page 49: Genome Curation using Apollo

HIGHLIGHTED IMPROVEMENTS 49

Reference Sequences

3

FASTA  

GFF3  

EDITS & EXPORTSannotation details, exon boundaries, data export

3

Page 50: Genome Curation using Apollo

50 | 50 Becoming Acquainted with Web Apollo.

USER NAVIGATION

Annotator  panel.  

•  Choose  appropriate  evidence  from  list  of  “Tracks”  on  annotator  panel.      

•  Select  &  drag  elements  from  evidence  track  into  the  ‘User-­‐created  Annota1ons’  area.    

•  Hovering  over  annota'on  in  progress  brings  up  an  informa'on  pop-­‐up.  

•  Crea'ng  a  new  annota'on  

Page 51: Genome Curation using Apollo

51 | 51

USER NAVIGATION

Becoming Acquainted with Web Apollo.

•  Annota'on  right-­‐click  menu  

Page 52: Genome Curation using Apollo

52 | 52

USER NAVIGATION

Becoming Acquainted with Web Apollo.

•  ‘Zoom  to  base  level’  op'on  reveals  the  DNA  Track.  

Page 53: Genome Curation using Apollo

53 | 53

USER NAVIGATION

Becoming Acquainted with Web Apollo.

•  Color  exons  by  CDS  from  the  ‘View’  menu.  

Page 54: Genome Curation using Apollo

54 |

Zoom  in/out  with  keyboard:  shij  +  arrow  keys  up/down  

54

USER NAVIGATION

Becoming Acquainted with Web Apollo.

•  Toggle  reference  DNA  sequence  and  transla=on  frames  in  forward  strand.  Toggle  models  in  either  direc'on.  

Page 55: Genome Curation using Apollo

Annota'on  

Page 56: Genome Curation using Apollo

simple  cases  

Page 57: Genome Curation using Apollo

“Simple  case”:      -­‐  the  predicted  gene  model  is  correct  or  nearly  correct,  and    

 -­‐  this  model  is  supported  by  evidence  that  completely  or  mostly  agrees  with  the  predic'on.    

 -­‐  evidence  that  extends  beyond  the  predicted  model  is  assumed  to  be  non-­‐coding  sequence.    

 

The  following  are  simple  modifica'ons.    

 

57 | 57

ANNOTATING SIMPLE CASES

Becoming Acquainted with Web Apollo. SIMPLE CASES

Page 58: Genome Curation using Apollo

58 |

•  A   confirma'on   box  will   warn   you   if   the   receiving   transcript   is   not   on   the  same  strand  as  the  feature  where  the  new  exon  originated.  

•  Check  ‘Start’  and  ‘Stop’  signals  ajer  each  edit.  

58

ADDING EXONS

Becoming Acquainted with Web Apollo. SIMPLE CASES

Page 59: Genome Curation using Apollo

If  transcript  alignment  data  are  available  and  extend  beyond  your  original  annota'on,  you  may  extend  or  add  UTRs.    

1.  Right  click  at  the  exon  edge  and  ‘Zoom  to  base  level’.    

2.  Place  the  cursor  over  the  edge  of  the  exon  un1l  it  becomes  a  black  arrow  then  click  and  drag  the  edge  of  the  exon  to  the  new  coordinate  posi'on  that  includes  the  UTR.    

59 | 59

ADDING UTRs

Becoming Acquainted with Web Apollo. SIMPLE CASES

To  add  a  new  spliced  UTR  to  an  exis'ng    annota'on  follow  the  procedure  for  adding  an  exon.  

Page 60: Genome Curation using Apollo

To  modify  an  exon  boundary  and  match  data   in   the   evidence   tracks:   select  both   the   offending   exon   and   the  feature  with  the  expected  boundary,  then  right  click  on  the  annota'on  to  select   ‘Set  3’   end’   or   ‘Set  5’   end’   as  appropriate.  

 

60 |

In  some  cases  all  the  data  may  disagree  with  the  annota'on,  in  other  cases  some  data  support  the  annota'on  and  some  of  the  

data  support  one  or  more  alterna've  transcripts.  Try  to  annotate  as  many  alterna've  transcripts  as  are  well  supported  by  the  data.  

60

MATCHING EXON BOUNDARY TO EVIDENCE

Becoming Acquainted with Web Apollo. SIMPLE CASES

Page 61: Genome Curation using Apollo

1.   Zoom  in  to  clearly  resolve  each  exon  as  a  dis'nct  rectangle.    

2.  Two  exons  from  different  tracks  sharing  the  same  start  and/or  end  coordinates  will  display  a  red  bar  to  indicate  matching  edges.  

3.  Selec'ng  the  whole  annota'on  or  one  exon  at  a  'me,  use  this  ‘edge-­‐matching’  func'on  and  scroll  along  the  length  of  the  annota'on,  verifying  exon  boundaries  against  available  data.  Use  square  [  ]  brackets  to  scroll  from  exon  to  exon.  

4.  Check  if  cDNA  /  RNAseq  reads  lack  one  or  more  of  the  annotated  exons  or  include  addi'onal  exons.    

 

61 | 61

CHECKING EXON INTEGRITY

Becoming Acquainted with Web Apollo. SIMPLE CASES

Page 62: Genome Curation using Apollo

Non-­‐canonical  splice  sites  flags.   Double  click:  selec'on  of  feature  and  sub-­‐features  

Evidence  Tracks  Area  

‘User-­‐created  Annota1ons’  Track  

Edge-­‐matching  

Apollo’s  edi'ng  logic  (brain):    §  selects  longest  ORF  as  CDS  §  flags  non-­‐canonical  splice  sites  

62

ORFs AND SPLICE SITES

Becoming Acquainted with Web Apollo. SIMPLE CASES

Page 63: Genome Curation using Apollo

63 |

Non-­‐canonical  splices  are  indicated  by  an   orange   circle   with   a   white  exclama'on  point   inside,  placed  over  the  edge  of  the  offending  exon.    

Canonical  splice  sites:  

3’-­‐…exon]GA  /  TG[exon…-­‐5’  

5’-­‐…exon]GT  /  AG[exon…-­‐3’  reverse  strand,  not  reverse-­‐complemented:  

forward  strand  

63

SPLICE SITES

Becoming Acquainted with Web Apollo. SIMPLE CASES

Zoom  to  review  non-­‐canonical  splice  site  warnings.  Although  these  may  not  always  have  to  be  corrected  (e.g  GC  donor),  they  should  be  flagged  with  the  appropriate  comment.    

Exon/intron  splice  site  error  warning  

Curated  model  

Page 64: Genome Curation using Apollo

Web  Apollo  calculates  the  longest  possible  open  reading  frame  (ORF)  that  includes  canonical  ‘Start’  and  ‘Stop’  signals  within  the  predicted  exons.    

If  ‘Start’  appears  to  be  incorrect,  modify  it  by  selec'ng  an  in-­‐frame  ‘Start’  codon  further  up  or  downstream,  depending  on  evidence  (protein  database,  addi'onal  evidence  tracks).      

It  may  be  present  outside  the  predicted  gene  model,  within  a  region  supported  by  another  evidence  track.    

In  very  rare  cases,  the  actual  ‘Start’  codon  may  be  non-­‐canonical  (non-­‐ATG).    

64 | 64

‘START’ AND ‘STOP’ SITES

Becoming Acquainted with Web Apollo. SIMPLE CASES

Page 65: Genome Curation using Apollo

complex  cases  

Page 66: Genome Curation using Apollo

Evidence  may  support  joining  two  or  more  different  gene  models.    Warning:  protein  alignments  may  have  incorrect  splice  sites  and  lack  non-­‐conserved  regions!    

1.  In  ‘User-­‐created  Annota,ons’  area  shij-­‐click  to  select  an  intron  from  each  gene  model  and  right  click  to  select  the  ‘Merge’  op'on  from  the  menu.    

2.  Drag  suppor'ng  evidence  tracks  over  the  candidate  models  to  corroborate  overlap,  or  review  edge  matching  and  coverage  across  models.  

3.  Check  the  resul'ng  transla'on  by  querying  a  protein  database  e.g.  UniProt,  NCBI  nr.  Add  comments  to  record  that  this  annota'on  is  the  result  of  a  merge.  

66 | 66

Red  lines  around  exons:  ‘edge-­‐matching’  allows  annotators  to  confirm  whether  the  evidence  is  in  agreement  without  examining  each  exon  at  the  base  level.  

COMPLEX CASES merge two gene predictions on the same scaffold

Becoming Acquainted with Web Apollo. COMPLEX CASES

Page 67: Genome Curation using Apollo

One  or  more  splits  may  be  recommended  when:    -­‐  different  segments  of  the  predicted  protein  align  to  two  or  more  different  gene  families    -­‐  predicted  protein  doesn’t  align  to  known  proteins  over  its  en're  length    

Transcript  data  may  support  a  split,  but  first  verify  whether  they  are  alterna've  transcripts.    

67 | 67

COMPLEX CASES split a gene prediction

Becoming Acquainted with Web Apollo. COMPLEX CASES

Page 68: Genome Curation using Apollo

DNA  Track  

‘User-­‐created  Annota=ons’  Track  

68

COMPLEX CASES correcting frameshifts and single-base errors

Becoming Acquainted with Web Apollo. COMPLEX CASES

Always  remember:  when  annota'ng  gene  models  using  Apollo,  you  are  looking  at  a  ‘frozen’  version  of  the  genome  assembly  and  you  will  not  be  able  to  modify  the  assembly  itself.  

Page 69: Genome Curation using Apollo

69

COMPLEX CASES correcting selenocysteine containing proteins

Becoming Acquainted with Web Apollo. COMPLEX CASES

Page 70: Genome Curation using Apollo

70

COMPLEX CASES correcting selenocysteine containing proteins

Becoming Acquainted with Web Apollo. COMPLEX CASES

Page 71: Genome Curation using Apollo

1.  Apollo  allows  annotators  to  make  single  base  modifica'ons  or  frameshijs  that  are  reflected  in  the  sequence  and  structure  of  any  transcripts  overlapping  the  modifica'on.  These  manipula'ons  do  NOT  change  the  underlying  genomic  sequence.    

2.  If  you  determine  that  you  need  to  make  one  of  these  changes,  zoom  in  to  the  nucleo'de  level  and  right  click  over  a  single  nucleo'de  on  the  genomic  sequence  to  access  a  menu  that  provides  op'ons  for  crea'ng  inser'ons,  dele'ons  or  subs'tu'ons.    

3.  The  ‘Create  Genomic  Inser=on’  feature  will  require  you  to  enter  the  necessary  string  of  nucleo'de  residues  that  will  be  inserted  to  the  right  of  the  cursor’s  current  loca'on.  The  ‘Create  Genomic  Dele=on’  op'on  will  require  you  to  enter  the  length  of  the  dele'on,  star'ng  with  the  nucleo'de  where  the  cursor  is  posi'oned.  The  ‘Create  Genomic  Subs=tu=on’  feature  asks  for  the  string  of  nucleo'de  residues  that  will  replace  the  ones  on  the  DNA  track.  

4.  Once  you  have  entered  the  modifica'ons,  Apollo  will  recalculate  the  corrected  transcript  and  protein  sequences,  which  will  appear  when  you  use  the  right-­‐click  menu  ‘Get  Sequence’  op'on.  Since  the  underlying  genomic  sequence  is  reflected  in  all  annota'ons  that  include  the  modified  region  you  should  alert  the  curators  of  your  organisms  database  using  the  ‘Comments’  sec'on  to  report  the  CDS  edits.    

5.  In  special  cases  such  as  selenocysteine  containing  proteins  (read-­‐throughs),  right-­‐click  over  the  offending/premature  ‘Stop’  signal  and  choose  the  ‘Set  readthrough  stop  codon’  op'on  from  the  menu.  

 71 | 71 Becoming Acquainted with Web Apollo. COMPLEX CASES

COMPLEX CASES correcting frameshifts, single-base errors, and selenocysteines

Page 72: Genome Curation using Apollo

72 | 72

USER NAVIGATION

Becoming Acquainted with Web Apollo.

•  Annotation right-click menu

Page 73: Genome Curation using Apollo

73

Annota'ons,  annota'on  edits,  and  History:  stored  in  a  centralized  database.  

73

USER NAVIGATION

Becoming Acquainted with Web Apollo.

Page 74: Genome Curation using Apollo

Follow  the  checklist  un'l  you  are  happy  with  the  annota'on!  

And  remember  to…  –  comment  to  validate  your  annota'on,  even  if  you  made  no  changes  to  an  exis'ng  model.  Think  of  comments  as  your  vote  of  confidence.    

–  or  add  a  comment  to  inform  the  community  of  unresolved  issues  you  think  this  model  may  have.  

74 | 74

Always  Remember:  Apollo  cura'on  is  a  community  effort  so  please  use  comments  to  communicate  the  reasons  for  your    

annota'on.  Your  comments  will  be  visible  to  everyone.  

COMPLETING THE ANNOTATION

Becoming Acquainted with Apollo.

Page 75: Genome Curation using Apollo

75 | 75

USER NAVIGATION

Becoming Acquainted with Web Apollo.

•  Annotation right-click menu

Page 76: Genome Curation using Apollo

76

The  Annota'on  Informa=on  Editor  

76

USER NAVIGATION

Becoming Acquainted with Web Apollo.

DBXRefs  are  database  crossed  references:  if  you  have  reason  to  believe  that  this  gene  is  linked  to  a  gene  in  a  public  database  (including  your  own),  then  add  it  here.  

Page 77: Genome Curation using Apollo

77

The  Annota'on  Informa=on  Editor  

•  Add  PubMed  IDs  •  Include  GO  terms  as  appropriate  

from  any  of  the  three  ontologies  •  Write  comments  sta'ng  how  you  

have  validated  each  model.  

77

USER NAVIGATION

Becoming Acquainted with Web Apollo.

Page 78: Genome Curation using Apollo

Checklist  

Page 79: Genome Curation using Apollo

•  Check  ‘Start’  and  ‘Stop’  sites.  

•  Check    splice  sites:  most  splice  sites  display  these  residues  …]5’-­‐GT/AG-­‐3’[…  

•  Check  if  you  can  annotate  UTRs,  for  example  using  RNA-­‐Seq  data:  – Align  it  against  relevant  genes/gene  family  – blastp  against  NCBI’s  RefSeq  or  nr  

•  Check  for  gaps  in  the  genome.  

•  Addi'onal  func'onality  may  be  necessary:  – Merging  2  gene  predic'ons  on  the  same  scaffold  

– Merging  2  gene  predic'ons  from  different  scaffolds    

– Spligng  a  gene  predic'on  – Correc'ng  frameshiYs  and  other  errors  in  the  genome  assembly  

– Annotate  selenocysteines,  correct  single-­‐base  errors,  etc.  

79 | 79

•  Add:  –  Important  project  informa'on  in  the  form  of  

comments  –  IDs  from  public  databases  e.g.  GenBank  (via  

DBXRef),  gene  symbol(s),  common  name(s),  synonyms,  top  BLAST  hits,  orthologs  with  species  names,  and  everything  else  you  can  think  of,  because  you  are  the  expert.  

–  Comments  about  the  kinds  of  changes  you  made  to  the  gene  model  of  interest,  if  any.    

–  Any  appropriate  func'onal  assignments,  e.g.  via  BLAST,  RNA-­‐Seq  data,  literature  searches,  etc.  

THE CHECKLIST for accuracy and integrity

MANUAL ANNOTATION CHECKLIST

Page 80: Genome Curation using Apollo

Example  

Page 81: Genome Curation using Apollo

Example

Example 81

A  public  Apollo  Demo  using  the  Honey  Bee  genome  is  available  at    h@p://genomearchitect.org/WebApolloDemo  

-­‐  Cura'on  example  using  the  Hyalella  azteca  genome  (amphipod  crustacean).  

Page 82: Genome Curation using Apollo

What do we know about this genome?

•  Currently  publicly  available  data  at  NCBI:  •  >37,000    nucleo'de  seqsà  scaffolds,  mitochondrial  genes  •  300    amino  acid  seqsà  mitochondrion  •  53    ESTs  •  0      conserved  domains  iden'fied  •  0    “gene”  entries  submi@ed    

•  Data  at  i5K  Workspace@NAL  (annota'on  hosted  at  USDA)    -­‐  10,832  scaffolds:  23,288  transcripts:  12,906  proteins  

Example 82

Page 83: Genome Curation using Apollo

PubMed Search: what’s new?

Example 83

Page 84: Genome Curation using Apollo

PubMed Search: what’s new?

Example 84

“Ten  popula'ons  (3  cultures,  7  from  California  water  bodies)  differed  by  at  least  550-­‐fold  in  sensi=vity  to  pyrethroids.”    

“By  sequencing  the  primary  pyrethroid  target  site,  the  voltage-­‐gated  sodium  channel  (vgsc),  we  show  that  point  muta'ons  and  their  spread  in  natural  popula'ons  were  responsible  for  differences  in  pyrethroid  sensi'vity.”  

“The  finding  that  a  non-­‐target  aqua'c  species  has  acquired  resistance  to  pes'cides  used  only  on  terrestrial  pests  is  troubling  evidence  of  the  impact  of  chronic  pes=cide  transport  from  land-­‐based  applica'ons  into  aqua'c  systems.”  

Page 85: Genome Curation using Apollo

How many sequences are there, publicly available, for our gene of interest?

Example 85

•  Para,  (voltage-­‐gated  sodium  channel  alpha  subunit;  Nasonia  vitripennis).    

•  NaCP60E  (Sodium  channel  protein  60  E;  D.  melanogaster).  –  MF:  voltage-­‐gated  ca'on  channel  ac'vity  (IDA,  GO:0022843).  

–  BP:  olfactory  behavior  (IMP,  GO:0042048),  sodium  ion  transmembrane  transport  (ISS,GO:0035725).  

–  CC:  voltage-­‐gated  sodium  channel  complex  (IEA,  GO:0001518).  

And  what  do  we  know  about  them?  

Page 86: Genome Curation using Apollo

Retrieving sequences for sequence similarity searches.

Example 86

>vgsc-­‐Segment3-­‐DomainII  RVFKLAKSWPTLNLLISIMGKTVGALGNLTFVLCIIIFIFAVMGMQLFGKNYTEKVTKFKWSQDGQMPRWNFVDFFHSFMIVFRVLCGEWIESMWDCMYVGDFSCVPFFLATVVIGNLVVSFMHR

Page 87: Genome Curation using Apollo

BLAT search

input

Example 87

>vgsc-­‐Segment3-­‐DomainII  RVFKLAKSWPTLNLLISIMGKTVGALGNLTFVLCIIIFIFAVMGMQLFGKNYTEKVTKFKWSQDGQMPRWNFVDFFHSFMIVFRVLCGEWIESMWDCMYVGDFSCVPFFLATVVIGNLVVSFMHR

Page 88: Genome Curation using Apollo

BLAT search

results

Example 88

•  High-­‐scoring  segment  pairs  (hsp)  are  listed  in  tabulated  format.  

•  Clicking  on  one  line  of  results  sends  you  to  those  coordinates.  

Page 89: Genome Curation using Apollo

Creating a new gene model: drag and drop

Example 89

•  Apollo automatically calculates ORF. In this case, ORF includes the high-scoring segment pairs (hsp), marked here in blue.

Page 90: Genome Curation using Apollo

Available Tracks

Example 90

Page 91: Genome Curation using Apollo

Get Sequence

Example 91

http://blast.ncbi.nlm.nih.gov/Blast.cgi

Page 92: Genome Curation using Apollo

Also, flanking sequences (other gene models) vs. NCBI nr

Example 92

In  this  case,  two  gene  models  upstream,  at  5’  end.  

BLAST  hsps  

Page 93: Genome Curation using Apollo

Review alignments

Example 93

HaztTmpM006234  

HaztTmpM006233  

HaztTmpM006232  

Page 94: Genome Curation using Apollo

Hypothesis for vgsc gene model

Example 94

Page 95: Genome Curation using Apollo

Editing: merge the three models

Example 95

Merge  by  dropping  an  exon  or  gene  model  onto  another.  

Merge  by  selec'ng  two  exons  (holding  down  “Shij”)  and  using  the  right  click  menu.  

or…  

Page 96: Genome Curation using Apollo

Result of merging the three models.

Example 96

Page 97: Genome Curation using Apollo

Editing: correct boundaries

Example 97

Modify  exon  /  intron  boundary:    -­‐  Drag  the  end  of  the  

exon  to  the  nearest  canonical  splice  site.  

 

or    

-­‐  Use  right-­‐click  menu.  

Page 98: Genome Curation using Apollo

Editing: set translation start

Example 98

Page 99: Genome Curation using Apollo

Editing: delete exon

Example 99

Delete  first  exon  from  HaztTmpM006233  

Page 100: Genome Curation using Apollo

Editing: add an exon - supported by RNAseq

Example 100

•  RNAseq  reads  show  evidence  in  support  of  transcribed  product,  which  was  not  predicted.  •  Add  exon  at  coordinates  97946-­‐98012  by  dragging  up  one  of  the  RNAseq  reads.  

Page 101: Genome Curation using Apollo

Editing: and adjust other exon boundary using evidence

Example 101

Page 102: Genome Curation using Apollo

Editing: adjust other boundaries supported by evidence

Example 102

Page 103: Genome Curation using Apollo

Finished model

Example 103

Corroborate  integrity  and  accuracy  of  the  model:    -­‐  Start  and  Stop  -­‐  Exon  structure  and  splice  sites  …]5’-­‐GT/AG-­‐3’[…  -­‐  Check  the  predicted  protein  product  vs.  NCBI  nr,  UniProt,  etc.  

Page 104: Genome Curation using Apollo

Information Editor

•  DBXRefs:  e.g.  NP_001128389.1,  N.  vitripennis,  RefSeq  

•  PubMed  iden'fier:  PMID:  24065824  

•  Gene  Ontology  IDs:  GO:0022843,  GO:0042048,  GO:0035725,  GO:0001518.  

•  Comments.  

•  Name,  Symbol.    

•  Approve  /  Delete  radio  bu@on.  

Example 104

Comments  (if  applicable)  

Page 105: Genome Curation using Apollo

Demo  

Page 106: Genome Curation using Apollo

APOLLOdemonstration

DEMO 106

Demo  video  is  available  at    h@ps://youtu.be/VgPtAP_fvxY  

Page 107: Genome Curation using Apollo

OUTLINE

Web  Apollo  Collabora've  Cura'on  and    Interac've  Analysis  of  Genomes  

107 OUTLINE

•  BIO-­‐REFRESHER  biological  concepts  for  cura'on  

•  ANNOTATION  automa'c  predic'ons  

•  MANUAL  ANNOTATION  necessary,  collabora've  

 •  APOLLO  

advancing  collabora've  cura'on    •  EXAMPLE  

demos  

•  EXERCISES  

Page 108: Genome Curation using Apollo

Exercises  

Page 109: Genome Curation using Apollo
Page 110: Genome Curation using Apollo

Exercises Live  Demonstra'on  using  the  Apis  mellifera  genome.  

110

1.  Evidence  in  support  of  protein  coding  gene  models.      1.1  Consensus  Gene  Sets:  Official  Gene  Set  v3.2  Official  Gene  Set  v1.0    1.2  Consensus  Gene  Sets  comparison:  OGSv3.2  genes  that  merge  OGSv1.0  and  RefSeq  genes  OGSv3.2  genes  that  split  OGSv1.0  and  RefSeq  genes    1.3  Protein  Coding  Gene  Predic=ons  Supported  by  Biological  Evidence:  NCBI  Gnomon  Fgenesh++  with  RNASeq  training  data  Fgenesh++  without  RNASeq  training  data  NCBI  RefSeq  Protein  Coding  Genes  and  Low  Quality  Protein  Coding  Genes  

1.4  Ab  ini,o  protein  coding  gene  predic=ons:  Augustus  Set  12,  Augustus  Set  9,  Fgenesh,  GeneID,  N-­‐SCAN,  SGP2    1.5  Transcript  Sequence  Alignment:  NCBI  ESTs,  Apis  cerana  RNA-­‐Seq,  Forager  Bee  Brain  Illumina  Con'gs,  Nurse  Bee  Brain  Illumina  Con'gs,  Forager  RNA-­‐Seq  reads,  Nurse  RNA-­‐Seq  reads,  Abdomen  454  Con'gs,  Brain  and  Ovary  454  Con'gs,  Embryo  454  Con'gs,  Larvae  454  Con'gs,  Mixed  Antennae  454  Con'gs,  Ovary  454  Con'gs  Testes  454  Con'gs,  Forager  RNA-­‐Seq  HeatMap,  Forager  RNA-­‐Seq  XY  Plot,  Nurse  RNA-­‐Seq  HeatMap,  Nurse  RNA-­‐Seq  XY  Plot    

Becoming Acquainted with Web Apollo.

Page 111: Genome Curation using Apollo

Exercises Live  Demonstra'on  using  the  Apis  mellifera  genome.  

111

1.  Evidence  in  support  of  protein  coding  gene  models  (Con=nued).    1.6  Protein  homolog  alignment:  Acep_OGSv1.2  Aech_OGSv3.8  Cflo_OGSv3.3  Dmel_r5.42  Hsal_OGSv3.3  Lhum_OGSv1.2  Nvit_OGSv1.2  Nvit_OGSv2.0  Pbar_OGSv1.2  Sinv_OGSv2.2.3  Znev_OGSv2.1  Metazoa_Swissprot      

2.  Evidence  in  support  of  non  protein  coding  gene  models    2.1  Non-­‐protein  coding  gene  predic=ons:  NCBI  RefSeq  Noncoding  RNA  NCBI  RefSeq  miRNA    2.2  Pseudogene  predic=ons:  NCBI  RefSeq  Pseudogene  

Becoming Acquainted with Web Apollo.

Page 112: Genome Curation using Apollo

Instrucciones 112 | 112

APOLLO ON THE WEBinstructions

Username:  [email protected]  

 Password:  usernumber  

Email   Password   Server   Begin  at  [email protected]   userone   1   1  [email protected]   usertwo   2   1  [email protected]   userthree   3   1  [email protected]   userfour   4   1  [email protected]   userfive   5   1  [email protected]   usersix   1   7  [email protected]   userseven   2   7  [email protected]   usereight   3   7  [email protected]   usernine   4   7  [email protected]   userten   5   7  [email protected]   usereleven   1   1  [email protected]   usertwelve   2   1  [email protected]   userthirteen   3   1  [email protected]   userfourteen   4   1  [email protected]   userfijeen   5   1  [email protected]   usersixteen   1   7  [email protected]   userseventeen   2   7  user.eigh@[email protected]   usereighteen   3   7  [email protected]   usernineteen   4   7  [email protected]   usertwenty   5   7  [email protected]   usertwentyone   1   1  [email protected]   usertwentytwo   2   1  [email protected]   usertwentythree   3   1  [email protected]   usertwentyfour   4   1  [email protected]   usertwentyfive   5   1  [email protected]   usertwentysix   1   7  [email protected]   usertwentyseven   2   7  [email protected]   usertwentyeight   3   7  [email protected]   usertwentynine   4   7  

Server   URL  1  h@p://52.26.7.239:8080/apollo/annotator/index  2  h@p://52.89.205.105:8080/apollo/annotator/index  3  h@p://52.89.230.210:8080/apollo/annotator/index  4  h@p://52.89.149.42:8080/apollo/annotator/index  5  h@p://52.89.233.118:8080/apollo/annotator/index  

Page 113: Genome Curation using Apollo

Thank you. 113

•  Berkeley  Bioinforma=cs  Open-­‐source  Projects  (BBOP),  Berkeley  Lab:  Apollo  and  Gene  Ontology  teams.  Suzanna  E.  Lewis  (PI).  

•  §  Chris1ne  G.  Elsik  (PI).  University  of  Missouri.    

•  *  Ian  Holmes  (PI).  University  of  California  Berkeley.  

•  Arthropod  genomics  community:  i5K  Steering  Commi@ee  (esp.  Sue  Brown  (Kansas  State)),  Alexie  Papanicolaou  (UWS),  and  the  Honey  Bee  Genome  Sequencing  Consor'um.  

•  Stephen  Ficklin,  GenSAS,  Washington  State  University  

•  Apollo  is  supported  by  NIH  grants  5R01GM080203  from  NIGMS,  and  5R01HG004483  from  NHGRI.  Both  projects  are  also  supported  by  the  Director,  Office  of  Science,  Office  of  Basic  Energy  Sciences,  of  the  U.S.  Department  of  Energy  under  Contract  No.  DE-­‐AC02-­‐05CH11231  

•     

•  For  your  a*en=on,  thank  you!  

Apollo  

Nathan  Dunn  

Colin  Diesh  §  

Deepak  Unni  §    

 

Gene  Ontology  

Chris  Mungall  

Seth  Carbon  

Heiko  Dietze  

 

BBOP  

Apollo:  h@p://GenomeArchitect.org    

GO:  h@p://GeneOntology.org  

i5K:  h@p://arthropodgenomes.org/wiki/i5K  

Thank  you!  

NAL  at  USDA  

Monica  Poelchau  

Christopher  Childers  

Gary  Moore  

HGSC  at  BCM  

fringy  Richards  

Kim  Worley  

 

JBrowse          Eric  Yao  *  

Page 114: Genome Curation using Apollo