generative models of m/eeg: group inversion and meg+eeg+fmri multimodal integration rik henson (with...

48
Generative Models of M/EEG: Group inversion and MEG+EEG+fMRI multimodal integration Rik Henson (with much input from Karl Friston)

Upload: austen-clark

Post on 20-Jan-2016

219 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Generative Models of M/EEG: Group inversion and MEG+EEG+fMRI multimodal integration Rik Henson (with much input from Karl Friston)

Generative Models of M/EEG:

Group inversion and MEG+EEG+fMRI multimodal integration

Rik Henson

(with much input from Karl Friston)

Page 2: Generative Models of M/EEG: Group inversion and MEG+EEG+fMRI multimodal integration Rik Henson (with much input from Karl Friston)

Overview

1. A Generative Model of M/EEG

2. Group inversion (optimising priors across subjects)

3. Multimodal integration:

3.1 Symmetric integration (fusion) of MEG + EEG

3.2 Asymmetric integration of MEG + fMRI

3.3 Full fusion of MEG/EEG + fMRI?

Page 3: Generative Models of M/EEG: Group inversion and MEG+EEG+fMRI multimodal integration Rik Henson (with much input from Karl Friston)

1. A PEB Framework for MEG/EEG(Generative Model)

Phillips et al (2005), Neuroimage

Y = LJ +EY = Data n sensorsJ = Sources p>>n sourcesL = Leadfields n sensors x p sourcesE = Error n sensors

(Linear) Forward Model for MEG/EEG (for one timepoint):

| ( | ) ( )p( ) p pJ Y Y J J

(Gaussian) Likelihood:

( )( | ) ( , )ep NY J LJ C

( ) (0, )jp N ( )J C

C(e) = n x n Sensor (error) covariance

Prior:

C(j) = p x p Source (prior) covariance

Posterior:

Page 4: Generative Models of M/EEG: Group inversion and MEG+EEG+fMRI multimodal integration Rik Henson (with much input from Karl Friston)

( )eiQ

Specifying (co)variance components (priors/regularisation):

1. Sensor components, (error):

i ii

C Q C = Sensor/Source covarianceQ = Covariance componentsλ = Hyper-parameters

( )jiQ2. Source components,

(priors/regularisation):

“IID” (white noise):

# sensors

# s

en

sors

Empty-room:

# sensors

# s

en

sors

“IID” (min norm):

# sources

# s

ou

rce

s

Multiple Sparse Priors (MSP):

( ) ( , )p NX m C

# sources

# s

ou

rce

sFriston et al (2008) Neuroimage

1. A PEB Framework for MEG/EEG(Generative Model)

Page 5: Generative Models of M/EEG: Group inversion and MEG+EEG+fMRI multimodal integration Rik Henson (with much input from Karl Friston)

ΕJ

YL

( )jC( )eC

( , )N 0 C ( , )N 0 C

...

( )ji

( )1eQ ( )

2eQ ...

( )ei

1. A PEB Framework for MEG/EEG(Generative Model)

Friston et al (2008) Neuroimage

Fixed

Variable

Data

( )1jQ ( )

2jQ

Page 6: Generative Models of M/EEG: Group inversion and MEG+EEG+fMRI multimodal integration Rik Henson (with much input from Karl Friston)

1. A PEB Framework for MEG/EEG(Inversion)

Friston et al (2002) Neuroimage

ˆ max ( | ) maxp F

λ Y λ

ˆˆln ( | ) ln ( , | ) ( , )p m p J m dJ F Y Y J λ

ˆˆ max ( | , ) maxj jp F J J Y λ

ln ( | , ) ( | ) lnq

F p p q Y J λ J λ

1. Obtain Restricted Maximum Likelihood (ReML) estimates of the hyperparameters (λ) by maximising the variational “free energy” (F):

2. Obtain Maximum A Posteriori (MAP) estimates of parameters (sources, J):( ) ( ) ( ) -1ˆ ˆ ˆ( )j T j T eC L LC L +C Y cf. Tikhonov

…and an estimate of their posterior covariance (inverse precision):

( ) ( ) ( )ˆ ˆ ˆ ˆˆ -j j j T -1Σ C C L C LC

3. Maximal F approximates Bayesian (log) “model evidence” for a model, m:

(relevant to MEG+EEG integration)

(relevant to MEG+fMRI integration)

( )ˆ ˆ ˆj e T ( )C LC L C

ˆ{ , , }m L Q λ

Page 7: Generative Models of M/EEG: Group inversion and MEG+EEG+fMRI multimodal integration Rik Henson (with much input from Karl Friston)

Summary:

1. A PEB Framework for MEG/EEG

• Automatically “regularises” in principled fashion…

• …allows for multiple constraints (priors)…

• …to the extent that multiple (100’s) of sparse priors possible…

• …(or multiple error components or multiple fMRI priors)…

• …furnishes estimates of source precisions and model evidence

Page 8: Generative Models of M/EEG: Group inversion and MEG+EEG+fMRI multimodal integration Rik Henson (with much input from Karl Friston)

2. Group Inversion

( )eiQ

Specifying (co)variance components (priors/regularisation):

1. Sensor components, (error):

i ii

C Q C = Sensor/Source covarianceQ = Covariance componentsλ = Hyper-parameters

( )jiQ2. Source components,

(priors/regularisation):

“IID” (white noise):

# sensors

# s

en

sors

Empty-room:

# sensors

# s

en

sors

“IID” (min norm):

# sources

# s

ou

rce

s

Multiple Sparse Priors (MSP):

( ) ( , )p NX m C

# sources

# s

ou

rce

sFriston et al (2008) Neuroimage

Page 9: Generative Models of M/EEG: Group inversion and MEG+EEG+fMRI multimodal integration Rik Henson (with much input from Karl Friston)

( )eiQ

Specifying (co)variance components (priors/regularisation):

1. Sensor components, (error):

i ii

C Q C = Sensor/Source covarianceQ = Covariance componentsλ = Hyper-parameters

( )jiQ

“IID” (white noise):

# sensors

# s

en

sors

Empty-room:

# sensors

# s

en

sors

( ) ( , )p NX m C

2. Optimise Multiple Sparse Priors by pooling across participants

2. Group Inversion

Litvak & Friston (2008) Neuroimage

# sources

# s

ou

rce

s

Page 10: Generative Models of M/EEG: Group inversion and MEG+EEG+fMRI multimodal integration Rik Henson (with much input from Karl Friston)

ΕJ

YL

( )jC( )eC

( , )N 0 C ( , )N 0 C

...

( )ji

( )1eQ ( )

2eQ ...

( )ei

2. Group Inversion (single subject)(Generative Model)

Litvak & Friston (2008) Neuroimage

( )1jQ ( )

2jQ

Page 11: Generative Models of M/EEG: Group inversion and MEG+EEG+fMRI multimodal integration Rik Henson (with much input from Karl Friston)

ΕJ

1Y

iL

( )jC ( )eC

( , )N 0 C ( , )N 0 C

...

( )jk

( )21eQ

( )eik

2. Group Inversion (multiple subjects)(Generative Model)

Litvak & Friston (2008) Neuroimage

( )1jQ ( )

2jQ

2Y NY

( )12eQ ( )

1eNQ( )

11eQ ...

Page 12: Generative Models of M/EEG: Group inversion and MEG+EEG+fMRI multimodal integration Rik Henson (with much input from Karl Friston)

)()()( jk

jk

j QC

Ti

eki

eik

ei AQAC )()()(

)(0

)(0

eTj CLCLC

)(

)(2

)(1

)(

00

0

0

00

eN

e

e

e

C

C

C

C

NNNE

E

E

J

L

L

L

Y

Y

Y

2

1

2

1

2

1

~

~

~

iii YAY ~

…projecting data and leadfields to a reference subject (0):

Common source-level priors:

Subject-specific sensor-level priors:

10 )( T

iiTii LLLLA

2. Group Inversion(Generative Model)

Litvak & Friston (2008) Neuroimage

Page 13: Generative Models of M/EEG: Group inversion and MEG+EEG+fMRI multimodal integration Rik Henson (with much input from Karl Friston)

2. Group Inversion(Generative Model)

Litvak & Friston (2008) Neuroimage

MMN MSP MSP (Group)

Page 14: Generative Models of M/EEG: Group inversion and MEG+EEG+fMRI multimodal integration Rik Henson (with much input from Karl Friston)

fMRI MEG ? (future)Data:

Causes (hidden):

Generative (Forward)Models:

BalloonModel

HeadModel

?

EEG

HeadModel

“Neural”Activity

3. Types of Multimodal Integration

(inversion)

Page 15: Generative Models of M/EEG: Group inversion and MEG+EEG+fMRI multimodal integration Rik Henson (with much input from Karl Friston)

AsymmetricIntegration

fMRI MEG ? (future)Data:

Causes (hidden):

Generative (Forward)Models:

BalloonModel

HeadModel

?

EEG

HeadModel

“Neural”Activity

SymmetricIntegration(Fusion)

3. Types of Multimodal Integration

Daunizeau et al (2007), Neuroimage

Page 16: Generative Models of M/EEG: Group inversion and MEG+EEG+fMRI multimodal integration Rik Henson (with much input from Karl Friston)

( )eiQ

Specifying (co)variance components (priors/regularisation):

1. Sensor components, (error):

i ii

C Q C = Sensor/Source covarianceQ = Covariance componentsλ = Hyper-parameters

( )jiQ2. Source components,

(priors/regularisation):

“IID” (white noise):

# sensors

# s

en

sors

Empty-room:

# sensors

# s

en

sors

“IID” (min norm):

# sources

# s

ou

rce

s

Multiple Sparse Priors (MSP):

( ) ( , )p NX m C

# sources

# s

ou

rce

sFriston et al (2008) Neuroimage

3.1 Fusion of MEG+EEG(Theory)

Page 17: Generative Models of M/EEG: Group inversion and MEG+EEG+fMRI multimodal integration Rik Henson (with much input from Karl Friston)

( )eijQ

Specifying (co)variance components (priors/regularisation):

1. Sensor components, (error):

Ci(e) = Sensor error covariance for ith modality

Qij = jth component for ith modalityλij = Hyper-parameters

( )jiQ2. Source components,

(priors/regularisation):

“IID” (min norm):

# sources

# s

ou

rce

s

Multiple Sparse Priors (MSP):

# sources

# s

ou

rce

s

( ) ( ) ( )e e ei ji ij

j

C Q

# sensors

# s

en

sors

# sensors

# s

en

sors

E.g, white noise for 2 modalities:( )11eQ ( )

21eQ

Henson et al (2009) Neuroimage

3.1 Fusion of MEG+EEG(Theory)

Page 18: Generative Models of M/EEG: Group inversion and MEG+EEG+fMRI multimodal integration Rik Henson (with much input from Karl Friston)

ΕJ

MEGY

MEGL

( )jC( )eC

( , )N 0 C ( , )N 0 C

( )1jQ ( )

2jQ

( )ji

( )1eQ ( )

2eQ

( )ei

3.1 Fusion of MEG+EEG(Generative Model)

Henson et al (2009) Neuroimage

Page 19: Generative Models of M/EEG: Group inversion and MEG+EEG+fMRI multimodal integration Rik Henson (with much input from Karl Friston)

ΕJ

MEGY

MEGL

( )jC( )1eC

( , )N 0 C ( , )N 0 C

( )1jQ ( )

2jQ

( )ji

( )11eQ ( )

12eQ

( )eij

3.1 Fusion of MEG+EEG(Generative Model)

EEGY

EEGL

( )2eC

( )21eQ ( )

22eQ

Henson et al (2009) Neuroimage

Page 20: Generative Models of M/EEG: Group inversion and MEG+EEG+fMRI multimodal integration Rik Henson (with much input from Karl Friston)

3.1 Fusion of MEG+EEG(Theory)

Henson et al (2009) Neuroimage

(1)11 1(1)22 2

(1)dd d

EY L

EY LJ

EY L

• Stack data and leadfields for d modalities:

1 ( )i

ii T

i im

YY

tr YY

• Where data / leadfields scaled to have same average / predicted variance:

)(

)(2

)(1

)(

00

0

0

00

ed

e

e

e

C

C

C

C

mi = Number of spatial modes (e.g, channels)1 ( )

i

ii T

i im

LL

tr L L

(note: common sources and source priors, but separate error components)

Page 21: Generative Models of M/EEG: Group inversion and MEG+EEG+fMRI multimodal integration Rik Henson (with much input from Karl Friston)

ERs from 12 subjects for 3 simultaneously-acquired Neuromag sensor-types:

RM

S f

T/m V

FacesScrambled

fT

3.1 Fusion of MEG+EEG(Application)

Magnetometers (MEG, 102)

(Planar) Gradiometers (MEG, 204)

Electrodes (EEG, 70)

Henson et al (2009) Neuroimage

150-190ms

Faces - Scrambled

ms ms ms

Page 22: Generative Models of M/EEG: Group inversion and MEG+EEG+fMRI multimodal integration Rik Henson (with much input from Karl Friston)

MEG mags MEG grads

EEG

FUSED

+31 -51 -15 +19 -48 -6

+43 -67 -11 +44 -64 -4

3.1 Fusion of MEG+EEG

Henson et al (2009) Neuroimage

ˆ1/ 59ii ˆ1/ 76ii

IID noise for each modality; common MSP for sources

ˆ1/ 95ii ˆ1/ 127ii

(fixed number of spatial+temporal modes)

Scrambled

150-190msFaces – Scrambled,

Faces

Page 23: Generative Models of M/EEG: Group inversion and MEG+EEG+fMRI multimodal integration Rik Henson (with much input from Karl Friston)

3.1 Fusion of MEG+EEG(Conclusions)

Henson et al (2009) Neuroimage

• Fusing magnetometers, gradiometers and EEG increased the conditional precision of the source estimates relative to inverting any one modality alone (when equating number of spatial+temporal modes)

• The maximal sources recovered from fusion were a plausible combination of the ventral temporal sources recovered by MEG and the lateral temporal sources recovered by EEG

• (Simulations show the relative scaling of mags and grads agrees with empty-room data)

Page 24: Generative Models of M/EEG: Group inversion and MEG+EEG+fMRI multimodal integration Rik Henson (with much input from Karl Friston)

3.2 Integration of M/EEG+fMRI

( )eiQ

Specifying (co)variance components (priors/regularisation):

1. Sensor components, (error):

i ii

C Q C = Sensor/Source covarianceQ = Covariance componentsλ = Hyper-parameters

( )jiQ2. Source components,

(priors/regularisation):

“IID” (white noise):

# sensors

# s

en

sors

Empty-room:

# sensors

# s

en

sors

“IID” (min norm):

# sources

# s

ou

rce

s

Multiple Sparse Priors (MSP):

( ) ( , )p NX m C

# sources

# s

ou

rce

sFriston et al (2008) Neuroimage

Page 25: Generative Models of M/EEG: Group inversion and MEG+EEG+fMRI multimodal integration Rik Henson (with much input from Karl Friston)

Henson et al (in press) Human Brain Mapping

( )eiQ

Specifying (co)variance components (priors/regularisation):

1. Sensor components, (error):

i ii

C Q C = Sensor/Source covarianceQ = Covariance componentsλ = Hyper-parameters

( )jiQ

“IID” (white noise):

# sensors

# s

en

sors

Empty-room:

# sensors

# s

en

sors

“IID” (min norm):

# sources

# s

ou

rce

s

fMRI Priors:

( ) ( , )p NX m C

# sources

# s

ou

rce

s

2. Each suprathreshold fMRI cluster becomes a separate prior

3.2 Integration of M/EEG+fMRI

Page 26: Generative Models of M/EEG: Group inversion and MEG+EEG+fMRI multimodal integration Rik Henson (with much input from Karl Friston)

3.2 Integration of M/EEG+fMRI(Generative Model)

ΕJ

YL

( )jC( )eC

( , )N 0 C ( , )N 0 C

...

( )ji

( )1eQ ( )

2eQ ...

( )ei

( )1jQ ( )

2jQ

Page 27: Generative Models of M/EEG: Group inversion and MEG+EEG+fMRI multimodal integration Rik Henson (with much input from Karl Friston)

3.2 Integration of M/EEG+fMRI(Generative Model)

ΕJ

L

( )jC( )eC

( , )N 0 C ( , )N 0 C

MEGY

fMRIY

( )1jQ ( )

2jQ

( )ji

( )ei

( )1eQ ( )

2eQ( )

3jQ ( )

4jQ

Page 28: Generative Models of M/EEG: Group inversion and MEG+EEG+fMRI multimodal integration Rik Henson (with much input from Karl Friston)

Henson et al (in press) Human Brain Mapping

T1-weighted MRI

Anatomical data

{T,F,Z}-SPM

Gray matter segmentation

Cortical surfaceextraction

3D geodesicVoronoï diagram

Functional data

1. Thresholding and connected component labelling

2. Projection onto the cortical surface using the Voronoï diagram

3. Prior covariance components ( )jiQ

3.2 Integration of M/EEG+fMRI (Priors)

Page 29: Generative Models of M/EEG: Group inversion and MEG+EEG+fMRI multimodal integration Rik Henson (with much input from Karl Friston)

3.2 Integration of M/EEG+fMRI (Application)

Henson et al (in press) Human Brain Mapping

SPM{F} for faces versus scrambled faces,

15 voxels, p<.05 FWE

5 clusters from SPM of fMRI data from separate group of (18) subjects in MNI space

1 2

3 4 5

Page 30: Generative Models of M/EEG: Group inversion and MEG+EEG+fMRI multimodal integration Rik Henson (with much input from Karl Friston)

3.2 Fusion of MEG+fMRI (Application)

Henson et al (in press) Human Brain Mapping

(binarised, variance priors)

Magnetometers (MEG)

* *

* *

None Global Local (Valid) Local (Invalid) Valid+Invalid

Electrodes (EEG)

Neg

ativ

e F

ree

Ene

rgy

(a.u

.)(m

odel

evi

denc

e)

*

*

**

*

*

*

Gradiometers (MEG)

Page 31: Generative Models of M/EEG: Group inversion and MEG+EEG+fMRI multimodal integration Rik Henson (with much input from Karl Friston)

3.2 Fusion of MEG+fMRI (Application)

Henson et al (in press) Human Brain Mapping

(binarised, variance priors)

Magnetometers (MEG)

* *

* *

Gradiometers (MEG)

None Global Local (Valid) Local (Invalid) Valid+Invalid

Electrodes (EEG)

Neg

ativ

e F

ree

Ene

rgy

(a.u

.)(m

odel

evi

denc

e)

*

*

**

*

*

*

Page 32: Generative Models of M/EEG: Group inversion and MEG+EEG+fMRI multimodal integration Rik Henson (with much input from Karl Friston)

3.2 Fusion of MEG+fMRI (Application)

Henson et al (in press) Human Brain Mapping

(binarised, variance priors)

Magnetometers (MEG)

* *

* *

Gradiometers (MEG)

None Global Local (Valid) Local (Invalid) Valid+Invalid

Electrodes (EEG)

Neg

ativ

e F

ree

Ene

rgy

(a.u

.)(m

odel

evi

denc

e)

*

*

**

*

*

*

Page 33: Generative Models of M/EEG: Group inversion and MEG+EEG+fMRI multimodal integration Rik Henson (with much input from Karl Friston)

3.2 Fusion of MEG+fMRI (Application)

Henson et al (in press) Human Brain Mapping

(binarised, variance priors)

Magnetometers (MEG)

* *

* *

Gradiometers (MEG)

None Global Local (Valid) Local (Invalid) Valid+Invalid

Electrodes (EEG)

Neg

ativ

e F

ree

Ene

rgy

(a.u

.)(m

odel

evi

denc

e)

*

*

**

*

*

*

Page 34: Generative Models of M/EEG: Group inversion and MEG+EEG+fMRI multimodal integration Rik Henson (with much input from Karl Friston)

3.2 Fusion of MEG+fMRI (Application)

Henson et al (in press) Human Brain Mapping

(binarised, variance priors)

Magnetometers (MEG)

* *

* *

Gradiometers (MEG)

None Global Local (Valid) Local (Invalid) Valid+Invalid

Electrodes (EEG)

Neg

ativ

e F

ree

Ene

rgy

(a.u

.)(m

odel

evi

denc

e)

*

*

**

*

*

*

Page 35: Generative Models of M/EEG: Group inversion and MEG+EEG+fMRI multimodal integration Rik Henson (with much input from Karl Friston)

3.2 Fusion of MEG+fMRI (Application)

Henson et al (in press) Human Brain Mapping

None Global Local (Valid) Local (Invalid)

Magnetometers (MEG)

Gradiometers (MEG)

Electrodes (EEG)

IID sources and IID noise (L2 MNM)

Page 36: Generative Models of M/EEG: Group inversion and MEG+EEG+fMRI multimodal integration Rik Henson (with much input from Karl Friston)

3.2 Fusion of MEG+fMRI (Application)

Henson et al (in press) Human Brain Mapping

None Global Local (Valid) Local (Invalid)

Magnetometers (MEG)

Gradiometers (MEG)

Electrodes (EEG)

IID sources and IID noise (L2 MNM)

Page 37: Generative Models of M/EEG: Group inversion and MEG+EEG+fMRI multimodal integration Rik Henson (with much input from Karl Friston)

3.2 Fusion of MEG+fMRI (Application)

Henson et al (in press) Human Brain Mapping

fMRI priors counteract superficial bias of L2-norm

None Global Local (Valid) Local (Invalid)

Magnetometers (MEG)

Gradiometers (MEG)

Electrodes (EEG)

IID sources and IID noise (L2 MNM)

Page 38: Generative Models of M/EEG: Group inversion and MEG+EEG+fMRI multimodal integration Rik Henson (with much input from Karl Friston)

3.2 Fusion of MEG+fMRI (Application)

Henson et al (in press) Human Brain Mapping

fMRI priors counteract superficial bias of L2-norm

None Global Local (Valid) Local (Invalid)

Magnetometers (MEG)

Gradiometers (MEG)

Electrodes (EEG)

IID sources and IID noise (L2 MNM)

Page 39: Generative Models of M/EEG: Group inversion and MEG+EEG+fMRI multimodal integration Rik Henson (with much input from Karl Friston)

3.2 Fusion of MEG+fMRI (Application)

Henson et al (in press) Human Brain Mapping

NB: Priors affect variance, not precise timecourse…

R

L

Gradiometers (MEG)

(5 Local Valid Priors)

Diff

eren

tial R

espo

nse

(Fac

es v

s S

cram

bled

)

Diff

eren

tial R

espo

nse

(Fac

es v

s S

cram

bled

)

Right Posterior Fusiform (rPF) Right Medial Fusiform (rMF) Right Lateral Fusiform (rLF)

Left occipital pole (lOP)

-27 -93 0

+26 -76 -11 +41 -43 -24 +32 -45 -12

-43 -47 -21

Left Lateral Fusiform (lLF)

Diff

eren

tial R

espo

nse

(Fac

es v

s S

cram

bled

)

Page 40: Generative Models of M/EEG: Group inversion and MEG+EEG+fMRI multimodal integration Rik Henson (with much input from Karl Friston)

• Adding a single, global fMRI prior increases model evidence

• Adding multiple valid priors increases model evidence furtherHelpful if some fMRI regions produce no MEG/EEG signal (or arise from neural activity at different times)

• Adding invalid priors rarely increases model evidence, particularly in conjunction with valid priors

• Can counteract superficial bias of, e.g, minimum-norm

• Affects variance but not not precise timecourse

• (Adding fMRI priors to MSP has less effect)

3.2 Fusion of MEG+fMRI (Conclusions)

Henson et al (in press) Human Brain Mapping

Page 41: Generative Models of M/EEG: Group inversion and MEG+EEG+fMRI multimodal integration Rik Henson (with much input from Karl Friston)

3.3 Fusion of fMRI and MEG/EEG?

fMRI MEG ? (future)Data:

Causes (hidden):

BalloonModel

HeadModel

?

EEG

HeadModel

“Neural”Activity

Fusion of fMRI + MEG/EEG?

Henson (2010) Biomag

Page 42: Generative Models of M/EEG: Group inversion and MEG+EEG+fMRI multimodal integration Rik Henson (with much input from Karl Friston)

J

MEGY

( )sMEGL

( )jC

( )1jQ ( )

2jQ

MEGΕ

( )eC

( )1eQ ( )

2eQ

3.3 Fusion of fMRI and MEG/EEG?

Henson (2010) Biomag

Page 43: Generative Models of M/EEG: Group inversion and MEG+EEG+fMRI multimodal integration Rik Henson (with much input from Karl Friston)

J

MEGY

( )sMEGL

( )jC

( )1jQ ( )

2jQ

( )tfMRIH

MEGΕ

( )eC

( )1eQ ( )

2eQ

fMRIΕ

fMRIY

( )1tA ( )

2sQ

time (t)?space (s)

3.3 Fusion of fMRI and MEG/EEG?

Henson (2010) Biomag

Page 44: Generative Models of M/EEG: Group inversion and MEG+EEG+fMRI multimodal integration Rik Henson (with much input from Karl Friston)

Overall Conclusions

1. The PEB (in SPM8) framework is advantageous

2. Group optimisation of MSPs can be advantageous

3. Full fusion of MEG and EEG is advantageous

4. Using fMRI as (spatial) priors on MEG is advantageous

5. Unclear that fusion of fMRI and M/EEG is advantageous

Page 45: Generative Models of M/EEG: Group inversion and MEG+EEG+fMRI multimodal integration Rik Henson (with much input from Karl Friston)

The End

Page 46: Generative Models of M/EEG: Group inversion and MEG+EEG+fMRI multimodal integration Rik Henson (with much input from Karl Friston)

3. Fusion of MEG+EEG

Henson et al (2009) Neuroimage

Page 47: Generative Models of M/EEG: Group inversion and MEG+EEG+fMRI multimodal integration Rik Henson (with much input from Karl Friston)

Participant

Grads

Mags

log

(λx10

6 )

Participant

EE

G

Grads

Mags

log

(λx10

6 )

3. Fusion of MEG+EEGH

yper

pa

ram

ete

rs

Henson et al (2009) Neuroimage

Page 48: Generative Models of M/EEG: Group inversion and MEG+EEG+fMRI multimodal integration Rik Henson (with much input from Karl Friston)

4. Fusion of MEG+fMRI

Henson et al (in press) Human Brain Mapping

fMR

I hyp

erp

ara

me

ters

ln(λ

)+32

ln(λ

)+32

Participant

Participant

Magnetometers (MEG) Gradiometers (MEG) Electrodes (EEG)

Local Valid

Local Invalid