generation and x-ray diagnostic characterization of matter ... · generation and x-ray diagnostic...

31
Generation and x-ray diagnostic characterization of matter at extreme astrophysical conditions in the laboratory P. Neumayer

Upload: others

Post on 20-Oct-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

  • Generation and x-ray diagnostic characterizationof matter at extreme astrophysical conditions

    in the laboratoryP. Neumayer

  • Extremes of Density and Temperature: Helmholtz Alliance "Cosmic Matter in the Laboratory"

  • Extremes of Density and Temperature: Helmholtz Alliance "Cosmic Matter in the Laboratory"

  • High energy density plasma physics

  • Planetary science - Astrophysical observations

    Precise data on planetswithin our solar system:Radius, mass, angular velocity, graviational moments, magnetic fields, surface temperature, chemicalcomposition, …

    Exo-planets:Nearly 500 planets outside our solar system, and counting…M, a, R, …

  • has to reproduce the observational data

    IceX

    Large-scale computing allows ab-initiocalculations of dense-matter properties

    JUGENE (FZ-Jülich)

    ~300.000 cores>1015FLOPS

    need equation-of-state overthe entire parameter range

    from Nettelmann et al.,Astrophys. Journal, 683, 1217 (2008)

    Modeling of the interior structure in planets

    Advances in scientific computation and computing technology

  • High-intensity drivers

    Intense pulseparticle accelerators

    X-Ray Free-Electron-Lasers

    High-energy lasers

    PHELIX (GSI)Omega (UR)

    DRACO (FZD)

  • We want to conduct experiments to test dense matter models, required for planetary structure calculations

    Challenges:Theoretical• Strong coupling• Partial degeneracyExperimental• High density• low temperature

  • 10

    100

    1000

    10000

    0 5 10 15 20 25

    BeCAl

    X-rays required to get information from inside

    Atte

    nuat

    ion

    leng

    th [µ

    m]

    x-ray energy [keV]

    High density multi-keV x-rays requiredLow temperature no keV x-rays emitted

    Employ „active diagnostic“

  • sample

    Typical experimental arrangementX-ray image

    Samples of HED matter in the laboratory do not hold still!need a fast, bright source (typ. GW peak power in few ps)

    x-ray source film

    X-rays radiography measures mass density

  • X-ray radiography of a shock front

    ∆t=5.6 ns 4.6g/cm3

    2.3g/cm3

    S. Le Pape et al., Phys. Plasmas 17, 056309 (2010)].

    Careful calibration allowsabsolute density measurement

  • X-ray radiography: tool to follow hydrodynamicalevolution of HED matter produced at FAIR

    N. Tahir et al., New Journal of Physics 12 (2010) 073022

    5x1011ions

    LAPLAS (LAboratory PLAnetary Science)

    Multiple shock reflection increases density near-isentropically

  • K-alpha backlighter optimization at PHELIX

    Hydro-calculations by An. Tauschwitz (EMMI) and M. Basko, PIC calculations by P. Gibbon and A. Karmakar (EMMI)

    Target

    η(L ehot)~10-30%

    p, ions

    MeVbremsstrahlung

    0 2 4 6 8 10

    0.0 0.5 1.0 1.5

    0.0 0.2 0.4 0.61E-4

    1E-3

    0.01

    0.1

    1

    10

    100

    1000

    0 2 4 6 8 10

    0.0 0.5 1.0 1.5

    0.0 0.2 0.4 0.61E-4

    1E-3

    0.01

    0.1

    1

    10

    100

    1000

    1.5×1019 W/cm21018 W/cm210191018

  • K-α

    He-α

    K-β

    coun

    tspe

    r bin

    7.0 8.0 9.5energy [keV]

    8.57.5 9.0

    0

    100

    200

    K-alpha backlighter optimization at PHELIX

    P. Neumayer et al., Phys. Plasmas 17, 103103 (2010)

    1017 1018 10190.01

    0.1

    1

    data 1-Temp. PIC HXRD

    NK

    α,n

    on-re

    fl/ N

    Kα,

    refl.

    Laser intensity [W/cm2]

    Modeling of the K-alpha yieldExperimental setup

    X-ray spectrometers

    Cu,10µm

    Al,5000µm

    Laser pulse,100J, 0.7-10 ps

    Refluxing electrons can make up >95% of the total K-alpha yield!

  • Collaboration with PHELIX laser operations team: Implementation of 2-beam capability at PHELIX

    Adjustabledelay

    50:50Beamsplitter

    Serratedaperture

    Serratedaperture

    Glass plate at brewster angle,half side HR coated

    Adjustabledelay

    50:50Beamsplitter

    Serratedaperture

    Serratedaperture

    Glass plate at brewster angle,half side HR coated

    PHELIX frontend

    PHELIX Main-amp

    PHELIXPre-amp

    PHELIX PWpulse compressor

    targetchamber

    Beams from PHELIX laser pulse compressor

    Beam split&delay Individual focusing of 2 full beams

    Together with Prof. D. Batani, Univ. Milano: Proposal P046Development of high-resolution x-ray radiography at PHELIX

  • Having such bright x-ray sources…

    … can we do more than (just) followinghydrodynamic evolution and measure density?

    Yes, we can!

    X-ray Thomson Scattering

  • X-ray scattering as a diagnostic of plasmas at high-energy density

    Chihara, PRE (2000), Gregori et al, PRE (2003)

    Ion feature Electron feature Bound-free

    Z f See0 (k,ω) + Zb ˜ S ce (k,ω −ω ')Ss(k,ω ')dω '∫S(k,ω) = f I (k) + q(k) 2 Sii(k,ω) +

    ( )ωσω

    σ ,dd

    d

    0

    1Th

    2

    kSkk

    =Ω

    E0

    ~T½

    EC

    energysc

    atte

    red

    inte

    nsity

    Simple picture:

  • Scattering regime for electron structure factor See

    1/kS > λD scattering on collective excitations (“plasmons”) ne

    Scattering vector |kS| = 4π E0/hc sin(θS/2)

    θS

  • XRTS on shock compressed matter to measure staticstructure factor: Test of dense matter models models

    A. L. Kritcher et al., PRL 103, 245004 (2009)

    ρ/ρ0=1, T=0.025eV ρ/ρ0=2.7, T=2eV

    (B. Holst, R. Redmer, U-Rostock)

    FT-DFT-MD results

  • Insulator-metal transition and corrections to theelectron response

    P. Neumayer et al., PRL 105, 075003 (2010)

    -100 -50 0 50

    coldcompressedsource

    energy [eV]

    Cold, solid B is an insulator>1.6 Mbar pressure IMT free electrons

    -100 -50 0 50

    coldcompressedsource

    energy [eV]

    Strongly correlated electron gas local field corrections

    Plasmon damping due to e-i-collisions

    From J. Zhao et al.,PRB 66, 092101 (2002)

  • The „National Ignition Facility“ (Livermore/CA, USA)

    Ignition and burn by laser-driven inertialconfinement is expected within

  • 2009 call for proposals for fundamental high-energy-density science experiments at NIF in FY2010-2012

    EMMI proposal for N

    IF facilitytime

    Characterization of

    matter at extreme

    densities

    using x-ray Thomso

    n scattering and ra

    diography

  • We will use NIF to compress matter extreme densitiesof >20x solid, while staying on low isentrope

    14 15 16 17 18time [ns]

    100

    200

    posi

    tion

    [µm

    ]

    Mass density [g/cc]0 201010 10

    17 ns

    17.5 ns

    18 ns

    0

    0 20

    0.001

    0.01

    0.1

    1

    10

    0 5 10 15 20

    time (ns)

    pow

    er (T

    W)

    Drivelaser

    Use NIF pulse shaping capability to launch multiple successive shocks

    0 4 8 12 16 200

    10

    20

    30

    40

    tem

    pera

    ture

    [eV

    ]

    density [g/cm3]

    4e146.5 ns

    3e13/3e14/3e1514 / 3 / 1 ns

    1e154.5 ns

    4e13/2e1411 / 5 ns

    2e14/2e158 / 3 ns

    3e1315 ns

    4e13/4e1412 / 3 ns

    3e13/3e14/1e1512 / 2 / 1 ns

    rs=2 rs=1

    Te/TF = 0.2

    T e/T F= 0.

    5

    T e/T F

    = 1 Γ C

    C= 2

    ΓCC = 5

    ΓCC = 10

    Rad-hydro calculations of multi-shock compression at NIF

  • Multi-angle X-ray Thomson scattering and radiography characterize the compressed material

    Multi-channelspectrometerdesign

    NIF target chamber

    Experimental setup

    Target stalk(to Tarpos)

    32 drivebeams

    96 backlighterbeams

    Au-shield

    CH target

    Scatteredradiation

    DIM(0,0)

    TCC

    ~600

    mm

    GXD

    Curvedcrystals

    shield

  • XRTS – the ideal x-ray source…

    … are X-ray Free-Electron-Lasers (FEL)• Well-collimated beam can access large scale lengths•

  • We have joined the FLASH-TS collaboration

    HiTRax

    FFSS H-dropletsource

    FLASH(@13.5nm)

    Laser(20mJ, 80fs)

    Forward scatteringspectrometer (by EMMI)

    FEL

    Wide-angle spectrometerdevelopment

    October 2010

    October 2010: achieved laser-pump/FEL-probing

  • Our targets at FLASH: Laser-heated droplets

    • Currently at FLASH: Elaser~20mJ• Under consideration at FLASH II: >1J• At European XFEL: Eshort>10J

    Droplets: „reduced-mass-target“Model for laser-droplet heating

    (refluxing!)

    Liquid H2-dropletsDroplet size: 20µm

    FEL

    Laser

  • Where could we go with more laser energy

    0 1 2 3

    0

    20

    40

    60

    80

    100

    elec

    tron

    tem

    pera

    ture

    [eV

    ]

    laser energy [Joule]

    dropletdiameter [µm]

    20 30 50 100

    Model prediction for droplet heating

    eHot eColdlaser

    adiabatic expansion cooling

    ions

    Ponderomotiveacceleration collisions

    thermal ionization FLYCHK

    K-shell ionization

    2950 3000 3050 3100 3150

    energy [eV]

    inte

    nsity

    [arb

    .u.]

    Te [eV] 20 60 100 140 180

    2950 2960 2970

    510152025

    2950 2960 2970

    510152025

    0 10 20 300

    10

    20

    30

    40

    50

    ratio

    K-a

    lpha

    /K-b

    eta

    electron temperature [eV]

    K-shell spectroscopy is suitable as a charge state/temperature diagnostic

    Two-temperature equilibration model

    ArK

    L

    MKα

  • Goal: heat droplet targets at PHELIX

    Collaboration with R. Grisenti, Helmholtz-Nachwuchsgruppe HeliJet (Univ. Frankfurt)

    Proposal 035: Micro droplet targets irradiated with high-intensity laser pulses

    •Cryogenic liquid beam•Triple-point chamber•Piezo-excited Raleigh breackup

    S. Toleikis, M. Harmand (DESY), A. Kalinin, R. Costa Fraga, R. Grisenti (IKF, U-Frankfurt), A. Gumberidze, D. Hochhaus, B. Ecker, B. Aurand (EMMI/GSI), N. Winters, D. Winters, Th. Kühl (GSI), B. Zielbauer, T. Stöhlker (HI-Jena, GSI), J. Polz,

    M. Kaluza (IOQ, FSU Jena, HI-Jena)

  • Summary

    PHELIXRMT

    NIF3-shock

    FAIRLAPLAS

  • Thank you for your attention!