generation and control of squeezed light fields r. schnabel s. chelkowski a. franzen b. hage ...

19
Generation and Control of Squeezed Light Fields R. Schnabel S. Chelkowski A. Franzen B. Hage H. Vahlbruch N. Lastzka M. Mehmet J. DiGuglielmo und K. Danzmann Albert-Einstein-Institut Hannover Max-Planck-Institut für Gravitationsphysik und Institut für Gravitationsphysik, Universität Hannover

Upload: emily-carter

Post on 31-Dec-2015

213 views

Category:

Documents


0 download

TRANSCRIPT

Generation and Control of Squeezed Light Fields

R. SchnabelS.Chelkowski A.FranzenB.HageH.Vahlbruch

N. LastzkaM.MehmetJ.DiGuglielmoundK. Danzmann

Albert-Einstein-InstitutHannoverMax-Planck-Institut fürGravitationsphysikund

Institut für Gravitationsphysik, Universität Hannover

2Elba, 28.05.2006, Roman Schnabel

Techniques against Shot Noise

Power-Recycling mirror

Laser

Photo diode

RSE / Signal-recycling mirror

Arm cavity

Vacuum (shot) noise

Squeezed vacuum !

3Elba, 28.05.2006, Roman Schnabel

Phase Modulation at 0

ℑ(α )

δ2(t,Ω0)

=−i

2δα t,ω + Ω0( ) −δα * t,ω − Ω0( )[ ]

ℜ(α )

(δ2)

4Elba, 28.05.2006, Roman Schnabel

Amplitude Modulation at 0

δ1(t,Ω0)

=1

2δα t,ω + Ω0( ) + δα * t,ω − Ω0( )[ ]

ℑ(α )

ℜ(α )

5Elba, 28.05.2006, Roman Schnabel

Amplitude Squeezing at 0

)ˆ(aℜ

)ˆ(aℑ

δˆ a 1 =1

2δˆ a (ω + Ω0) + δ ˆ a †(ω − Ω0)[ ]

δ ˆ a 2 =−i

2δˆ a (ω + Ω0) −δ ˆ a †(ω − Ω0)[ ]

Quantum noise

Quantum noiseImproved signal to noise ratio

6Elba, 28.05.2006, Roman Schnabel

Standard design of a squeezed field source, (Optical parametric amplifier,

resonator with MgO:LiNbO3-medium)

Length,

LO,

Generation of Squeezed Fields

Pump field, cw, 532nm

Squeezed field,Squeezed field,cw, 1064nmcw, 1064nm

Crystall

7Elba, 28.05.2006, Roman Schnabel

Optical Parametric Amplification

Generation of phase squeezed light (g1/2=2)

)ˆ(aℜ

)ˆ(aℑ

8Elba, 28.05.2006, Roman Schnabel

Optical Parametric Amplification

Generation of amplitude squeezed light (by deamplification, g1/2=1/2)

)ˆ(aℜ

)ˆ(aℑ

9Elba, 28.05.2006, Roman Schnabel

“Squeezing” and Signal-Recycling

Power-Recycling mirror

Laser

Photo diode

Signal-recycling mirror

Faraday rotator

SHG

OPA

GEO 600 topology

10Elba, 28.05.2006, Roman Schnabel

“Squeezing” and Signal-Recycling

Vacuum (a)

Squeezed vacuum + signal (b)

Signals (c)

11Elba, 28.05.2006, Roman Schnabel

Generation of Squeezed Fields

Technical laser noise

Shot noise

Detector dark noise

Squeezed noise

12Elba, 28.05.2006, Roman Schnabel

Control of Squeezed Vacuum Fields

Carrier Light is Carrier Light is not allowed !not allowed !

13Elba, 28.05.2006, Roman Schnabel

P-pol for OPO length control

Frequency shifted field that still senses

parametric amplification

Control of Squeezed Vacuum Fields

General concept:

Use coherent but not interfering control fields:

Frequency shifted fields

Carrier Light is Carrier Light is not allowed !not allowed !

First audio-band squeezing: [McKenzie et al., PRL 93, 161105 (2004)] New experiment !

14Elba, 28.05.2006, Roman Schnabel

Was wir vorhaben:

15Elba, 28.05.2006, Roman Schnabel

Squeezing in the GW Detection Band

4 dB squeezing

(a) Shot noise, 88W (c) Shot noise, double laser power

(b) Squeezed noise (d) Shot noise, half laser power

[Vahlbruch et al., submitted (2006), available as LSC reviewed manuscript]

16Elba, 28.05.2006, Roman Schnabel

Squeezing in the GW Detection Band

[Vahlbruch et al., submitted (2006), available as LSC reviewed manuscript]

17Elba, 28.05.2006, Roman Schnabel

18Elba, 28.05.2006, Roman Schnabel

Squeezing in the GW Detection Band

(a) Shot noise

(b) Squeezed noise

19Elba, 28.05.2006, Roman Schnabel

Summary

Squeezed field injection is fully compatible with detuned signal recycling and a possible control scheme has been demonstrated (in the MHz regime).

A control scheme for squeezed vacuum fields has been demonstrated which enabled the observation of squeezing from 10 Hz to 10 kHz.