generalizedcircularlawandheterogeneousrenormalizedenergy...

1
1,2 1 2 1 2 d N H N = H (q 1 ,...,q N ,x 1 ,...,x N )= N N X i=1 q i g (q i )V (x i ) - N X i=1 X j 6=i q i q j W (|x i - x j |). {x i } 1iN R d d 2 {q i } 1iN ν ∈M 1 (Q) Q =[q min ,q max ] q min > 0 V (x)= -|x| 2 W W (x)= - 1 |x| d-2 d 3 W (x) = log |x| d =2 g g (q )=1/q q 1.5 1 0.5 0 0.5 1 1.5 1.5 1 0.5 0 0.5 1 1.5 x y 1.5 1 0.5 0 0.5 1 1.5 1.5 1 0.5 0 0.5 1 1.5 x y 1.5 1 0.5 0 0.5 1 1.5 1.5 1 0.5 0 0.5 1 1.5 x y 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 q N g (q ) N = 1000 ν (q ) Q = [1, 2] ˆ μ N = 1 N N X i=1 δ (q i ,x i ) , ρ N (x)= Z Q ˆ μ N (q,x) dq , ρ N q (x)= Z Q q ˆ μ N (q,x) dq . N H N = N 2 hμ N ) h N h(μ)= Z Q×R d qg (q )V (x)(q,x) - ZZ (Q×R d )×(Q×R d )\D qq 0 W (|x - x 0 |)(q,x)d ˆ μ(q 0 ,x 0 ), D = {(x, x),x R d } N μ N )= N 2 h(μ ? ν ) - 1 2 log N N X i=1 q 2 i + N α 2 2π q q 0 - q 2 2 Z R 2 log ρ ν q (x) μ 0 q 0 ρ ν q (x) μ 0 q 0 dx + o(N ) d =2 N 2 h(μ ? ν )+ N 2-2/d α d k d Z R d ρ ν q (x) μ 0 q 0 2-2/d dx + o(N 2-2/d ) d 3 μ ? ν μ 0 q 0 ρ ν q (x)= R Q ? ν (q,x)dq ϕ(q )= R Q ϕ(q )ν (q )dq α d M 1 (Q × R d ) Q × R d M ν M 1 (Q × R d ) ν I ν : ( M ν 7R μ 7R qg (q )V (x)(q,x) - RR qq 0 W (|x - x 0 |)(q,x)(q 0 ,x 0 ) - K ν K ν h M ν μ ∈M ν lim δ &0 lim sup N →∞ 1 βN 2 log Pμ N ∈M ˆ ν N B (μ, δ )] ≤ -I ν (μ) lim δ &0 lim inf N →∞ 1 βN 2 log Pμ N ∈M ˆ ν N B (μ, δ )] ≥ -I ν (μ) . B (μ, δ ) δ μ lim N →∞ dμ N , Λ ? ν )=0 Λ ? ν μ ? ν M ν I ν N m ∈M 1 (Q × R d ) R f (q )dm(q,x) C 0 (R d ) f E ∇· E (x)= R Q qk d (Λ (q,x) - dm(q,x)) ∇× E =0 μ Λ = (q,x)Λ δ (q,x) Λ Q × R d χ : R d 7R N E (E,χ) = lim η 0 1 2 Z R d \∪ (q,x)Λ B(x,η ) χ(y )|E (y )| 2 dy - k d W (η ) X (q,x)Λ χ(x)q 2 . q =1 N N ˜ μ N = N ˆ μ N H N = H μ N )= N 2 I (μ ? ν )+2N Z ζ (q,x)d ˜ μ N (q,x)+ 1 k d (E N , R d ) ζ (q,x)= g (q ) 2 V (x)+ q R Q×R d q 0 W (|x - x 0 |)? ν (q 0 ,x 0 ) E N (x)= -k d R Q q Δ -1 x μ N - ? ν )= R Q×R d qW (|x - x 0 |)dμ N - ? ν )(q,x 0 ) F i (μ(q,x)) = -∇ x i H (μ(q,x)) F i =0 i r (q )= c d g (q ) Z q + q - (u)du ! 1/d R = c d g (q ? ) q 1/d [q - ,q + ] [q min ,q ] g [q,q max ] g g (q ? ) = min(g (q min ),g (q max )) 0 0.5 1 1.5 2 0 0.1 0.2 0.3 0.4 0.5 0.6 r ρ q (r) g(q)=q −1/2 g(q)=1 g(q)=q 0 0.5 1 1.5 2 0 0.05 0.1 0.15 0.2 0.25 0.3 r ρ(r) g(q)=q −1/2 g(q)=1 g(q)=q g (q ) 100 N = 1000 ν (q ) Q = [1, 2] 0 0.05 0.1 0.15 0.2 0.25 0.3 0 5 10 15 20 25 r G(r 0 ,r) r 0 =0 r 0 =1 r 0 =2 0 0.05 0.1 0.15 0.2 0.25 0.3 0 5 10 15 20 25 r G(r 0 ,r) r 0 =0 r 0 =0.5 r 0 =1 0 0.05 0.1 0.15 0.2 0.25 0.3 0 5 10 15 20 25 r G(r 0 ,r) r 0 =0 r 0 =0.5 r 0 =1 G(r 0 ,r ) g r 0 100 N = 1000 ν (q ) Q = [1, 5] hq i g : R + 7R + R d f ν f g ν ν 1.5 1 0.5 0 0.5 1 1.5 1.5 1 0.5 0 0.5 1 1.5 x y 0.85 0.9 0.95 1 1.05 0 0.5 1 1.5 0 0.1 0.2 0.3 0.4 0.5 r ρ(r) Target distribution Heterogeneous gas 0.8 0.85 0.9 0.95 1 1.05 1.1 0 1 2 3 4 5 6 q ν(q) N = 1000 g (q )=1/q ρ(r )= 3 4π (2 - r ) r<1 100 ν (q ) g § 2 V (x, y, z )= z 2 V (x, y, z )= 1 2 (x 4 +y 4 + z 4 ) - (x 2 + y 2 + z 2 ) 1 - p x 2 + y 2 2 + z 2 = ( 1 2 ) 2 V (x, y, z )= y 2 N = 1000 ν (q ) Q = [1, 2] 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 q

Upload: others

Post on 11-Jul-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Generalizedcircularlawandheterogeneousrenormalizedenergy ...blogs.brandeis.edu/mathneuro/files/2015/01/poster.pdfHonogeneous Coulomb gases and log-gases have a astv repertoire of applications

Theheterogeneousgaswithsingular interaction:Generalizedcircular lawandheterogeneousrenormalizedenergy

Luis Carlos Garcia del Molino1,2, Khashayar Pakdaman1, Jonathan Touboul21 Institut Jacques Monod, Universite Paris VII, 2 Mathematical Neuroscience Team, CIRB-College de France and INRIA

Introduction

Honogeneous Coulomb gases and log-gases have a vast repertoire of applications (e.g. superconductivityand super�uidity, plasma physics, string theory, random matrices and interpolation to name a few).We introduce and analyze the d dimensional Coulomb gas with random charge distribution and generalexternal con�ning potential [2].We show that these gases satisfy a large deviations principle. The analysis of the minima of the ratefunction (which is the leading term of the energy) reveals that at equilibrium, the particle distribution isa generalized circular law. Furthermore, for general charge-dependent con�ning potentials particlesspontaneously organize according to their charge. Sub-leading terms of the energy are derived: weshow that these are related to the heterogeneous renormalized energy. This operator informs usabout the microscopic arrangements of the particles, which are non-standard, strongly depending onthe charges, and include progressive and irregular triangular lattices.

Heterogeneous gas model

We consider an N -particle gas with Hamiltonian:

HN = H(q1, . . . , qN , x1, . . . , xN ) = NN∑i=1

qig(qi)V (xi)−N∑i=1

∑j 6=i

qiqjW (|xi − xj |).

where {xi}1≤i≤N in Rd with d ≥ 2 and {qi}1≤i≤N denote the positions and charges of the particles.The charges take values sampled from a probability distribution ν ∈ M1(Q) with Q = [qmin, qmax]and qmin > 0. V (x) = −|x|2 is an external con�ning potential and W is a Coulomb interaction i.e.W (x) = − 1

|x|d−2 for d ≥ 3 and W (x) = log |x| for d = 2.

Theweight function g allows taking into account general external forces including in particular charge-independent con�nements (g(q) = 1/q). It plays an important role in our study, and will generally beassumed either constant or a monotonic positive function of q.

Stationary distributions

−1.5 −1 −0.5 0 0.5 1 1.5−1.5

−1

−0.5

0

0.5

1

1.5

x

y

−1.5 −1 −0.5 0 0.5 1 1.5−1.5

−1

−0.5

0

0.5

1

1.5

x

y

−1.5 −1 −0.5 0 0.5 1 1.5−1.5

−1

−0.5

0

0.5

1

1.5

x

y

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

q

Scatter plot of the N-particle two-dimensional Coulomb for several choices of g(q). Each point represents a particle's positionand the color corresponds to its charge. N = 1000, ν(q) uniform in Q = [1, 2].

Observations: (i) Generalized circular law, (ii) Charge ordering and (iii) Progresive and ir-

regular lattices.

Theoretical results I

Notation

µ̂N =1

N

N∑i=1

δ(qi,xi) , ρN (x) =

∫Q

µ̂N (q, x) dq , ρNq (x) =

∫Q

q µ̂N (q, x) dq .

With these notations we rewrite the N -particles energy as HN = N2h(µ̂N ) where h is an intensiveenergy independent of N given by:

h(µ) =

∫Q×Rd

qg(q)V (x)dµ(q, x)−∫ ∫

(Q×Rd)×(Q×Rd)\Dqq′W (|x− x′|)dµ(q, x)dµ̂(q′, x′),

where D = {(x, x), x ∈ Rd}, then

Main result: Energy expansion

HN (µ̂N ) =

N2h(µ?ν)− 1

2logN

N∑i=1

q2i +N

(α2

q

q0− q2

2

∫R2

log

(ρνq (x)

µ0 q0

)ρνq (x)

µ0 q0dx

)+ o(N) d = 2

N2h(µ?ν) +N2−2/dαdkd

∫Rd

(ρνq (x)

µ0q0

)2−2/d

dx+ o(N2−2/d) d ≥ 3

where µ?ν is a distribution minimizing the intensive energy, µ0 is the inverse unit length, q0 the unitcharge and ρνq (x) =

∫Qqµ?ν(q, x)dq and ϕ(q) =

∫Qϕ(q)ν(q)dq is the mean charge. The coe�cients αd

are universal constants depending on the dimension

Large deviations theorem

We denote by M1(Q × Rd) the set of probability measures on Q × Rd and equip the space with theVasserstein distance. We introduce the rate function restricted to the spaceMν of probability measuresonM1(Q× Rd) with marginal charge density ν:

Iν :

{Mν 7→ Rµ 7→

∫qg(q)V (x)dµ(q, x)−

∫ ∫qq′W (|x− x′|)dµ(q, x)dµ(q′, x′)−Kν

where Kν is the minimal value of the intensive energy h onMν .

Theorem 1. For any µ ∈Mν , we have:limδ↘0

lim supN→∞

1

βN2logP[µ̂N ∈Mν̂N ∩B(µ, δ)] ≤ −Iν(µ)

limδ↘0

lim infN→∞

1

βN2logP[µ̂N ∈Mν̂N ∩B(µ, δ)] ≥ −Iν(µ) .

where B(µ, δ) is the Lévy ball of radius δ centered at µ. This implies that limN→∞ d(µ̂N ,Λ?ν) = 0 where

Λ?ν is the set of distributions µ?ν ofMν minimizing Iν .

The proofs is built upon the results in [1].

References

[1] G. Ben Arous and O. Zeitouni. Large Deviations from the circular law. ESAIM: Probability and Statistics, 2:123�134,November - December 1998.

[2] L. C. Garcia del Molino, J. Touboul, and K. Pakdaman. The heterogeneous gas with singular interaction: Generalizedcircular law and heterogeneous renormalized energy. Journal of Physics A: Mathematical and Theoretical, 2014.

[3] E. Sandier and S. Serfaty. 2D Coulomb gases and the renormalized energy. arXiv preprint arXiv:1201.3503, 2012.

Theoretical results II

Renormalized energy

De�nition 1 (N -particles Heterogeneous Renormalized Energy). Let m ∈ M1(Q × Rd) be a double-

layer probability measure such that∫f(q)dm(q, x) ∈ C0(Rd) for all continuous function f . Let E be the

vector �eld given by ∇ ·E(x) =∫Qqkd(dµΛ(q, x)− dm(q, x)) and ∇×E = 0 with µΛ =

∑(q,x)∈Λ δ(q,x)

and Λ is a discrete set of points of Q × Rd. For χ : Rd 7→ R a continuous function, the N -particlesheterogeneous renormalized energy of the vector �eld E is de�ned as:

(E,χ) = limη→0

1

2

∫Rd\∪(q,x)∈ΛB(x,η)

χ(y)|E(y)|2 dy − kdW (η)∑

(q,x)∈Λ

χ(x)q2

.

When the system is homogeneous and all particles have charge q = 1, this functional corresponds tothe N -particles renormalized energy in [3].

Theorem 2 (Splitting formula). The N -particles energy satis�es the following decomposition, for

µ̃N = Nµ̂N .

HN = H(µ̃N ) = N2I(µ?ν) + 2N

∫ζ(q, x)dµ̃N (q, x) +

1

kd(∇EN ,1Rd)

where ζ(q, x) = g(q)2 V (x) + q

∫Q×Rd q

′W (|x − x′|)dµ?ν(q′, x′) and EN (x) = −kd∫Qq∆−1

x (µ̃N −Nµ?ν) =∫Q×Rd qW (|x− x′|)d(µ̃N −Nµ?ν)(q, x′).

Minimizers of the energy

Spherical symmetry and the properties of Coulomb interaction allow to compute the force Fi(µ(q, x)) =−∇xiH(µ(q, x)). Solving for Fi = 0 for all i we can obtain the charge and particle distributions thatminimize the energy and its maximal radius

r(q) =

(cdg(q)

∫ q+

q−

uν(u)du

)1/d

R =

(cd

g(q?)q

)1/d

where [q−, q+] is the interval [qmin, q] for g strictly decreasing, and [q, qmax] for g strictly increasing andwhere g(q?) = min(g(qmin), g(qmax)).

0 0.5 1 1.5 20

0.1

0.2

0.3

0.4

0.5

0.6

r

ρ q(r)

g(q)=q−1/2

g(q)=1g(q)=q

0 0.5 1 1.5 20

0.05

0.1

0.15

0.2

0.25

0.3

r

ρ(r)

g(q)=q−1/2

g(q)=1g(q)=q

Particle and charge distributions for a 2 dimensional Coulomb gas for several choices of g(q). The solid lines are the theoreticalpredictions, the points correspond to the average of 100 simulations of the gas. Standard errors are smaller than the points.

N = 1000 and ν(q) uniform in Q = [1, 2].

0 0.05 0.1 0.15 0.2 0.25 0.30

5

10

15

20

25

r

G(r0,r)

r0=0

r0=1

r0=2

0 0.05 0.1 0.15 0.2 0.25 0.30

5

10

15

20

25

r

G(r0,r)

r0=0

r0=0.5

r0=1

0 0.05 0.1 0.15 0.2 0.25 0.30

5

10

15

20

25

rG(r0,r)

r0=0

r0=0.5

r0=1

Local two-points correlation function G(r0, r) for heterogeneous two-dimensional Coulomb gases for di�erent choices of g atdi�erent positions r0. Statistics computed over 100 realization of a N = 1000 Coulomb gas with ν(q) uniform in Q = [1, 5].Gray solid line corresponds to the correlation function of an homogeneous Coulomb gas (with charge 〈q〉) for reference.

Reproducing a given distribution

Theorem 3. Let g : R+ 7→ R+ be a monotonic map.

• For any radially symmetric probability distribution on Rd with bounded support and decreasing

density f along the radial axis, there exists a distribution of charge ν absolutely continuous with

respect to Lebesgue's measure such that f is the equilibrium distribution of the heterogeneous gas

with weight function g and charge distribution ν.

• the density ν can be constructed from the analysis of a planar dynamical system.

−1.5 −1 −0.5 0 0.5 1 1.5−1.5

−1

−0.5

0

0.5

1

1.5

x

y

0.85

0.9

0.95

1

1.05

0 0.5 1 1.50

0.1

0.2

0.3

0.4

0.5

r

ρ(r)

Target distributionHeterogeneous gas

0.8 0.85 0.9 0.95 1 1.05 1.10

1

2

3

4

5

6

q

ν(q)

N = 1000, g(q) = 1/q. (Left) Solid line: target radial distribution ρ(r) = 34π

(2− r) r<1, points: particle distribution ofthe generated heterogeneous gas. Each point is an average over 100 realizations. (Center) Charge density ν(q). (Right)

Scatter plot of one realization of the gas.

General heterogeneous gases on manifolds

Ordering transitions are also observed in hetero-geneous gases on two-dimensional manifolds withdi�erent con�nig potentials. Each column corre-sponds to one di�erent choice of g (decreasing, con-stant and increasing). First and second row corre-spond to gases on the unit sphere §2 with a potentialV (x, y, z) = z2 (�rst row) or V (x, y, z) = 1

2 (x4+y4+z4)−(x2 +y2 +z2) (second row). The third row cor-

responds to a gas on the torus(

1−√x2 + y2

)2

+

z2 =(

12

)2with potential V (x, y, z) = y2. In all

cases N = 1000, ν(q) uniform in Q = [1, 2].

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

q