gauss-bonnet boson stars ads and flat space-time, golm, germany, 2014-talk

27
Gauss–Bonnet Boson Stars in AdS Jürgen Riedel in collaboration with Yves Brihaye 1 , Betti Hartmann, and Raluca Suciu 2 Physics Letters B (2013) (arXiv:1308.3391) and arXiv:1310.7223 Faculty of Physics, University Oldenburg, Germany Models of Gravity NORDIC STRING MEETING 2014 Golm, February 3rd, 2014 1 Physique-Mathématique, Université de Mons, 7000 Mons, Belgium 2 School of Engineering and Science, Jacobs University Bremen, Germany Brihaye, Hartmann, Riedel, and Suciu Gauss–Bonnet Boson Stars in AdS

Upload: jurgen-riedel

Post on 08-Jul-2015

83 views

Category:

Science


2 download

DESCRIPTION

Simple toy models for a wide range of objects such as particles, compact stars, e.g. neutron stars and even centres of galaxies Gauss-Bonnet gravity: its spectrum does not include new propagating degrees of freedom besides gravitation Toy models for AdS/CFT correspondence. Planar boson stars in AdS have been interpreted as Bose-Einstein condensates of glueballs

TRANSCRIPT

Page 1: Gauss-Bonnet Boson Stars AdS and Flat Space-time, Golm, Germany, 2014-talk

Gauss–Bonnet Boson Stars in AdS

Jürgen Riedelin collaboration with

Yves Brihaye1, Betti Hartmann, and Raluca Suciu2

Physics Letters B (2013) (arXiv:1308.3391) and arXiv:1310.7223

Faculty of Physics, University Oldenburg, GermanyModels of Gravity

NORDIC STRING MEETING 2014Golm, February 3rd, 2014

1Physique-Mathématique, Université de Mons, 7000 Mons, Belgium

2School of Engineering and Science, Jacobs University Bremen, Germany

Brihaye, Hartmann, Riedel, and Suciu Gauss–Bonnet Boson Stars in AdS

Page 2: Gauss-Bonnet Boson Stars AdS and Flat Space-time, Golm, Germany, 2014-talk

Motivation

Set up a model to support boson star solutions inGauss-Bonnet gravity in 4 + 1 dimensionsGauss-Bonnet theory which appears naturally in the lowenergy effective action of quantum gravity modelsWe are interested in the effect of Gauss-Bonnet gravityand will study these objects in the minimal number ofdimensions in which the term does not become a totalderivative.Higher dimensions appear in attempts to find a quantumdescription of gravity as well as in unified models.For black holes many of their properties in (3 + 1)dimensions do not extend to higher dimensions.Discovery of the Higgs Boson in 2012: fundamentalscalar fields do exist in nature.

Brihaye, Hartmann, Riedel, and Suciu Gauss–Bonnet Boson Stars in AdS

Page 3: Gauss-Bonnet Boson Stars AdS and Flat Space-time, Golm, Germany, 2014-talk

Solitons in non-linear field theories

General properties of soliton solutionsLocalized, finite energy, stable, regular solutions ofnon-linear field equationsCan be viewed as models of elementary particles

ExamplesTopological solitons: Skyrme model of hadrons in highenergy physics one of first models and magneticmonopoles, domain walls etc.Non-topological solitons: Q-balls (named after Noethercharge Q) (flat space-time) and boson stars(generalisation in curved space-time)

Brihaye, Hartmann, Riedel, and Suciu Gauss–Bonnet Boson Stars in AdS

Page 4: Gauss-Bonnet Boson Stars AdS and Flat Space-time, Golm, Germany, 2014-talk

Non-topolocial solitons

Properties of non-topological solitonsSolutions possess the same boundary conditions atinfinity as the physical vacuum stateDegenerate vacuum states do not necessarily existRequire an additive conservation law, e.g. gaugeinvariance under an arbitrary global phasetransformation

S. R. Coleman, Nucl. Phys. B 262 (1985), 263, R. Friedberg, T. D. Lee and A. Sirlin, Phys. Rev. D 13 (1976) 2739),

D. J. Kaup, Phys. Rev. 172 (1968), 1331, R. Friedberg, T. D. Lee and Y. Pang, Phys. Rev. D 35 (1987), 3658, P.

Jetzer, Phys. Rept. 220 (1992), 163, F. E. Schunck and E. Mielke, Class. Quant. Grav. 20 (2003) R31, F. E.

Schunck and E. Mielke, Phys. Lett. A 249 (1998), 389.

Brihaye, Hartmann, Riedel, and Suciu Gauss–Bonnet Boson Stars in AdS

Page 5: Gauss-Bonnet Boson Stars AdS and Flat Space-time, Golm, Germany, 2014-talk

Why study Q-balls and boson stars?

Q-ballsScalar fields prevented from collapse by Heisenberg’suncertainty principle and repulsive self-interactionSupersymmetric Q-balls have been considered aspossible candidates for baryonic dark matter

Boson starsDescribed by relatively simple equationsSimple toy models for a wide range of objects such asparticles, compact stars, e.g. neutron stars and evencentres of galaxiesGauss-Bonnet gravity: its spectrum does not includenew propagating degrees of freedom besidesgravitationToy models for AdS/CFT correspondence. Planar bosonstars in AdS have been interpreted as Bose-Einsteincondensates of glueballs

Brihaye, Hartmann, Riedel, and Suciu Gauss–Bonnet Boson Stars in AdS

Page 6: Gauss-Bonnet Boson Stars AdS and Flat Space-time, Golm, Germany, 2014-talk

Model for Gauss–Bonnet Boson Stars

Action

S =1

16πG5

∫d5x√−g (R − 2Λ + αLGB + 16πG5Lmatter)

LGB =(

RMNKLRMNKL − 4RMNRMN + R2)

(1)

Matter Lagrangian Lmatter = − (∂µψ)∗ ∂µψ − U(ψ)

Gauge mediated potential

USUSY(|ψ|) = m2η2susy

(1− exp

(− |ψ|

2

η2susy

))(2)

USUSY(|ψ|) = m2|ψ|2 − m2|ψ|4

2η2susy

+m2|ψ|6

6η4susy

+ O(|ψ|8

)(3)

A. Kusenko, Phys. Lett. B 404 (1997), 285; Phys. Lett. B 405 (1997), 108, L. Campanelli and M. Ruggieri,

Phys. Rev. D 77 (2008), 043504

Brihaye, Hartmann, Riedel, and Suciu Gauss–Bonnet Boson Stars in AdS

Page 7: Gauss-Bonnet Boson Stars AdS and Flat Space-time, Golm, Germany, 2014-talk

Model for Gauss–Bonnet Boson Stars

Einstein Equations are derived from the variation of theaction with respect to the metric fields

GMN + ΛgMN +α

2HMN = 8πG5TMN (4)

where HMN is given by

HMN = 2(

RMABCRABCN − 2RMANBRAB − 2RMARA

N + RRMN

)− 1

2gMN

(R2 − 4RABRAB + RABCDRABCD

)(5)

Energy-momentum tensor

TMN = −gMN

[12

gKL (∂Kψ∗∂Lψ + ∂Lψ

∗∂Kψ) + U(ψ)

]+ ∂Mψ

∗∂Nψ + ∂Nψ∗∂Mψ (6)

Brihaye, Hartmann, Riedel, and Suciu Gauss–Bonnet Boson Stars in AdS

Page 8: Gauss-Bonnet Boson Stars AdS and Flat Space-time, Golm, Germany, 2014-talk

Ansatz

The Klein-Gordon equation is given by:(�− ∂U

∂|ψ|2

)ψ = 0 (7)

Lmatter is invariant under the global U(1) transformation

ψ → ψeiχ . (8)

Locally conserved Noether current jM

jM = − i2

(ψ∗∂Mψ − ψ∂Mψ∗

); jM;M = 0 (9)

The globally conserved Noether charge Q reads

Q = −∫

d4x√−gj0 . (10)

Brihaye, Hartmann, Riedel, and Suciu Gauss–Bonnet Boson Stars in AdS

Page 9: Gauss-Bonnet Boson Stars AdS and Flat Space-time, Golm, Germany, 2014-talk

Ansatz

Metric in spherical Schwarzschild-like coordinates

ds2 = −N(r)A2(r)dt2 +1

N(r)dr2

+ r2(

dθ2 + sin2 θdϕ2 + sin2 θ sin2 ϕdχ2)

(11)

whereN(r) = 1− 2n(r)

r2 (12)

Stationary Ansatz for complex scalar field

ψ(r , t) = f (r)eiωt (13)

Rescaling using dimensionless quantities

r → rm

, ω → mω , ψ → ηsusyψ , n→ n/m2 , α→ α/√

m(14)

Brihaye, Hartmann, Riedel, and Suciu Gauss–Bonnet Boson Stars in AdS

Page 10: Gauss-Bonnet Boson Stars AdS and Flat Space-time, Golm, Germany, 2014-talk

Einstein equations

Equations for the metric functions:

N ′(r) = 2r

(1− N − r2

3 Λ

r2 + 2α(1− N)

)

− 23κr3

NA2

(UNA2 + ω2f 2 + N2A2f ′2

r2 + 2α(1− N)

)(15)

A′(r) =2κr3 (A2N2f ′2 + ω2f 2)3AN2

(r2 + 2α(1− N)

) (16)

κ = 8πG5η2susy (17)

Matter field equation:(r3ANf ′

)′= r3A

(12∂U∂f− ω2f

NA2

)(18)

Brihaye, Hartmann, Riedel, and Suciu Gauss–Bonnet Boson Stars in AdS

Page 11: Gauss-Bonnet Boson Stars AdS and Flat Space-time, Golm, Germany, 2014-talk

Boundary Conditions flat space-time

Appropriate boundary conditions:

f ′(0) = 0 , n(0) = 0 . (19)

We need the scalar filed to vanish at infinity and thereforerequire f (∞) = 0, while we choose A(∞) = 1 (rescaling ofthe time coordinate)If Λ = 0 the scalar field function falls of exponentially with

f (r >> 1) ∼ 1

r32

exp(−√

1− ω2r)

+ ... (20)

Brihaye, Hartmann, Riedel, and Suciu Gauss–Bonnet Boson Stars in AdS

Page 12: Gauss-Bonnet Boson Stars AdS and Flat Space-time, Golm, Germany, 2014-talk

AdS space-time

3

Figure : (a) Penrose diagram of AdS space-time, (b) massive (solid) and massless(dotted) geodesic.

3J. Maldacena, The gauge/gravity duality, arXiv:1106.6073v1Brihaye, Hartmann, Riedel, and Suciu Gauss–Bonnet Boson Stars in AdS

Page 13: Gauss-Bonnet Boson Stars AdS and Flat Space-time, Golm, Germany, 2014-talk

Boundary Conditions for asymptotic AdS space time

If Λ < 0 the scalar field function falls of with

φ(r >> 1) =φ∆

r∆, ∆ = 2 +

√4 + L2

eff . (21)

Where Leff is the effective AdS-radius:

L2eff =

1−√

1− 4αL2

(22)

With L being the AdS-radius which is related to Λ as:

Λ =−6L2 (23)

Chern-Simons limit:

α =L2

4(24)

Brihaye, Hartmann, Riedel, and Suciu Gauss–Bonnet Boson Stars in AdS

Page 14: Gauss-Bonnet Boson Stars AdS and Flat Space-time, Golm, Germany, 2014-talk

Expressions for Charge Q and Radius R

The explicit expression for the Noether charge

Q = 2π2

∞∫0

dr r3ωf 2

AN(25)

Define the radius of the boson star as an averaged radialcoordinate4

R =2π2

Q

∞∫0

dr r4ωf 2

AN(26)

4D. Astefanesei and E. Radu, Nucl. Phys. B 665 (2003) 594[gr-qc/0309131].

Brihaye, Hartmann, Riedel, and Suciu Gauss–Bonnet Boson Stars in AdS

Page 15: Gauss-Bonnet Boson Stars AdS and Flat Space-time, Golm, Germany, 2014-talk

Expressions for Mass M

Mass for κ = 0

M = 2π2

∞∫0

dr r3(

Nf ′2 +ω2f 2

N+ U(f )

)(27)

Mass for κ > 0 we define the gravitational mass5 by theasymptotic behaviour:

MG ∼ n(r →∞)/κ (28)

5Y. Brihaye and B. Hartmann, Nonlinearity 21 (2008), 1937, D. Astefaneseiand E. Radu, Phys. Lett. B 587 (2004) 7

Brihaye, Hartmann, Riedel, and Suciu Gauss–Bonnet Boson Stars in AdS

Page 16: Gauss-Bonnet Boson Stars AdS and Flat Space-time, Golm, Germany, 2014-talk

Finding solutions: fixing ω

φ

V(φ

)

−4 −2 0 2 4

−0.0

3−

0.0

10.0

00.0

10.0

2

φ(0)

k=0

k=1

k=2

ω = 0.80

ω = 0.85

ω = 0.87

ω = 0.90

V = 0.0

r

φ

0 5 10 15 20

−0.1

0.1

0.2

0.3

0.4

0.5

k

= 0

= 1

= 2

φ = 0.0

Figure : Effective potential V (f ) = ω2f 2 − U(f ).

Brihaye, Hartmann, Riedel, and Suciu Gauss–Bonnet Boson Stars in AdS

Page 17: Gauss-Bonnet Boson Stars AdS and Flat Space-time, Golm, Germany, 2014-talk

Gauss–Bonnet boson stars with Λ = 0

ω

Q

0.6 0.7 0.8 0.9 1.0

50

200

1000

5000

20000

α

= 0.0

= 0.025

= 0.05

= 0.075

= 0.1

= 0.2

= 0.3

= 0.4

= 0.45

= 0.5

= 1.0

= 2.0

= 5.0

ω = 1.0

Figure : Charge Q in dependence on the frequency ω for κ = 0.05 and differentvalues of α

Brihaye, Hartmann, Riedel, and Suciu Gauss–Bonnet Boson Stars in AdS

Page 18: Gauss-Bonnet Boson Stars AdS and Flat Space-time, Golm, Germany, 2014-talk

Gauss–Bonnet boson stars with Λ = 0

ω

M

0.6 0.7 0.8 0.9 1.0

50

200

500

2000

10000

α

= 0.0

= 0.025

= 0.05

= 0.075

= 0.1

= 0.2

= 0.3

= 0.4

= 0.45

= 0.5

= 1.0

= 2.0

= 5.0

ω = 1.0

Figure : Mass M in dependence on the frequency ω for κ = 0.05 (left) and κ = 0.02(right) and different values of α

Brihaye, Hartmann, Riedel, and Suciu Gauss–Bonnet Boson Stars in AdS

Page 19: Gauss-Bonnet Boson Stars AdS and Flat Space-time, Golm, Germany, 2014-talk

Gauss–Bonnet boson stars with Λ = 0

r

A

1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

q(0)

= 0.1= 0.5= 1.0= 1.5= 2.2= 3.0= 3.6

rA

1 2 3 4 50.

00.

20.

40.

60.

81.

0

q(0)

= 0.1= 0.5= 1.0= 1.5= 2.2= 3.0= 3.6

t

Q

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.02e

+0

22

e+

03

2e

+0

42

e+

05

_

= 0.025= 0.1= 0.3= 5.0= 20.0= 100.0t = 1.0

Figure : Metric function A(r) for different values of α and f (0),κ = 0.05.

Brihaye, Hartmann, Riedel, and Suciu Gauss–Bonnet Boson Stars in AdS

Page 20: Gauss-Bonnet Boson Stars AdS and Flat Space-time, Golm, Germany, 2014-talk

Gauss–Bonnet boson stars with Λ = 0

r

N

0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

α

= 0.0

= 0.5

= 2.0

= 5.0

= 10.0

= 25.0

= 30.0

= 35.0

= 40.0

= 50.0

= 100.0

= 500.0

= 5000.0

r

f(r)

0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

α

= 0.0

= 0.5

= 2.0

= 5.0

= 10.0

= 25.0

= 30.0

= 35.0

= 40.0

= 50.0

= 100.0

= 500.0

= 5000.0

Figure : f (r) and N(r) for fixed f (0), different values of α (large alpharegime) and κ = 0.05.

Brihaye, Hartmann, Riedel, and Suciu Gauss–Bonnet Boson Stars in AdS

Page 21: Gauss-Bonnet Boson Stars AdS and Flat Space-time, Golm, Germany, 2014-talk

Gauss–Bonnet boson stars with Λ = 06

Figure : Mass-radius relation for the equation of state of neutron stars(left) in comparison to the mass-radius relation of Gauss-Bonnetboson stars (right).

6S. GANDOLFI et al, PHYSICAL REVIEW C 85, 032801(R) (2012)Brihaye, Hartmann, Riedel, and Suciu Gauss–Bonnet Boson Stars in AdS

Page 22: Gauss-Bonnet Boson Stars AdS and Flat Space-time, Golm, Germany, 2014-talk

Gauss–Bonnet boson stars with Λ < 0

ω

Q

0.8 0.9 1.0 1.1 1.2 1.3 1.4

110

100

1000

10000

α

= 0.0= 0.01= 0.02= 0.03= 0.04= 0.05= 0.06= 0.075= 0.1= 0.2= 0.3= 0.5= 1.0= 5.0= 10.0= 12.0= 15.0 (CS limit)

1st excited modeω = 1.0

Figure : Charge Q in dependence on the frequency ω for Λ = −0.01, κ = 0.02 anddifferent values of α. ωmax shift: ωmax = ∆

Leff

Brihaye, Hartmann, Riedel, and Suciu Gauss–Bonnet Boson Stars in AdS

Page 23: Gauss-Bonnet Boson Stars AdS and Flat Space-time, Golm, Germany, 2014-talk

Gauss–Bonnet boson stars with Λ < 0

ω

M

0.8 1.0 1.2 1.41e+

00

1e+

02

1e+

04

1e+

06

1e+

08

α

= 0.0= 0.01= 0.02= 0.03= 0.04= 0.05= 0.06= 0.075= 0.1= 0.2= 0.3= 0.5= 1.0= 5.0= 10.0= 12.0= 13.0= 14.0= 14.5= 14.95= 15.0 (CS limit)

ω = 1.0

Figure : Mass M in dependence on the frequency ω for Λ = −0.01, κ = 0.02 anddifferent values of α

Brihaye, Hartmann, Riedel, and Suciu Gauss–Bonnet Boson Stars in AdS

Page 24: Gauss-Bonnet Boson Stars AdS and Flat Space-time, Golm, Germany, 2014-talk

Excited Gauss–Bonnet boson stars with Λ = 0

ω

Q

0.5 0.6 0.7 0.8 0.9 1.01e+

03

5e+

03

2e+

04

1e+

05

k=0

k=1

k=2

k=3

α

= 0.0

= 0.1

= 1.0

= 5.0

= 10.0

ω = 1.0

Figure : Charge Q in dependence on the frequency ω for Λ = 0, κ = 0.0, anddifferent values of α

Brihaye, Hartmann, Riedel, and Suciu Gauss–Bonnet Boson Stars in AdS

Page 25: Gauss-Bonnet Boson Stars AdS and Flat Space-time, Golm, Germany, 2014-talk

Excited Gauss–Bonnet boson stars with Λ < 0

ω

Q

0.6 0.8 1.0 1.2 1.4 1.6

1100

10000

k=0 k=1 k=2 k=3 k=4

α

= 0.0= 0.01= 0.05= 0.1= 0.5= 1.0= 5.0= 10.0= 50.0= 100.0= 150.0 (CS limit)

ω = 1.0

Figure : Charge Q in dependence on the frequency ω for Λ = −0.01, κ = 0.02, anddifferent values of α. ωmax shift: ωmax = ∆+2k

Leff

Brihaye, Hartmann, Riedel, and Suciu Gauss–Bonnet Boson Stars in AdS

Page 26: Gauss-Bonnet Boson Stars AdS and Flat Space-time, Golm, Germany, 2014-talk

Outlook

Rotating Gauss-Bonnet Boson Stars paper with YvesBrihaye online: arXiv:1310.7223Gauss-Bonnet Boson Stars and AdS/CFTcorrespondanceStability analysis of Gauss-Bonnet Boson StarsBoson Stars in general Lovelock theory

Brihaye, Hartmann, Riedel, and Suciu Gauss–Bonnet Boson Stars in AdS

Page 27: Gauss-Bonnet Boson Stars AdS and Flat Space-time, Golm, Germany, 2014-talk

Thank You

Thank You!

Brihaye, Hartmann, Riedel, and Suciu Gauss–Bonnet Boson Stars in AdS