f.varchon, l. magaud cond-mat/0702311 band structure calculations eg0 non conducting buffer layer...

18
F.Varchon, L. Magaud cond-mat/070231 Band structure calculations EG0 Non conducting Buffer layer EG1 Linear E(k) Graphene Electron doped EG2 bilayer layer aphene layers AB stacked on SiC (bulk terminated Si-face) nsity functional theory - VASP code Similar results on the SiC C-face

Upload: eileen-clementine-banks

Post on 14-Jan-2016

220 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: F.Varchon, L. Magaud cond-mat/0702311 Band structure calculations EG0 Non conducting Buffer layer EG1 Linear E(k) Graphene Electron doped EG2 bilayer layer

F.Varchon, L. Magaud cond-mat/0702311

Band structure calculations

EG0Non conducting

Buffer layer

EG1

Linear E(k) Graphene

Electron doped

EG2

bilayer layer

Graphene layers AB stacked on SiC (bulk terminated Si-face)Density functional theory - VASP code

Similar results on the SiC C-face

Page 2: F.Varchon, L. Magaud cond-mat/0702311 Band structure calculations EG0 Non conducting Buffer layer EG1 Linear E(k) Graphene Electron doped EG2 bilayer layer

Graphene layers grow over the SiC surface steps

T. Seyller et al. , Surface Science 600, 3906 (2006).

Page 3: F.Varchon, L. Magaud cond-mat/0702311 Band structure calculations EG0 Non conducting Buffer layer EG1 Linear E(k) Graphene Electron doped EG2 bilayer layer

N doped (1018 cm-3) 6H-SiC(0001) substrate from Cree Research

Graphitization in ultra-high vacuum (LEED + Auger)STM experiments at room temperature and 45K

1ML graphene

P. Mallet and J.Y. Veuillen, cond-mat/0702406

STM image of the first graphene layer

Page 4: F.Varchon, L. Magaud cond-mat/0702311 Band structure calculations EG0 Non conducting Buffer layer EG1 Linear E(k) Graphene Electron doped EG2 bilayer layer

0th layer = buffer graphene-substrate bond << the van der Waals distance not conducting (STM, ab initio calculation, photoemission)

Smooth layers, atomically flat RMS roughness (over 2µm) G <±0.005nm

Long structural coherence length Lc>300 nm

Layers are not AB stacked graphite

graphene layer spacing is not graphitic

(=0.337 nm nearly turbostratic).

Orientational disorder of the layers

preferential orientations

equal areas of rotated and non-rotated domains. mixture of stacking.

Graphene growths over SiC-steps (carpet-like) (from STM)

Well ordered layers: Graphene on SiC C-face

J. Hass, E. Conrad et al. cond-mat/0702540Surface X-ray scattering - reflectivity

Page 5: F.Varchon, L. Magaud cond-mat/0702311 Band structure calculations EG0 Non conducting Buffer layer EG1 Linear E(k) Graphene Electron doped EG2 bilayer layer

M.Sadowski et al., PRL 97, 266405 (2006);cond-mat /0704.0585

B(T1/ 2)

Tra

nsiti

on e

nerg

y (m

eV)

Re l

a tiv

e tr

ansm

issi

onLandau level spectroscopy

Wavenumber (cm)-1

dependence of Landau levelsc =1.03 106 m/sns≤4 1010 cm-2

EF <15 meV - sharp Dirac cone Not graphite€

B

100 200 300 400 500 600 700

1.5T

1.5T

1.4T

0.8

1.0

1.0

1.0

0.8

0.8

0.8

HOPG~ m

50 layers

5-7 layers

9-10 layers

1.0B=1.5T

Tra

nsm

issi

on

(B) line

EF

Page 6: F.Varchon, L. Magaud cond-mat/0702311 Band structure calculations EG0 Non conducting Buffer layer EG1 Linear E(k) Graphene Electron doped EG2 bilayer layer

2 equivalent sublattices A and B

Pseudospin, chirality

KK'

2 inequivalent cones at K and K’

(T) Phase coherence time : Intervalley scattering time : Warping-induced relaxation time

E. McCann et al. PRL 97, 146805 (2006)

Intravalley scattering: no back-scattering --> Weak anti-localization (note: long-range scattering preserves AB symmetry)Intervalley scattering: back-scattering --> Weak localization (note: warping, point defects break AB symmetry locally )

E

k

K

.p

p=1

.p

p= −1

R

B

E

k

K’

Page 7: F.Varchon, L. Magaud cond-mat/0702311 Band structure calculations EG0 Non conducting Buffer layer EG1 Linear E(k) Graphene Electron doped EG2 bilayer layer

iv=1ps ; w=0.28ps ; ps

Weak antilocalization

Weak antilocalization

Weak localization

ee~C/TC=20ps.K

Weak anti-localization observed, in agreement with Dirac particle theory

Long-range scatterers dominate (remote ions in substrate)

Dephasing : e- e-scattering

X.Wu et al. PRL98, 136810 (2007)

100 µmx1000 µm

R=137 ns=4.6 1012cm-2

µ=11600 cm2/Vs

1.4K

50K

Graphene on C-face

50K

1.4K

Page 8: F.Varchon, L. Magaud cond-mat/0702311 Band structure calculations EG0 Non conducting Buffer layer EG1 Linear E(k) Graphene Electron doped EG2 bilayer layer

Shubnikov de Haas oscillations wide Hall bar

100 µmx1000 µm

Anomalous Berry’s phase

Landau plot

1/B(T -1)

La

nd

au

ind

ex

(n)

3.8 1012 cm-2

R/R

(%

)

0

-0.1

0.1

Field (T)

Small SdH amplitude in wide samples

R= 141 /sq µ = 12000 cm2/Vs

Res

ist a

nce

( Ω)

B(T)

Landau level spacing

Page 9: F.Varchon, L. Magaud cond-mat/0702311 Band structure calculations EG0 Non conducting Buffer layer EG1 Linear E(k) Graphene Electron doped EG2 bilayer layer

R (

Ω)

Rxx

(Ω/s

q)

Field (T)

1/B (T-1)

R/ R

=4%

Shubnikov de Haas oscillations patterned Hall bar

1µm x 6.5µmR= 502sqns= 3.7 1012cm-2

µ= 9500 cm/Vs

1/B (T-1)

Grenoble High Magnetic Field Lab - D.MaudC.Berger et al. Phys.Stat Sol (a) in press

100 mK

Page 10: F.Varchon, L. Magaud cond-mat/0702311 Band structure calculations EG0 Non conducting Buffer layer EG1 Linear E(k) Graphene Electron doped EG2 bilayer layer

1µm x 5µmR=502sq

Shubnikov de Haas oscillations patterned Hall bar

Page 11: F.Varchon, L. Magaud cond-mat/0702311 Band structure calculations EG0 Non conducting Buffer layer EG1 Linear E(k) Graphene Electron doped EG2 bilayer layer

Magneto-transport of a narrow patterned Hall bar

C.Berger et al. , Science 312, 1191 (2006)

T(K)469

153558

Width=500 nm

10µm

0 2 4 6 80

100

200

Field (T)

R(Ω

/sq

)

R/R

=10

%

0

5

10

15

0 0.2 0.41/Bn (T-1)

La

nd

au

in

de

x (n

)

Anomalous Berry phasens= 4 1012cm-2

EF= 2500 KvF= 106 m/s

mobility µ*=27000 cm2/Vs

Page 12: F.Varchon, L. Magaud cond-mat/0702311 Band structure calculations EG0 Non conducting Buffer layer EG1 Linear E(k) Graphene Electron doped EG2 bilayer layer

Landau level spacing

C.Berger et al. , Science 312, 1191 (2006)

0 2 4 6 80

100

200

300

Field (T)

0 20 40 600

1 7T n=5

1T n=23-245T n=7

Temperature (K)

A(T) = A0

u

sinh(u);u =

2π 2kBT

ΔE(B)Level thermally populated Lifshitz-Kosevich

D. Mayou (2005) unpublished N. Peres et al. , Phys. Rev. B 73, 241403 (2006)

Confinement :

En (W ) = hν 0k = hν 0

W

En (B) = ν 0 2enB

Dirac Landau levels dispersion

Field

E

Width used = 270 nmPatterned width = 500 nm

experimenttheory

Page 13: F.Varchon, L. Magaud cond-mat/0702311 Band structure calculations EG0 Non conducting Buffer layer EG1 Linear E(k) Graphene Electron doped EG2 bilayer layer

Phase coherence length determined from weak localization and UCF : l=1.2 µm (4 K)Elastic mean free path ; boundary limitedAt higher temperatures l(T)~ T-2/3: e-e interactions cause dephasing.

T(K)469

153558

Long phase coherence length

Quantum Interference effects

0.5µm x 5µm

Quasi 1d ribbon

Page 14: F.Varchon, L. Magaud cond-mat/0702311 Band structure calculations EG0 Non conducting Buffer layer EG1 Linear E(k) Graphene Electron doped EG2 bilayer layer

Conductance fluctuations

Fluctuations reproducible invariant by reversing field and inverting I-V contactsWidth of CF ≈ width of weak localization peakAmplitude ≈ e2/hLong coherence length

0.2µm x 1µmR=208 /sq

2e2/h

R

1080

1060

1040

1020

1000

0 2 4 6 8B(T)

4K

90K

Page 15: F.Varchon, L. Magaud cond-mat/0702311 Band structure calculations EG0 Non conducting Buffer layer EG1 Linear E(k) Graphene Electron doped EG2 bilayer layer

Conductance fluctuations

-4 -3 -2 -1 0 1 2 3 4

1060

1080

1100

1120

Field(Tesla)

Resistance ()

H

H

Fluctuations reproducible invariant by reversing field and inverting I-V contacts,Width of UCF ≈ width of weak localization peak,Amplitude ≈ 0.8 e2/h

4K0.5µmx5µmR=106 /sq

Page 16: F.Varchon, L. Magaud cond-mat/0702311 Band structure calculations EG0 Non conducting Buffer layer EG1 Linear E(k) Graphene Electron doped EG2 bilayer layer

mobility as a function of width

µ=10000-20000 cm2/Vs at room temperature

Reduced width :- Enhanced back-scattering at ribbon edges- reduced back-scattering in quasi-1D no back-scattering due to anomalous Berry’s phase; (Note that nanotubes are ballistic conductors).

High mobility

T=4 K

Mob

ility

(m

2/

Vs)

Width (µm)

1

3

5

10.1 10 100

T=250K

Width (µm)

Mob

ility

(m

2/

Vs)

1

2

10.1 10 100

T. Ando J. Phys. Soc. Jpn, 67, 2857 (1998)

1500

14000 300

R( Ω

)T(K)

W.de Heer et al., cond-mat /0704.0285

Page 17: F.Varchon, L. Magaud cond-mat/0702311 Band structure calculations EG0 Non conducting Buffer layer EG1 Linear E(k) Graphene Electron doped EG2 bilayer layer

Highly ordered and well-defined material(structural order and smooth layers on C-face)Transport layer protected

(insulating buffer layer beneath - non charged layers above)Layers above are not graphite on C-face

(orientational disorder / stacking faults)

Graphene properties : Dirac - chiral electronsSdH : 1 frequency only, same carrier density as photoemissionAnomalous Berry’s phaseWeak anti-localization (long-range scattering)Landau level spectrum

Long electronic phase coherence lengthBallistic properties, high mobilityWeak T-dependence

Anomalous transport : no quantum Hall effectSmall Shubnikov-de Haas oscillations, size dependentperiodic and fractal-like spectrum for high mobility samples

Electrostatic potentials cannot confine Dirac electrons.

Epitaxial graphene grown on SiC

Page 18: F.Varchon, L. Magaud cond-mat/0702311 Band structure calculations EG0 Non conducting Buffer layer EG1 Linear E(k) Graphene Electron doped EG2 bilayer layer

Walt de Heer, Phillip First, Edward Conrad, Alexei Marchenkov, Mei-Yin Chou

Xiaosong Wu, Zhimin Song, Xuebin Li, Michael Sprinkle, Nate Brown,Rui Feng, Joanna Haas, Tianbo Li, Greg Rutter, Nikkhil Sarma

School of Physics - GATECH, Atlanta

Thomas Orlando, Lan Sun, Kristin ThomsonSchool of Chemistry - GATECH, Atlanta

Jim Meindl, Raghuna Murali, Farhana ZamanElectrical Engineering - GATECH, Atlanta

Gérard Martinez, Marcin Sadowski, Marek Potemski, Duncan Maud, Clément Faugeras

CNRS - LCMI, Grenoble

Didier Mayou, Laurence Magaud, François Varchon, Cécile Naud, Laurent Lévy, Pierre Mallet, Jean-Yves Veuillen, Vincent Bouchiat

CNRS - Institut Néel, Grenoble

Patrick Soukiassian, CEA - Saclay

Jakub Kiedzerski, MIT-Lincoln Lab Joe Stroscio, Jason Crain, NIST Ted Norris, Michigan University Alessandra Lanzara, University Berkeley