fuzzy sets i

Upload: selvi-shasha-yof

Post on 14-Apr-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/27/2019 Fuzzy Sets i

    1/22

    1

    Fuzzy sets I 1

    Fuzzy sets I

    Prof. Dr. Jaroslav Ramk

    Fuzzy sets I 2

    Content Basic definitions

    Examples

    Operations with fuzzy sets (FS)

    t-norms and t-conorms

    Aggregation operators Extended operations with FS

    Fuzzy numbers: Convex fuzzy set, fuzzy interval,fuzzy number (FN), triangular FN, trapezoidal FN,L-R fuzzy numbers

  • 7/27/2019 Fuzzy Sets i

    2/22

    2

    Fuzzy sets I 3

    Basic definitions

    Set - a collection well understood anddistinguishable objects of our concept orour thinking about the collection.

    Fuzzy set - a collection of objects inconnection with expression of uncertainty

    of the property characterizing the objectsby grades from interval between 0 and 1.

    Fuzzy sets I 4

    Fuzzy set

    X - universe (of discourse) = set of objects

    A : X [0,1] - membership function

    = {(x, A(x))| x X} - fuzzy set of X (FS)A~

  • 7/27/2019 Fuzzy Sets i

    3/22

    3

    Fuzzy sets I 5

    Examples

    1. Feasible daily car production

    2. Young man age

    3. Number around 8

    4. High profit

    Fuzzy sets I 6

    Example1. Feasible car production per day

    = {(3; 0), (4; 0), (5; 0,1), (6; 0,5), (7; 1), (8; 0,8), (9; 0)}A~

    X = {3, 4, 5, 6, 7, 8, 9} - universe

  • 7/27/2019 Fuzzy Sets i

    4/22

    4

    Fuzzy sets I 7

    Example 2. Young man age

    Approximation of empirical evaluations (points):

    20 respondents have been asked to evaluate the membershipgrade

    X = [0, 100] - universe (interval)

    Fuzzy sets I 8

    Example 3.Number around eight

    })8x(1

    1)x(R))x(,x{(A

    ~2A

    2

    +==

    X = ]0, +[ - universe (interval)

  • 7/27/2019 Fuzzy Sets i

    5/22

    5

    Fuzzy sets I 9

    Example 4.High profit

    }x1

    11)x(R))x(,x{(A

    ~A

    2

    +==

    X = [0, +[ - universe (interval)

    0

    0,1

    0,2

    0,3

    0,4

    0,5

    0,6

    0,7

    0,8

    0,9

    1

    0 5 10 15 20 25 30 35

    Fuzzy sets I 10

    Crisp set

    Crisp set A of X = fuzzy set with a special membership

    function: A : X {0,1} - characteristic function

    Crisp set can be uniquely identified with a set:

    (non-fuzzy) set A is in fact a (fuzzy) crisp set

  • 7/27/2019 Fuzzy Sets i

    6/22

    6

    Fuzzy sets I 11

    Support, height, normal fuzzy set

    Support of fuzzy set , supp( ) = {xX| A(x) > 0}support is a set (crisp set)!

    Height of fuzzy set , hgt( ) = Sup{A(x) | xX }see Example 4!

    Fuzzy set is normal (normalized), if there exists

    x0X with A(x0) = 1

    Ex.: Support of from Example 1: supp( ) = {5, 6, 7, 8}

    hgt( ) = A(8) = 1 is normal!

    A~

    A~

    A~

    A~

    A~

    A~ A~

    A~

    A~

    Fuzzy sets I 12

    -cut (- level set, aspiration level)

    [0,1], - fuzzy set, A = {x X|A(x)} - -cut of

    < A A

    - convex FS, if A is convex set (interval) for all [0,1] !!!

    A~

    A~

    A~

    A~

  • 7/27/2019 Fuzzy Sets i

    7/22

    7

    Fuzzy sets I 13

    Operations with fuzzy sets

    (X) -Fuzzy power set = set of all fuzzy sets of X(X)

    A(x) = B(x) for all x X - identity A(x) B(x) for all x X - inclusionProperties:

    - transitivity

    B~

    A~

    =

    B~

    ,A~

    B~

    A~

    B~A~)A~B~andB~A~( =)B

    ~(psup)A

    ~(psupB

    ~A~

    C~

    A~

    )C~

    B~

    andB~

    A~

    (

    ABA~B~

    Fuzzy sets I 14

    Union and Intersection of fuzzy sets

    B~

    ,A~ (X)

    B~

    A~

    AB(x) =Max{A(x), B(x)} - union

    AB(x) =Min{A(x), B(x)}- intersectionB~A~

    Properties:

    Commutativity, Associativity, Distributivity,

    Union = fuzzy OR Intersection = fuzzy AND

  • 7/27/2019 Fuzzy Sets i

    8/22

    8

    Fuzzy sets I 15

    Example 5.

    %A

    = {(3; 0), (4; 0), (5; 0,1), (6; 0,5), (7; 1), (8; 0,8), (9; 0)} - feasible productionA~

    B~

    = {(3; 1), (4; 1), (5; 0,9), (6; 0,8), (7; 0,4), (8; 0,1), (9; 0)}- high costs

    Fuzzy sets I 16

    Complement, Cartesian product

    A~ (X)

    B~ (Y)

    A~

    C CA(x) =1 - A(x) - complement ofA~

    B~

    A~

    AB(x,y) =Min{A(x), B(y)}- Cartesian product (CP)

    CP is a fuzzy set of XY !

    Extension to more parts possible e.g. X, Y, Z,

    A~ (X) ,

  • 7/27/2019 Fuzzy Sets i

    9/22

    9

    Fuzzy sets I 17

    Cartesian product

    )y(B~

    )y,x(B~

    A~

    )x(A~

    B~A~

    1

    Cartesian product C~B~

  • 7/27/2019 Fuzzy Sets i

    10/22

    10

    Fuzzy sets I 19

    Complementarity conditions

    A~ (X)

    A~

    CA~A~

    1. =

    2. = XA~

    C

    Min andMax do not satisfy 1., 2. ! (only for crisp sets)

    later on bold intersection andunion will satisfy thecomplementarity

    Fuzzy sets I 20

    Examples

  • 7/27/2019 Fuzzy Sets i

    11/22

    11

    Fuzzy sets I 21

    Extended operations with FS

    Intersection and Union = operations on(X)

    Realization by Min andMax operators

    generalized by t-norms andt-conorms

    Fuzzy sets I 22

    t-normsA function T: [0,1] [0,1] [0,1] is called

    t-norm

    if it satisfies the following properties (axioms):T1: T(a,1) = a a [0,1] - 1 is a neutral element

    T2: T(a,b) = T(b,a) a,b [0,1] - commutativity

    T3: T(a,T(b,c)) = T(T(a,b),c) a,b,c [0,1] - associativity

    T4: T(a,b) T(c,d) whenever a c , b d - monotnicity

  • 7/27/2019 Fuzzy Sets i

    12/22

    12

    Fuzzy sets I 23

    t-conormsA function S: [0,1] [0,1] [0,1] is called

    t-conorm

    if it satisfies the following axioms:

    S1: S(a,0) = a a [0,1] - 0 is a neutral element

    S2: S(a,b) = S(b,a) a,b [0,1] - commutativity

    S3: S(a,S(b,c)) = S(S(a,b),c) a,b,c [0,1] - associativity

    S4: S(a,b) S(c,d) whenever a c , b d - monotnicity

    Fuzzy sets I 24

    Examples of t-norms and t-conorms #1

    1. TM = Min, SM = Max - minimum and maximum

    2.

    - drastic product, drastic sumProperty:

    TW(a,b) T(a,b) TM(a,b) , SM(a,b) S(a,b) SW(a,b)

    for every t-norm T, resp. t-conorm S, anda,b [0,1]

    =

    =

    = otherwise01aforb

    1bfora

    )b,a(Tw

    =

    =

    =otherwise1

    0aforb

    0bfora

    )b,a(Sw

  • 7/27/2019 Fuzzy Sets i

    13/22

    13

    Fuzzy sets I 25

    Examples of t-norms and t-conorms #2

    3. TP(a,b) = a.b SP (a,b) = a+b - a.b -product andprobabilistic sum

    4. TL(a,b) = Max{0,a+b - 1} SL (a,b) = Min{1,a+b}

    - Lukasiewicz t-norm and t-conorm (satisfies complementarity!)(bounded difference, bounded sum)

    Also: b - bold intersection, b - bold union

    Properties:Let T*(a,b) = 1 - T(1-a,1-b) , S*(a,b) = 1 - S(1-a,1-b)

    If T is a t-norm then T* is a t-conorm ( T and T* are dual )

    If S is a t-conorm then S* is a t-norm ( S and S* are dual )

    Fuzzy sets I 26

    Examples of t-norms and t-conorms #3

    5. q [1,+)

    a,b [0,1]

    Yagers t-norm and t-conorm

    6. Einstein, Hamacher, Dubois-Prade product and sum etc.

    7. Average (a+b)/2 is not a t-norm !!

    Properties:

    If q =1, then Tq, (Sq) is Lukasiewicz t-norm (t-conorm)

    If q = +, then Tq, (Sq) is Min (Max)

    ( )

    += q

    1

    qqq ba,1Min)b,a(S

    ( )

    += q

    1qq

    q )b1()a1(1,0Max)b,a(T

  • 7/27/2019 Fuzzy Sets i

    14/22

    14

    Fuzzy sets I 27

    Extended Union and Intersection of fuzzy sets

    B~

    ,A~ (X), T = t-norm, S = t-conorm

    B~

    A~

    S AsB(x) =S(A(x), B(x)) - S-union

    ATB(x) =T(A(x), B(x)) -T-intersectionB~

    A~

    T

    Properties:

    Commutativity, Associativity?,

    Fuzzy sets I 28

    Aggregation operators

    A function G: [0,1] [0,1] [0,1] is called

    aggregation operator

    if it satisfies the following properties (axioms):A1: G(0,0) = 0 -boundary condition 1A2: G(1,1) = 1 -boundary condition 2

    A3: G(a,b) G(c,d) whenever a c , b d - monotnicity

    NO commutativity or associativity conditions!

    All t-norms and t-conorms are aggregation operators!

    May be extended to more parts, e.g. a,b,c,

  • 7/27/2019 Fuzzy Sets i

    15/22

    15

    Fuzzy sets I 29

    Compensative operators (COs) #1

    CO = Aggregation operator G satisfying

    Min(a,b) G(a,b) Max(a,b)

    Examples. Averages:

    1: G(a,b) = (a +b)/2 - arithmetic mean (average)

    2: G(a,b) = - geometric mean

    3: G(a,b) = - harmonic mean

    b.a

    b1

    a1 1+

    Extension to more elements possible!

    Max

    Min

    S

    T

    G

    Fuzzy sets I 30

    Compensative operators #2

    Examples. Compensatory operators:

    1: TW(a,b) = .Min(a,b) + (1- ) - fuzzy and

    SW(a,b) = .Max(a,b) + (1- ) - fuzzy or (by Werners)

    2: ATS(a,b) = .T(a,b) + (1 - ).S(a,b) - COs byPTS(a,b) =T(a,b)

    . S(a,b)1- Zimmermann and Zysno

    T - t-norm, S - t-conorm, [0,1] - compensative parameter

    CO compensate trade-offs between conflicting evaluations

    extension to more elements possible

    2

    ba +

    2

    ba +

  • 7/27/2019 Fuzzy Sets i

    16/22

    16

    Fuzzy sets I 31

    Fuzzy numbersA~

    - fuzzy set ofR (real numbers)

    - A is convex (i.e. interval) for all [0,1]

    - normal (there exists x0 R with A(x0) = 1)

    - A is closed interval (with the end points) for all [0,1]

    Then is called fuzzy interval

    Moreover if there existsonly one x0 R with A(x0) = 1

    then is called fuzzy number

    A~

    A~

    Fuzzy sets I 32

    Fuzzy numbersgraphs of membership functions in R

    1

    1

    Normal, convex, compact fuzzy sets

    Not normal, non-convex fuzzy sets

    triangular bell shaped

    a b c

  • 7/27/2019 Fuzzy Sets i

    17/22

    17

    Fuzzy sets I 33

    Positive and negative fuzzy numbers

    A~

    - fuzzy number is

    -positive ifA(x) = 0 for all x 0

    - negative ifA(x) = 0 for all x 0

    0

    0A~

    >0B~

    0, > 0 - real numbers - fuzzy interval of L-R-type, or bell-shaped f. i. if

    fuzzy number of L-R-type if m = n, L, R - decreasingfunctions

    A~

    .nxifnx

    R

    ,nxmif1

    ,mxifxm

    L

    )x(A~

  • 7/27/2019 Fuzzy Sets i

    19/22

    19

    Fuzzy sets I 37

    Example 7. L-R fuzzy number Around eight

    2A )8x(1

    1)x(

    += 1,8nm,

    x1

    1)x(R)x(L

    2====

    +==

    Fuzzy sets I 38

    Example 8. L-R fuzzy number About eight

    ( )28xA e)x(

    = 1,8nm,e)x(R)x(L

    2mx

    ======

  • 7/27/2019 Fuzzy Sets i

    20/22

    20

    Fuzzy sets I 39

    L-R fuzzy numbers Around eightdiffrence

    -0,2

    0

    0,2

    0,4

    0,6

    0,8

    1

    1,2

    0 2 4 6 8 10 12 14 16

    f1(x)

    f2(x)

    21

    1)(

    xxL

    +=

    2

    )( xexL =

    Fuzzy sets I 40

    Example 9. L-R fuzzy interval

    ( ) 1,2,5n,4m,e)x(R,e)x(L2

    2

    5x2

    4x

    ======

    0

    1

    0 1 2 3 4 5 6 7 8 9 10 11 12

  • 7/27/2019 Fuzzy Sets i

    21/22

    21

    Fuzzy sets I 41

    Example 10. Fuzzy intervals N~andM~

    Fuzzy sets I 42

    Summary Basic definitions: set, fuzzy set, membership

    function, crisp set, support, height, normal fuzzyset, -level set

    Examples: daily production, young man age,around 8

    Operations with fuzzy sets: fuzzy power set,union, intersection, complement, cartesian product

    Extended operations with fuzzy sets: t-norms andt-conorms, compensative operators

    Fuzzy numbers: Convex fuzzy set, fuzzy interval,fuzzy number (FN), triangular FN, trapezoidal FN,L-R fuzzy numbers

  • 7/27/2019 Fuzzy Sets i

    22/22

    Fuzzy sets I 43

    References

    [1] J. Ramk, M. Vlach: Generalized concavity in fuzzyoptimization and decision analysis. Kluwer Academic Publ.Boston, Dordrecht, London, 2001.

    [2] H.-J. Zimmermann: Fuzzy set theory and its applications.Kluwer Academic Publ. Boston, Dordrecht, London, 1996.

    [3] H. Rommelfanger: Fuzzy Decision Support - Systeme.Springer - Verlag, Berlin Heidelberg, New York, 1994.

    [4] H. Rommelfanger, S. Eickemeier: Entscheidungstheorie -Klassische Konzepte und Fuzzy - Erweiterungen, Springer -Verlag, Berlin Heidelberg, New York, 2002.