future directions in > 100 ghz devices · 2020-04-22 · 0.2 0.3 0 10 20 30 40 ev nm 6 nm er...

37
1 Future Directions in > 100 GHz Devices Mark Rodwell, Yihao Fang, Brian Markman, Hsin-Ying Tseng University of California, Santa Barbara [email protected] This work was supported in part by the Semiconductor Research Corporation (SRC), DARPA, and the NSF 2019 IEEE SISC Conference, December 13, San Diego

Upload: others

Post on 28-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Future Directions in > 100 GHz Devices · 2020-04-22 · 0.2 0.3 0 10 20 30 40 eV nm 6 nm er < 2nm barrier due. 7 High-Frequency Transistors. 8 Beyond-5G Wireless: 100-300GHz

1

Future Directions in > 100 GHz Devices

Mark Rodwell, Yihao Fang, Brian Markman, Hsin-Ying TsengUniversity of California, Santa [email protected]

This work was supported in part by the Semiconductor Research Corporation (SRC), DARPA, and the NSF

2019 IEEE SISC Conference, December 13, San Diego

Page 2: Future Directions in > 100 GHz Devices · 2020-04-22 · 0.2 0.3 0 10 20 30 40 eV nm 6 nm er < 2nm barrier due. 7 High-Frequency Transistors. 8 Beyond-5G Wireless: 100-300GHz

2

Future Directions in > 100 GHz Devices

Mark Rodwell, Yihao Fang, Brian Markman, Hsin-Ying TsengUniversity of California, Santa [email protected]

This work was supported in part by the Semiconductor Research Corporation (SRC), DARPA, and the NSF

2019 IEEE SISC Conference, December 13, San Diego

Page 3: Future Directions in > 100 GHz Devices · 2020-04-22 · 0.2 0.3 0 10 20 30 40 eV nm 6 nm er < 2nm barrier due. 7 High-Frequency Transistors. 8 Beyond-5G Wireless: 100-300GHz

3

Transistor design and materials requirements

Transistors for VLSILarge Ion, small Ioff, low VDD, small footprint… hard ! MOSFETs, TFETs.

Transistors for wirelessHigh (ft,fmax) , low noise, high power, high efficiency.InP HBTs, InP MOS-HEMTs, (GaN HEMTs, SiGe HBTs)

Transistors for power switching: high speed, high voltage, high current, GaN, SiC, Si LDMOS…not my field.

Page 4: Future Directions in > 100 GHz Devices · 2020-04-22 · 0.2 0.3 0 10 20 30 40 eV nm 6 nm er < 2nm barrier due. 7 High-Frequency Transistors. 8 Beyond-5G Wireless: 100-300GHz

4

nm FETs: MOS and TFETs

Page 5: Future Directions in > 100 GHz Devices · 2020-04-22 · 0.2 0.3 0 10 20 30 40 eV nm 6 nm er < 2nm barrier due. 7 High-Frequency Transistors. 8 Beyond-5G Wireless: 100-300GHz

5

MOSFETs for VLSI

Goals: large Ion, small Ioff, low VDD, small footprintMinimum Lg set by minimum equivalent oxide thickness. ZrxHf1-xO2 ?Minimum contact size set by contact resistivity (<0.3 W-mm2)Ballistic Ion set by band structure: EOT, m*, # valleysIoff is degraded by low bandgapIdeal: m*=0.1me, 2-3 valleys, Eg>1eV, grades to small-Eg contact layers

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.01 0.1 1

K1

m*/mo

g=2

EET=1.0 nm

0.6 nm

0.4 nm

g=1

EET=Tox

SiO2/ox+T

channelSiO2/2

channel

In(Ga)As thin {100} Si3/2

1

84mA

m 1V

gs thV VJ K

m

-

Page 6: Future Directions in > 100 GHz Devices · 2020-04-22 · 0.2 0.3 0 10 20 30 40 eV nm 6 nm er < 2nm barrier due. 7 High-Frequency Transistors. 8 Beyond-5G Wireless: 100-300GHz

6

High-current triple-heterojunction TFETs for VLSI

TFETs: steep SS , low Ion; ✘Triple-HJ TFET: steep SS , high Ion;

Materials needs:Direct bandgap, large band offsets, small tunnel barrier, low m*Low Dit for N & P materials. (N-InAs , N-InP , P-GaAsSb ?, P-InGaAs ?)small dielectric EOT, low r contacts

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0 10 20 30 40

eV

nm

6 nmbarrier

< 2nm barrier

Simu

lation

s: M. Po

volo

ski, Pu

rdu

e

Page 7: Future Directions in > 100 GHz Devices · 2020-04-22 · 0.2 0.3 0 10 20 30 40 eV nm 6 nm er < 2nm barrier due. 7 High-Frequency Transistors. 8 Beyond-5G Wireless: 100-300GHz

7

High-Frequency Transistors

Page 8: Future Directions in > 100 GHz Devices · 2020-04-22 · 0.2 0.3 0 10 20 30 40 eV nm 6 nm er < 2nm barrier due. 7 High-Frequency Transistors. 8 Beyond-5G Wireless: 100-300GHz

8

Beyond-5G Wireless: 100-300GHz 10Gb mobile communications:

Unlimited information, anywhere.Capacity well beyond 5G.

TV-resolution wireless imaging:See, fly, drive perfectly in any conditions.

Debdeep Jena, Alyosha Molnar, Christoph Studer, Huili Xing: Cornell University

Dina Katabi: MIT

Sundeep Rangan: New York University

Amin Arbabian, Srabanti Chowdhury: Stanford

Elad Alon, Ali Niknejad, Borivoje Nikolic, Vladimir Stojanovic: University of California, Berkeley

Gabriel Rebeiz: University of California, San Diego

Jim Buckwalter, Upamanyu Madhow, Umesh Mishra, Mark Rodwell: University of California, Santa Barbara

Andreas Molisch, Hossein Hashemi: University of Southern California

Harish Krishnaswamy: Columbia University

Kenneth O: University of Texas, Dallas

Page 9: Future Directions in > 100 GHz Devices · 2020-04-22 · 0.2 0.3 0 10 20 30 40 eV nm 6 nm er < 2nm barrier due. 7 High-Frequency Transistors. 8 Beyond-5G Wireless: 100-300GHz

9

Target applicationsMIMO hub: 140GHz, 128 beams/face, 10Gb/s/user, 100m

Point-point MIMO: 240GHz, 340GHz: 640Gb/s, 250-500m

Hardware-efficient imaging: 240GHz, 340 GHz, 300m, 512×64 image, 60Hz, 15dB SNR

/N L

2 /N L R

/ L 5 Tb/s !

Page 10: Future Directions in > 100 GHz Devices · 2020-04-22 · 0.2 0.3 0 10 20 30 40 eV nm 6 nm er < 2nm barrier due. 7 High-Frequency Transistors. 8 Beyond-5G Wireless: 100-300GHz

10

A few high-frequency ICs

570 GHz fundamentaloscillator;InP HBT

Vout

VEE VBB

Vtune

Vout

VEE VBB

Vtune

M. Seo, TSC / UCSBJSSC, 2011

600 GHz IntegratedTransmitter;InP HBTPLL + Mixer+AmplifierM. Seo TSC2012 IMS

204 GHz static frequency divider(ECL master-slave latch);InP HBTZ. Griffith, TSC / UCSBCSIC 2010

1.0 THz Amplifier;InP HEMTMei et al, Northrop-GrummanEDL, 2015

220 GHz 180 mWpower amplifier;InP HBT

T. Reed, UCSBZ. Griffith, TSCCSICS 2013

Page 11: Future Directions in > 100 GHz Devices · 2020-04-22 · 0.2 0.3 0 10 20 30 40 eV nm 6 nm er < 2nm barrier due. 7 High-Frequency Transistors. 8 Beyond-5G Wireless: 100-300GHz

11

Transistor development for 100-300GHz systems

THz InP HBTs:Efficient 100-650GHz powermore fmax: more efficient, higher frequenciesbase regrowth: better contacts→ higher fmax.status: working DC devices; moving to THz

0

3

6

9

12

15

0 0.5 1 1.5 2

I C (

mA

)

VCE

(V)

THz InP HBTs:Sensitive 100-650GHz low-noise amplifiersmore ft: lower noise, higher frequencieshigh-K gate dielectric → higher ft.status: process modules

InGaN and GaN HEMTs:High power from 100-340GHz GaN: superior power density at all frequenciesUCSB/Mishra: InGaN for increased mobilityCornell/Xing: AlN/GaN/AlN

0.1

1

10

100

1000

1 10 100

GaNGaAsInP

Pou

t(W)

Frequency (GHz)

N-polar GaN: Mishra, UCSB

Page 12: Future Directions in > 100 GHz Devices · 2020-04-22 · 0.2 0.3 0 10 20 30 40 eV nm 6 nm er < 2nm barrier due. 7 High-Frequency Transistors. 8 Beyond-5G Wireless: 100-300GHz

12

Transistor scaling laws: ( V,I,R,C,t ) vs. geometry

AR contact /r

Bulk and Contact Resistances

Depletion Layers

T

AC

v

T

2t

2

max)(4

T

Vv

A

I applsat

Thermal Resistance

Fringing Capacitances

~/ LC finging~/ LC finging

contact terms

dominate

escapacitanc fringing FET )1

escapacitancct interconne IC )2

W

L

LK

PT

th

ln~transistor

LK

PT

th

ICIC

Available quantum states to carry current

→ capacitance, transconductancecontact resistance

L

Page 13: Future Directions in > 100 GHz Devices · 2020-04-22 · 0.2 0.3 0 10 20 30 40 eV nm 6 nm er < 2nm barrier due. 7 High-Frequency Transistors. 8 Beyond-5G Wireless: 100-300GHz

13

Degenerate State Density (Ballistic) Limits

Fermi Energy Fermi Energy

Band edge Band edgeCharge = ( ) Current = ( ) ( )q n E dE q v E n E dE

*( ) ( )sheet dos gs th f wellc V V m E Er - -1/2 3/2

2

( )

not ( / )( )

sheet f well

ox g gs th

J m E E

c L V Vm

-

-

2 2*( ) *( )

not ~ exp( / )

f c be

be

J m E E m V

qV kT

- -

2/3

2/3 2

1 8

3cn q

r

Contacts

"ballistic limit"

"state density capacitance"

Page 14: Future Directions in > 100 GHz Devices · 2020-04-22 · 0.2 0.3 0 10 20 30 40 eV nm 6 nm er < 2nm barrier due. 7 High-Frequency Transistors. 8 Beyond-5G Wireless: 100-300GHz

14

Frequency Limits and Scaling Laws of (most) Electron Devices

width

lengthlog

length

power

thicknessarea /

length

width

4area

area/

thickness/area

thickness

2

limit-charge-space max,

T

I

R

R

C

sheetcontactbottom

contacttop

rr

r

t

To double bandwidth:Reduce thicknesses 2:1Improve contacts 4:1Reduce width 4:1, Keep constant lengthIncrease current density 4:1

topR

bottomR

PIN photodiode

Page 15: Future Directions in > 100 GHz Devices · 2020-04-22 · 0.2 0.3 0 10 20 30 40 eV nm 6 nm er < 2nm barrier due. 7 High-Frequency Transistors. 8 Beyond-5G Wireless: 100-300GHz

15

THz Bipolar Transistors

Page 16: Future Directions in > 100 GHz Devices · 2020-04-22 · 0.2 0.3 0 10 20 30 40 eV nm 6 nm er < 2nm barrier due. 7 High-Frequency Transistors. 8 Beyond-5G Wireless: 100-300GHz

16

Bipolar Transistor Design: Scaling

nbb DT 22t

satcc vT 2t

cccb /TAC

eex AR /contactr

2

through-punchce,operatingce,max cesatc TVVAvI /)(,

contacts

contactsheet

612 AL

W

L

WR

e

bc

e

ebb

rr

e

e

E W

L

L

PT ln1

eW

bcWbT

ELlength emitter

cT

Page 17: Future Directions in > 100 GHz Devices · 2020-04-22 · 0.2 0.3 0 10 20 30 40 eV nm 6 nm er < 2nm barrier due. 7 High-Frequency Transistors. 8 Beyond-5G Wireless: 100-300GHz

17

Bipolar Transistor Scaling Laws

Narrow junctions.

Thin layers

High current density

Ultra low resistivity contacts

Page 18: Future Directions in > 100 GHz Devices · 2020-04-22 · 0.2 0.3 0 10 20 30 40 eV nm 6 nm er < 2nm barrier due. 7 High-Frequency Transistors. 8 Beyond-5G Wireless: 100-300GHz

18

InP HBTs: 1.07 THz @200nm

?

Rode et al., IEEE TED, Aug. 2015

0

5

10

15

20

25

30

109

1010

1011

1012

Un

ilate

ral P

ow

er

Ga

in, d

B

Frequency, Hz

parallel elements outside

series elements outside

fit: 1.06 THz fmax

Page 19: Future Directions in > 100 GHz Devices · 2020-04-22 · 0.2 0.3 0 10 20 30 40 eV nm 6 nm er < 2nm barrier due. 7 High-Frequency Transistors. 8 Beyond-5G Wireless: 100-300GHz

19

Challenges at the 64nm/2THz & 32nm/3THz Nodes

1018

1019

1020

1021

P-InGaAs

10-10

10-9

10-8

10-7

10-6

10-5

Hole Concentration, cm-3

B=0.8 eV

0.6 eV0.4 eV0.2 eV

step-barrierLandauer

Co

nta

ct

Re

sis

tiv

ity

, W

-cm

2

3THz target

Baraskar et a

l, Jou

rnal o

f Ap

plied

Ph

ysics, 20

13

Need high base contact doping>1020/cm3 for good contactshigh Auger recombinationvery low b.

Need moderate contact penetrationPd or Pt contactsreact with 3++ nm of basepenetrate surface contaminantstoo deep for thin base

Solution: base regrowth:thin, moderately-doped intrinsic base

InGaAs or GaAsSb @ 1019-1020/cm3

thick, heavily-doped extrinsic baseP-GaAs, ~1021/cm3

Rode et al., IEEE TED, Aug. 2015

Page 20: Future Directions in > 100 GHz Devices · 2020-04-22 · 0.2 0.3 0 10 20 30 40 eV nm 6 nm er < 2nm barrier due. 7 High-Frequency Transistors. 8 Beyond-5G Wireless: 100-300GHz

20

Regrown-Base InP HBTs: Images

Cross-sections

Dry-etchedTiW emitter contact

Page 21: Future Directions in > 100 GHz Devices · 2020-04-22 · 0.2 0.3 0 10 20 30 40 eV nm 6 nm er < 2nm barrier due. 7 High-Frequency Transistors. 8 Beyond-5G Wireless: 100-300GHz

21

Regrown-Base InP HBTs: Status

Excellent base contacts; but hydrogen base passivation0.4 W-mm2 resistivity for GaAs/metal contact290 W sheet resistivity for regrown base 0.60W-mm2 resistivity for InGaAs/GaAs contact✘1940W/ sheet resistivity for intrinsic base ✘

0

3

6

9

12

15

0 0.5 1 1.5 2

I C (

mA

)

VCE

(V)

IB,Step

=120µA

10-3

10-2

10-1

100

101

0

2

4

6

8

10

12

14

16

0.3 0.4 0.5 0.6 0.7 0.8 0.9

I B ,

IC (

mA

)

b

VBE

(V)

Solid: VCB

= 0V

Dashed: VCB

= 1V

IB

IC

b

Good DC data: even given regrowthrefractory Mo/W/TiW emitter contactmaintains low rc.

Current process runs: GaAsSb intrinsic baseresistant to hydrogen passivation of carbon base dopant(current reference sample: GaAsSb base, no regrowth)→→

Page 22: Future Directions in > 100 GHz Devices · 2020-04-22 · 0.2 0.3 0 10 20 30 40 eV nm 6 nm er < 2nm barrier due. 7 High-Frequency Transistors. 8 Beyond-5G Wireless: 100-300GHz

22

Materials for Improved THz HBTsContacts: existing materials are sufficient.

N-InAs for emitter, regrown ~1021 cm-3 GaAs for base

Base transit time is no problem: regrowth permits very thin base

Desire: improved voltage at a given bandwidth 1.4eV bandgap→ 30V/mm breakdownBut: increased transit time at high Vce:

G-(L,X) scattering, E-k dispersion

Is there a better collector material ?: Larger bandgapLarger G-(L,X) energy separationLow optical phonon scattering rates (GaN suffers here).High thermal conductivity.

-2

-1

0

1

2

0 100 200 300 400

eV

nm

G

L

Pro

f. Jasprit Sin

gh; eecs3

20

no

tes, Un

iv Mich

igan;

Page 23: Future Directions in > 100 GHz Devices · 2020-04-22 · 0.2 0.3 0 10 20 30 40 eV nm 6 nm er < 2nm barrier due. 7 High-Frequency Transistors. 8 Beyond-5G Wireless: 100-300GHz

23

THz Field-Effect Transistors

Page 24: Future Directions in > 100 GHz Devices · 2020-04-22 · 0.2 0.3 0 10 20 30 40 eV nm 6 nm er < 2nm barrier due. 7 High-Frequency Transistors. 8 Beyond-5G Wireless: 100-300GHz

24

FETs (HEMTs): key for low noise

2:1 to 4:1 increase in ft :improved noiseless required transmit powersmaller PAs, less DC power

or higher-frequency systems

0

2

4

6

8

10

1010

1011

1012

No

ise

fig

ure

, d

Bfrequency, Hz

ft=300GHz

600GHz

1200GHz

2400GHz

1

)(2

)(21

2

min

G

G

G

t

t

f

fRRRg

f

fRRRgF

igsm

igsm

Page 25: Future Directions in > 100 GHz Devices · 2020-04-22 · 0.2 0.3 0 10 20 30 40 eV nm 6 nm er < 2nm barrier due. 7 High-Frequency Transistors. 8 Beyond-5G Wireless: 100-300GHz

25

High-Frequency FET Scaling

To double ft , reduce Lg 2:1, but this is not enough

Must also reduce Cgsx/gm , Cgd/gm time constants 2:1

→ gm/Wg must be doubled

Must also thin dielectric and channel by 2:1 (gmRds)

Page 26: Future Directions in > 100 GHz Devices · 2020-04-22 · 0.2 0.3 0 10 20 30 40 eV nm 6 nm er < 2nm barrier due. 7 High-Frequency Transistors. 8 Beyond-5G Wireless: 100-300GHz

26

FET Current and Transconductance

inversiondepth /Tc

oxc

)( thgs VV -

2*2 2/ gmqcdos

qEE wellf /)( -

channel charge

* 2Fermi velocity from ( ) / 2f well fE E m v-

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.01 0.1 1

K1

m*/mo

g=2

EET=1.0 nm

0.6 nm

0.4 nm

g=1

EET=Tox

SiO2/ox+T

channelSiO2/2

channel

In(Ga)As thin {100} Si

3/2

1 (84mA/ m) ( ) /1Vgs thJ K V Vm -

current Fermi velocity charge

1/2

1 ( )m gs thg K V V -

To increase gm:thin the oxide & channeland increase K1 (mass, # valleys)…hardor increase (Vgs-Vth)…also hard

Page 27: Future Directions in > 100 GHz Devices · 2020-04-22 · 0.2 0.3 0 10 20 30 40 eV nm 6 nm er < 2nm barrier due. 7 High-Frequency Transistors. 8 Beyond-5G Wireless: 100-300GHz

27

FET Scaling Laws (these now broken)

FET parameter change

gate length decrease 2:1

current density (mA/mm) increase 2:1

specific transconductance (mS/mm) increase 2:1

transport mass constant

2DEG electron density increase 2:1

gate-channel capacitance density increase 2:1

dielectric equivalent thickness decrease 2:1

channel thickness decrease 2:1

either (channel state density) increase 2:1

or (Vgs-Vth) increase 4:1

contact resistivities decrease 4:1

Gate dielectric can't be much further scaled.Not in CMOS VLSI, not in mm-wave HEMTs

gm/Wg (mS/mm) hard to increase→ Cend / gm prevents ft scaling.

Shorter gate lengths degrade electrostatics→ reduced gm /Gds → reduced fmax , ft

Page 28: Future Directions in > 100 GHz Devices · 2020-04-22 · 0.2 0.3 0 10 20 30 40 eV nm 6 nm er < 2nm barrier due. 7 High-Frequency Transistors. 8 Beyond-5G Wireless: 100-300GHz

28

Towards faster HEMTs: InAs MOS-HEMTs

Scaling limit: gate insulator thicknessHEMT: InAlAs barrier: tunneling, thermionic leakagesolution: replace InAlAs with high-K dielectric2nm ZrO2 (r=25): adequately low leakage

Scaling limit: source access resistanceHEMT: InAlAs barrier is under N+ source/drainsolution: regrowth, place N+ layer on InAs channel

Target ~10nm node~0.3nm EOT, 3nm thick channel1.2 to 1.5 THz ft.

8/2019: process working: 470GHz ft. @ ~28nm Lg.fmax very low, ft high but not high enough.Now fixing obvious process problems.

1st MOS-HEMT demonstration: Fraunhofer IAF

Page 29: Future Directions in > 100 GHz Devices · 2020-04-22 · 0.2 0.3 0 10 20 30 40 eV nm 6 nm er < 2nm barrier due. 7 High-Frequency Transistors. 8 Beyond-5G Wireless: 100-300GHz

29

Device Images

Page 30: Future Directions in > 100 GHz Devices · 2020-04-22 · 0.2 0.3 0 10 20 30 40 eV nm 6 nm er < 2nm barrier due. 7 High-Frequency Transistors. 8 Beyond-5G Wireless: 100-300GHz

30

More Device Images

Page 31: Future Directions in > 100 GHz Devices · 2020-04-22 · 0.2 0.3 0 10 20 30 40 eV nm 6 nm er < 2nm barrier due. 7 High-Frequency Transistors. 8 Beyond-5G Wireless: 100-300GHz

31

Increasing FET transconductanceFor 1-2 THz ft , seek gmi= 4-8 mS/mm.

thin the oxide, thin the well→ increased eigenstate energy→ loss of confinement at large (Vgs-Vth)→ constrains maximum transconductance: gm∝(Vgs-Vth)1/2

→ maximum achievable gm.

Need high barrier energiesInAs/InAlAs vs InAs/AlAsSbInP/AlAsSb ????

Huang, JAP, 2014B. Markman, to be published

Page 32: Future Directions in > 100 GHz Devices · 2020-04-22 · 0.2 0.3 0 10 20 30 40 eV nm 6 nm er < 2nm barrier due. 7 High-Frequency Transistors. 8 Beyond-5G Wireless: 100-300GHz

32

mm-Wave CMOS also won't scale much further

High-frequency Si MOSFET design follows the same principles as high-frequency III-V FET design.Same physics, so same limits. But, the carrier velocities are lower

Difficult to further thin the gate dielectric (increased gate leakage)→ gm can't increase

Shorter gates don't significantly reduce the capacitance: dominated by ends; ~1fF/mm total

Maximum gm, minimum C→ upper limit on ft.about 350-400 GHz. At the *bottom* of the wiring stack

Usable bandwidth is lower than thishigh-frequency circuits need controlled-impedance Zo=50W interconnects

microstrip lines with signal lines at top of wiring stack.high-frequency transistors must interface to ~50 Ohm external impedances

~20-30 FET fingers must be tied in parallel to bring device port impedances close to 50W.The necessary wiring further reduces ft, fmax: c.a. 300GHz in leading CMOS technologies.

The best CMOS node for mm-wave is 65nm.45nm SOI, 22nm SOI are close to this performanceIntel's RF-optimized 22nm finFET is also close to this performance

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.01 0.1 1

K1

m*/mo

g=2

EET=1.0 nm

0.6 nm

0.4 nm

g=1

EET=Tox

SiO2/ox+T

channelSiO2/2

channel

In(Ga)As thin {100} Si

Page 33: Future Directions in > 100 GHz Devices · 2020-04-22 · 0.2 0.3 0 10 20 30 40 eV nm 6 nm er < 2nm barrier due. 7 High-Frequency Transistors. 8 Beyond-5G Wireless: 100-300GHz

33

Materials for THz (MOS) HEMTsLow resistance in source-gate access region:

moderate to high mobility

High transconductancesufficient mobility to reach ballistic current.m*≈ 0.08·mo to 0.16·mo high ballistic vinj

desirable/hard: multiple band minima (large ns)large band offsets for large (Ef-Ec)→ large (Vgs-Vth)

Low S/D access resistancesS/D materials with high doping, low barriers. Grade heterointerfaces

High velocities and high breakdown fields in gate-drain drift regionm* need not be particularly lowlow phonon scattering rateslarge intervalley energy separationwide bandgap

Page 34: Future Directions in > 100 GHz Devices · 2020-04-22 · 0.2 0.3 0 10 20 30 40 eV nm 6 nm er < 2nm barrier due. 7 High-Frequency Transistors. 8 Beyond-5G Wireless: 100-300GHz

34

Closing

Page 35: Future Directions in > 100 GHz Devices · 2020-04-22 · 0.2 0.3 0 10 20 30 40 eV nm 6 nm er < 2nm barrier due. 7 High-Frequency Transistors. 8 Beyond-5G Wireless: 100-300GHz

35

Materials Requirements for Future Transistors

VLSI (MOSFETs, TFETs): It's mostly about the interfaces: gate dielectrics, S/D contactsThe channel also matters: high ballistic Ion, sufficient Eg for low Ioff

MOS-HEMTs for mm-wave ICs, 50-500GHz low-noise amplifiersSame as VLSI MOSFETs: gate dielectrics, S/D contactsLarge ballistic Ion.How to increase gm ? Large (Vgs-Vth)→ large (Ebarrier-Ewell)

HBTs for mm-wave ICs, 50-500 GHz powerContacts are critically important…and achievable Breakdown vs. transit time: ballistic overshoot matters.Large intervalley separation, low scattering rates

Page 36: Future Directions in > 100 GHz Devices · 2020-04-22 · 0.2 0.3 0 10 20 30 40 eV nm 6 nm er < 2nm barrier due. 7 High-Frequency Transistors. 8 Beyond-5G Wireless: 100-300GHz

36

In case of questions

Page 37: Future Directions in > 100 GHz Devices · 2020-04-22 · 0.2 0.3 0 10 20 30 40 eV nm 6 nm er < 2nm barrier due. 7 High-Frequency Transistors. 8 Beyond-5G Wireless: 100-300GHz

37

FET Design: Scaling

g

DSWL

RRS/D

contactr

, 0gd gs f r gC C W

)/( gchgm LvCg -

0/ ( )DS g g rR L W v

)density state /well(2// 2

wellwell qTT

WLC

oxox

gg

chg

-

masstransport

1

capacitors threeabove the

between ratiodivision voltage2/1

-

v

gW width gate