fundamentals of spectrum analyzer

Upload: tran-chau-thong

Post on 08-Aug-2018

237 views

Category:

Documents


1 download

TRANSCRIPT

  • 8/22/2019 Fundamentals of Spectrum Analyzer

    1/82

    1

    Fundamentals of Spectrum Analyzer

    Mr.Wang JunfengEngineer of Equipment Testing Division

    State Radio Monitoring Center

    [email protected]+(86)10-68368866-1807

    Radio Monitoring and Spectrum Management Training

    (China,23-31,May,2005)

  • 8/22/2019 Fundamentals of Spectrum Analyzer

    2/82

    2

    Contents

    Fundamentals of Spectrum Analyzer

    Why do we use a spectrum analyzer?

    What can we do with a spectrum analyzer?

    How many types are there for spectrum analyzers?

    The classic superheterodyne spectrum analyzer

    Illustration of test cases

  • 8/22/2019 Fundamentals of Spectrum Analyzer

    3/82

    3

    Fundamentals of Spectrum Analyzer

    Why do we use a spectrum analyzer?

    What can we do with a spectrum analyzer?

    How many types are there for spectrum analyzers?

    The classic superheterodyne spectrum analyzer

  • 8/22/2019 Fundamentals of Spectrum Analyzer

    4/82

    4

    Analyzing a RF signal

    Time domain

    Oscilloscope Waveform S(t)

    Frequency domain

    Spectrum analyzer Spectrum F{S(t)}=S(f)

    Frequency and amplitude information

    Modulation domain

    Vector signal analyzer Vector informationFrequency, amplitude and phase information

  • 8/22/2019 Fundamentals of Spectrum Analyzer

    5/82

    5

    Analysis in time domain

    X(t) Complicated in time domain

  • 8/22/2019 Fundamentals of Spectrum Analyzer

    6/82

    6

    Analysis in time domain

  • 8/22/2019 Fundamentals of Spectrum Analyzer

    7/82

    7

    Analysis in frequency domain

    F{X(t)}=X(f) Simpler in frequency domain

  • 8/22/2019 Fundamentals of Spectrum Analyzer

    8/82

    8

    Why do we use a spectrum analyzer?

    Easier to verify each frequency component of thesignal looked like complicated in time domain

    Easier to check what happened in band, in out-of-

    band domain and in spurious emission domainEasier to allocate and assign the frequency forregulatory agency with assistance of the statisticsfrom spectrum monitoring

  • 8/22/2019 Fundamentals of Spectrum Analyzer

    9/82

    9

    Fundamentals of Spectrum Analyzer

    Why do we use a spectrum analyzer?

    What can we do with a spectrum analyzer?

    How many types are there for spectrum analyzers?

    The classic superheterodyne spectrum analyzer

  • 8/22/2019 Fundamentals of Spectrum Analyzer

    10/82

    10

    What can we do with a spectrum analyzer?

    Frequency and amplitude test

    Channel power and spectrum power density test

    Wanted signal spectrum mask test

    Adjacent channel power test

    Spurious emission test

    Occupied bandwidth test

    Spectrum monitoringEtc.

  • 8/22/2019 Fundamentals of Spectrum Analyzer

    11/82

    11

    Fundamentals of Spectrum Analyzer

    Why do we use a spectrum analyzer?

    What can we do with a spectrum analyzer?

    How many types are there for spectrum analyzers?

    The classic superheterodyne spectrum analyzer

  • 8/22/2019 Fundamentals of Spectrum Analyzer

    12/82

    12

    Types of spectrum analyzers

    superheterodyne spectrum analyzer

    Real-time spectrum analyzer (Fourier analyzer)

  • 8/22/2019 Fundamentals of Spectrum Analyzer

    13/82

    13

    Types of spectrum analyzers

    superheterodyne spectrum analyzer

    Larger analyzing frequency range

    Excellent sensitivity

    Larger dynamic range

    Swept-tuned, not a real-time equipment, not suitable for

    short term phenomena

  • 8/22/2019 Fundamentals of Spectrum Analyzer

    14/82

    14

    Types of spectrum analyzers

    Real-time spectrum analyzer(Fourier analyzer)

    RAM FFTA

    D

    A

    D

    RAM FFT

    Real-time equipment, characterizing short term phenomena

    Phase as well as amplitude can be tested

    Limitation of the frequency range, sensitivity, and dynamicrange

  • 8/22/2019 Fundamentals of Spectrum Analyzer

    15/82

    15

    Fundamentals of Spectrum Analyzer

    Why do we use a spectrum analyzer?

    What can we do with a spectrum analyzer?

    How many types are there for spectrum analyzers?

    The classic superheterodyne spectrum analyzer

  • 8/22/2019 Fundamentals of Spectrum Analyzer

    16/82

    16

    The classic superheterodyne spectrum analyzer

    spectrum analyzer appearance

  • 8/22/2019 Fundamentals of Spectrum Analyzer

    17/82

    17

    The classic superheterodyne spectrum analyzer

    Block diagram of a classic superheterodyne spectrum analyzer

  • 8/22/2019 Fundamentals of Spectrum Analyzer

    18/82

    18

    RF attenuator

    Protect the following circuit

    Adjust the signal entering the mixer at the optimumlevel

  • 8/22/2019 Fundamentals of Spectrum Analyzer

    19/82

    19

    RF attenuator

    Input impedance 50ohmsAttenuation range 0 to 50dB or moreAttenuation accuracy less than 0.5dB

    Minimum Step size 5dB, 2dB or 1dB

  • 8/22/2019 Fundamentals of Spectrum Analyzer

    20/82

    20

    RF attenuator

    Attenuation should be large enough to avoid mixer overload

    CLRWR

    A

    1 RM*

    *RBW 300 Hz

    VBW 3 kHz

    SWT 1.2 s*Ref -10 dBm

    Center 500 MHz Span 75 kHz7.5 kHz/

    Att 0 dB*

    OVLD

    PRN

    -110

    -100

    -90

    -80

    -70

    -60

    -50

    -40

    -30

    -20

    -10

    1

    Marker 1 [T1 ]

    -89.85 dBm

    500.037500000 MHz

    Comment A: 11

    Date: 27.APR.2005 16:41:38

    CLRWR

    A

    1 RM*

    *RBW 300 Hz

    VBW 3 kHz

    SWT 1.2 s*Att 15 dB*Ref 10 dBm

    Center 500 MHz Span 75 kHz7.5 kHz/

    PRN

    -90

    -80

    -70

    -60

    -50

    -40

    -30

    -20

    -10

    0

    10

    1

    Marker 1 [T1 ]

    -86.87 dBm

    500.037500000 MHz

    Comment A: 11

    Date: 27.APR.2005 16:42:16

  • 8/22/2019 Fundamentals of Spectrum Analyzer

    21/82

    21

    RF attenuator

    Suitable attenuation can ensure either the excellentlinear performance or the perfect noise floor of thespectrum analyzer.

  • 8/22/2019 Fundamentals of Spectrum Analyzer

    22/82

    22

    Pre-selector or low pass filter

    Reduce the signal energy entering the mixer avoidmixer overload

    Keep unwanted signal from creating unwantedresponse

  • 8/22/2019 Fundamentals of Spectrum Analyzer

    23/82

    23

    Pre-selector or low pass filter

    If there is no pre-selector or low pass filter, thelarger signal will cause mixer overload when the

    smaller signal is tested.

  • 8/22/2019 Fundamentals of Spectrum Analyzer

    24/82

    24

    Mixer and tunable LO

    Frequency down conversion to IF

    fIF =fLO-fsig or fIF =fsig- fLOfsig = signal frequency, fLO = local oscillator frequency,

    fIF = intermediate frequency (IF)

    Tuning the spectrum analyzer to the desired range

    Ramp sweep generator controls both LO and display

  • 8/22/2019 Fundamentals of Spectrum Analyzer

    25/82

    25

    Mixer and tunable LO

    Narrow IF filter Multiple mixing steps

  • 8/22/2019 Fundamentals of Spectrum Analyzer

    26/82

    26

    Mixer

    fIF =fLO-fsig or fIF =fsig- fLOFor certain fIF and fLO there are always two fsig fulfill the mixingformula

    For example:fIF =3.9GHz, fIF =fLO-fsig , fLO =4.3GHz, fsig=400MHz

    fIF =3.9GHz, fIF =fsig- fLO, fLO =4.3GHz, fsig= 8.2GHz

    A pre-selector or a low pass filter is necessary to preventunwanted response created by image frequency from happening.

  • 8/22/2019 Fundamentals of Spectrum Analyzer

    27/82

    27

    Mixer

    Ideal mixing: fIF =fLO-fsig or fIF =fsig- fLOActual mixing: fIF =(fLO-fsig)+k1(fLO-fsig )

    2+k2(fLO-fsig )3 +--- or

    fIF =(fsig-fLO)+k1(fsig-fLO)2+k2(fsig-fLO )

    3 +---

    It is very important to reduce the non-linear components.It is

    why that we need set a suitable attenuation to find a optimummixer level especially for harmonic measurement.

  • 8/22/2019 Fundamentals of Spectrum Analyzer

    28/82

    28

    Mixer

    How to distinguish the non-linear components?

  • 8/22/2019 Fundamentals of Spectrum Analyzer

    29/82

    29

    Mixer

    LO feedthrough

    fIF =fLO-fsig

    fsig =0

    fIF =fLO

  • 8/22/2019 Fundamentals of Spectrum Analyzer

    30/82

    30

    Mixer

    Ref 10 dBm Att 10 dB*

    *1 PK

    CLRWR

    A

    Start 50 Hz Stop 9.93 kHz988 Hz/

    *RBW 1 kHz

    VBW 3 kHz

    SWT 20 ms

    PRN

    -90

    -80

    -70

    -60

    -50

    -40

    -30

    -20

    -10

    0

    101

    Marker 1 [T1 ]

    3.87 dBm

    150.000000000 Hz

    D1 -36 dBm

    Comment A: 11

    Date: 27.APR.2005 16:52:47

    Why?

  • 8/22/2019 Fundamentals of Spectrum Analyzer

    31/82

    31

    Mixer

    The LO signal is coupled into the first IF path due to itslimited isolation.

  • 8/22/2019 Fundamentals of Spectrum Analyzer

    32/82

    32

    tunable LO

    Usually tunable LO is controlled by the periodicsawtooth signal. The scan generator runs freely.

  • 8/22/2019 Fundamentals of Spectrum Analyzer

    33/82

    33

    tunable LO

    What will happen if a pulse signal entering the spectrum analyzer?

    Can we get the spectrum when spectrum analyzer run freely?

    Ref -20 dBm Att 10 dB*

    *1 RM

    CLRWR

    A

    RBW 1 MHz

    VBW 10 MHz

    TRG

    Center 1 GHz 1.5 ms/

    SWT 15 ms

    PRN

    -120

    -110

    -100

    -90

    -80

    -70

    -60

    -50

    -40

    -30

    -20

    1

    Marker 1 [T1 ]

    -84.23 dBm

    2.500000 ms

    TRG -36.5 dBm

    Date: 13.MAY.2005 10:56:14

    NO!

  • 8/22/2019 Fundamentals of Spectrum Analyzer

    34/82

    34

    tunable LO

    How can get the spectrum of a pulse signal or aTDMA signal?

    The spectrum analyzer must be triggered by specificsignal.

  • 8/22/2019 Fundamentals of Spectrum Analyzer

    35/82

    35

    tunable LO

    Tunable LO could also be controlled by other specific signal.

    The scan generator is controlled by specific condition, for instancevideo signal trigger, IF signal trigger, gating trigger, and extendsignal trigger.

  • 8/22/2019 Fundamentals of Spectrum Analyzer

    36/82

    36

    tunable LO

    We can get the spectrum of the pulse signal if we set the specifictrigger condition for spectrum analyzer, for instance IF signaltrigger or extend signal trigger.

    Ref -20 dBm Att 0 dB*

    *1 RM

    CLRWR

    A

    GAT

    TRG

    200 kHz/Center 1 GHz Span 2 MHz

    *RBW 30 kHz

    VBW 300 kHz

    SWT 145 ms*

    PRN

    -120

    -110

    -100

    -90

    -80

    -70

    -60

    -50

    -40

    -30

    -20 1

    Marker 1 [T1 ]

    -26.09 dBm

    999.992000000 MHz

    Date: 13.MAY.2005 10:57:30

  • 8/22/2019 Fundamentals of Spectrum Analyzer

    37/82

    37

    IF processing circuit

    IF amplifier variable gain amplifier, keepingconstant display

    Reference level max level can be displayed

    RBW filter determining the signal to be displayed

  • 8/22/2019 Fundamentals of Spectrum Analyzer

    38/82

    38

    IF amplifier

    The gain of the IF amplifier can be adjusted in smallstep size, so the maximum signal level can be keptconstant in the subsequent signal processing

    regardless of the attenuation setting and mixer level.IF gain offset is coupled to the attenuator, so largerattenuation would bring larger noise.

  • 8/22/2019 Fundamentals of Spectrum Analyzer

    39/82

    39

    IF amplifier

    Larger attenuation import larger noise

  • 8/22/2019 Fundamentals of Spectrum Analyzer

    40/82

    40

    IF amplifier

    LDAN=10log(ktBN,IF/110-3W)+NFSA-2.5dB)

    LDAN : displayed average noise level

    k: Boltzmanns constant, k=1.3810-23W/Hz

    T: ambient temperature, in K

    BN,IF: noise bandwidth of IF filterNFSA: noise figure of spectrum analyzer, in dB

    -2.5dB: understanding of noise by sampling detector and averaging oflogarithmic level values

    For the ambient temperature 290K(17C):

    LDAN=-174dBm/Hz+(10logBN,IF/Hz)+NFSA-2.5dB

    Increasing the attenuation, the noise figure of the spectrum analyzerwill get larger.

  • 8/22/2019 Fundamentals of Spectrum Analyzer

    41/82

    41

    Reference level

    Reference level is the max level can be displayedReference level should be large enough to avoid IFoverload

    Usually reference level is coupled to the attenuationto protect the mixer and subsequent circuit.

  • 8/22/2019 Fundamentals of Spectrum Analyzer

    42/82

    42

    Reference level

    CLRWR

    A

    1 RM*

    * RBW 300 Hz

    VBW 3 kHz

    SWT 1.2 s*Att 15 dB*Ref -10 dBm

    Center 500 MHz Span 75 kHz7.5 kHz/

    IFOVL

    PRN

    -110

    -100

    -90

    -80

    -70

    -60

    -50

    -40

    -30

    -20

    -10

    1

    Marker 1 [T1 ]

    -99.39 dBm

    500.037500000 MHz

    Comment A: 11

    Date: 27.APR.2005 16:42:41

    IF overload Reference level:-10dBm

  • 8/22/2019 Fundamentals of Spectrum Analyzer

    43/82

    43

    Reference level

    CLRWR

    A

    1 RM*

    *RBW 300 Hz

    VBW 3 kHz

    SWT 1.2 s*Att 15 dB*Ref -5 dBm

    Center 500 MHz Span 75 kHz7.5 kHz/

    PRN

    -100

    -90

    -80

    -70

    -60

    -50

    -40

    -30

    -20

    -10

    1

    Marker 1 [T1 ]

    -105.42 dBm

    500.037500000 MHz

    Comment A: 11

    Date: 27.APR.2005 16:43:16

    Reference level:-5dBm

  • 8/22/2019 Fundamentals of Spectrum Analyzer

    44/82

    44

    RBW filter

    RBW filter The final IF filter

    Resolution 3dB bandwidth of the IF filter

    Selectivity Filter wave shape factor

    Response time sweep time

  • 8/22/2019 Fundamentals of Spectrum Analyzer

    45/82

    45

    RBW filter

    RBW=30kHz

    A

    *1 RM

    CLRWR

    Att 10 dB*

    *RBW 300 kHz

    VBW 3 MHz

    SWT 245 ms*Ref -20 dBm

    Center 1 GHz Span 5 MHz500 kHz/

    PRN

    -120

    -110

    -100

    -90

    -80

    -70

    -60

    -50

    -40

    -30

    -20

    1

    Marker 1 [T1 ]

    -29.35 dBm

    1.000050000 GHz

    Date: 13.MAY.2005 10:50:29

    Different RBW filter has different resolving capability

    A

    *1 RM

    CLRWR

    Att 10 dB*Ref -20 dBm

    Center 1 GHz Span 500 kHz50 kHz/

    *RBW 30 kHz

    VBW 300 kHz

    SWT 245 ms*

    PRN

    -120

    -110

    -100

    -90

    -80

    -70

    -60

    -50

    -40

    -30

    -20

    1

    Marker 1 [T1 ]

    -31.51 dBm

    1.000099000 GHz2

    Marker 2 [T1 ]

    -31.61 dBm

    999.999000000 MHz

    Date: 13.MAY.2005 10:51:17

    RBW=300kHz

  • 8/22/2019 Fundamentals of Spectrum Analyzer

    46/82

    46

    RBW filter

    RBW is the 3dB bandwidth of the final IF filter

    *1 RM

    CLRWR

    A

    Att 10 dB*Ref -10 dBm

    Center 1 GHz Span 1 MHz100 kHz/

    *RBW 100 kHz

    VBW 1 MHz

    SWT 195 ms*

    PRN

    -110

    -100

    -90

    -80

    -70

    -60

    -50

    -40

    -30

    -20

    -10

    1

    Marker 1 [T1 ]

    -21.27 dBm

    1.000000000 GHz2

    Delta 2 [T1 ]

    -3.03 dB

    -50.000000000 kHz

    3Delta 3 [T1 ]

    -3.12 dB

    50.000000000 kHz

    Date: 13.MAY.2005 11:13:12

  • 8/22/2019 Fundamentals of Spectrum Analyzer

    47/82

    47

    RBW filter

    Selectivity

    Wave shape factor ratio of 60dB bandwidth to3dB bandwidth

  • 8/22/2019 Fundamentals of Spectrum Analyzer

    48/82

    48

    RBW filter

    A low factor means a better selectivity

  • 8/22/2019 Fundamentals of Spectrum Analyzer

    49/82

    49

    RBW filter

    In theory, a rectangular filter has excellent selectivity.

    But such a filter has a long transient response time.

    Short measurement time can be achieved through

    the use of Gaussian filter optimized for transients.

  • 8/22/2019 Fundamentals of Spectrum Analyzer

    50/82

    50

    RBW filter

    Response timeSweep time

    How long does it take to complete a sweep? RBW filter is a band limited filter and needs some time to

    charge and discharge. Narrow RBW filter has higher resolving capability but needs

    longer charging time. ST=k(span)/RBW2

    ST: Sweep timek: constant factor (variable for different filter types)

    There are different kinds of filter allow resolution, selectivity andmeasurement speed to be adapted to specificapplication.

  • 8/22/2019 Fundamentals of Spectrum Analyzer

    51/82

    51

    RBW filter

    Analog IF filter

    It is used to realize very large RBW, usually from 100kHz to10MHz.

    Ideal Gaussian filter can not be implemented using analog filter.

    It is possible for a analog filter that the transient response isalmost identical with the ideal Gaussian filter within the 20dBbandwidth.

    SF=14, four filter circuit

    SF=10, five filter circuitWhereas SF=4.6, ideal Gaussian filter

  • 8/22/2019 Fundamentals of Spectrum Analyzer

    52/82

    52

    RBW filter

    Digital IF filter

    It is used to realize narrow RBW, usually less than 100kHz.

    The ideal Gaussian filter can be implemented by digital filter.

    Much better selectivity can be achieved, SF=4.6.

    Digital filter allows shorter sweep time than analog filter ofthe same bandwidth.

  • 8/22/2019 Fundamentals of Spectrum Analyzer

    53/82

    53

    RBW filter

    Usually, sweep time is automatically coupledto span and RBWSweep time can be changed manually. But try

    to avoid the Mea Uncal errorSweep time must be longer than minimumsweep time

  • 8/22/2019 Fundamentals of Spectrum Analyzer

    54/82

    54

    RBW filter

    Ref -5 dBm Att 10 dB

    1 RM

    CLRWR

    A

    *

    *

    Center 500 MHz Span 50 kHz5 kHz/

    * RBW 100 Hz

    VBW 1 kHz

    SWT 3 s*

    UNCAL

    PRN

    -100

    -90

    -80

    -70

    -60

    -50

    -40

    -30

    -20

    -10

    1

    Marker 1 [T1 ]

    -107.25 dBm

    500.025000000 MHz

    Comment A: 11

    Date: 27.APR.2005 16:49:10

    CLRWR

    A

    1 RM*

    Att 15 dB*Ref -5 dBm

    Center 500 MHz Span 50 kHz5 kHz/

    *RBW 100 Hz

    VBW 1 kHz

    *

    SWT 6 s

    PRN

    -100

    -90

    -80

    -70

    -60

    -50

    -40

    -30

    -20

    -10

    1

    Marker 1 [T1 ]

    -103.71 dBm

    500.025000000 MHz

    Comment A: 11

    Date: 27.APR.2005 16:44:17

  • 8/22/2019 Fundamentals of Spectrum Analyzer

    55/82

    55

    RBW filter

    Different RBW imports different noise level.

    LDAN=-174dBm/Hz+(10logBN,IF/Hz)+NFSA-2.5dB

    LDAN : displayed average noise level, in dBm

    k: Boltzmanns constant, k=1.3810-23W/Hz

    T: ambient temperature, in KBN,IF: noise bandwidth of IF filter, in Hz

    NFSA: noise figure of spectrum analyzer, in dB

    -2.5dB: understanding of noise by sampling detector and averagingof logarithmic level values.

    Different RBW result in different noise level.

    The RBW setting is specified in measurement.

  • 8/22/2019 Fundamentals of Spectrum Analyzer

    56/82

    56

    RBW filter

    Larger RBW imports higher noise level

  • 8/22/2019 Fundamentals of Spectrum Analyzer

    57/82

    57

    Video processing circuit

    Log amplifier, envelope detector, detector, video filter,display screen

  • 8/22/2019 Fundamentals of Spectrum Analyzer

    58/82

    58

    Log amplifier

    Compress the larger signal and increase the smallsignal

    To improve display dynamic range of the spectrum

    analyzer.

  • 8/22/2019 Fundamentals of Spectrum Analyzer

    59/82

    59

    Envelope detector

    Convert the IF signal to video

    The envelope of the IF signal is gotten.

  • 8/22/2019 Fundamentals of Spectrum Analyzer

    60/82

    60

    Envelope detector

    The envelope of one certain frequency componentcan be obtained through 0 span at this frequency.

  • 8/22/2019 Fundamentals of Spectrum Analyzer

    61/82

    61

    Envelope detector

    The envelope of single time slot GSM signal

    Ref -20 dBm Att 10 dB*

    *1 RM

    CLRWR

    A

    RBW 1 MHz

    VBW 10 MHz

    TRG

    Center 1 GHz 1.5 ms/

    SWT 15 ms

    PRN

    -120

    -110

    -100

    -90

    -80

    -70

    -60

    -50

    -40

    -30

    -20

    1

    Marker 1 [T1 ]

    -84.23 dBm

    2.500000 ms

    TRG -36.5 dBm

    Date: 13.MAY.2005 10:56:14

    Ref -20 dBm Att 0 dB*

    *1 RM

    CLRWR

    A

    GAT

    TRG

    200 kHz/Center 1 GHz Span 2 MHz

    *RBW 30 kHz

    VBW 300 kHz

    SWT 145 ms*

    PRN

    -120

    -110

    -100

    -90

    -80

    -70

    -60

    -50

    -40

    -30

    -20 1

    Marker 1 [T1 ]

    -26.09 dBm

    999.992000000 MHz

    Date: 13.MAY.2005 10:57:30

  • 8/22/2019 Fundamentals of Spectrum Analyzer

    62/82

    62

    Envelope detector

    The envelope of a sine wave signal

    Ref -10 dBm Att 10 dB*

    CLRWR

    A

    RBW 100 kHz

    VBW 1 MHz

    SWT 2.5 ms

    Center 1 GHz 250 s/

    *1 RM

    PRN

    -110

    -100

    -90

    -80

    -70

    -60

    -50

    -40

    -30

    -20

    -10

    1

    Marker 1 [T1 ]

    -21.27 dBm

    1.430000 ms

    Date: 13.MAY.2005 11:16:04

    Ref -10 dBm Att 10 dB

    1 RM

    CLRWR

    A

    *

    *

    Center 1 GHz Span 1 MHz100 kHz/

    *RBW 100 kHz

    VBW 1 MHz

    SWT 2.5 ms

    PRN

    -110

    -100

    -90

    -80

    -70

    -60

    -50

    -40

    -30

    -20

    -10

    1

    Marker 1 [T1 ]

    -21.26 dBm

    1.000000000 GHz

    Date: 13.MAY.2005 11:29:33

  • 8/22/2019 Fundamentals of Spectrum Analyzer

    63/82

    63

    video filter

  • 8/22/2019 Fundamentals of Spectrum Analyzer

    64/82

    64

    video filter

    Low pass filter, reducing the impact of noise on the displayedsignal amplitude, smoothing the display

  • 8/22/2019 Fundamentals of Spectrum Analyzer

    65/82

    65

    Detector

    Digital display Analog to digital, finite displaypoint for a trace, normally 625 points or more

    One display point represents a frequency range

    What value should be displayed for each displaypoint among the frequency range?

    Put all the data into a bucket and we need a mathformula to extract the data to be displayed

    Different detector types mean different math formulae

  • 8/22/2019 Fundamentals of Spectrum Analyzer

    66/82

    66

    Sample detector

    The data point at the center of the bucket is displayed

  • 8/22/2019 Fundamentals of Spectrum Analyzer

    67/82

    67

    Positive peak detector

    The maximum data point of the bucket is displayed

  • 8/22/2019 Fundamentals of Spectrum Analyzer

    68/82

    68

    Negative peak detector

    The minimum data point of the bucket is displayed

  • 8/22/2019 Fundamentals of Spectrum Analyzer

    69/82

    69

    Normal detector

    The maximum data point of the bucket is displayed at odd displaypoint and the minimum data point of the bucket is displayed ateven display point

  • 8/22/2019 Fundamentals of Spectrum Analyzer

    70/82

    70

    RMS detector

    Statistic average, RMS value of all the data points in abucket is displayed.

    N

    i

    iRMS uN

    U

    1

    21

  • 8/22/2019 Fundamentals of Spectrum Analyzer

    71/82

    71

    Average detector

    Math average

    N

    iiAV

    u

    N

    U

    1

    1

  • 8/22/2019 Fundamentals of Spectrum Analyzer

    72/82

    72

    Difference between various detectors

    Positive peak, sample and negative peak

    Att 15 dB*

    CLRWR

    A

    *1 PK

    CLRWR

    *RBW 100 kHz

    SWT 720 ms

    CLRWR

    Ref -50 dBm

    Center 1.90025 GHz Span 100 MHz10 MHz/

    *3 MI

    *2 SA

    VBW 300 kHz

    *

    PRN

    -150

    -140

    -130

    -120

    -110

    -100

    -90

    -80

    -70

    -60

    -50

    1

    Marker 1 [T1 ]

    -77.86 dBm

    1.935508423 GHz

    Comment A: 11

    Date: 27.APR.2005 12:37:31

  • 8/22/2019 Fundamentals of Spectrum Analyzer

    73/82

    73

    Difference between various detectors

    Positive peak, RMS and average

    Att 15 dB*

    CLRWR

    A

    *1 PK

    CLRWR

    CLRWR

    *2 RM

    *3 AV

    Ref -50 dBm

    Center 1.90025 GHz Span 10 MHz1 MHz/

    * RBW 100 kHz

    VBW 1 MHz

    SWT 1.2 s*

    PRN

    -150

    -140

    -130

    -120

    -110

    -100

    -90

    -80

    -70

    -60

    -50

    1

    Marker 1 [T1 ]

    -77.85 dBm

    1.905250000 GHz

    Comment A: 11

    Date: 27.APR.2005 12:38:40

  • 8/22/2019 Fundamentals of Spectrum Analyzer

    74/82

    74

    Difference between various detectors

    Normal

    Att 15 dB*

    CLRWR

    A

    Ref -50 dBm

    Center 1.90025 GHz Span 10 MHz1 MHz/

    * RBW 100 kHz

    SWT 1.2 s

    VBW 300 kHz

    1 AP

    *

    PRN

    -150

    -140

    -130

    -120

    -110

    -100

    -90

    -80

    -70

    -60

    -50

    1

    Marker 1 [T1 ]

    -77.70 dBm

    1.905250000 GHz

    Comment A: 11

    Date: 27.APR.2005 12:39:19

  • 8/22/2019 Fundamentals of Spectrum Analyzer

    75/82

    75

    Fundamentals of Spectrum Analyzer

    Fundamentals of Spectrum Analyzer

    Why do we use a spectrum analyzer?

    What can we do with a spectrum analyzer?

    How many types are there for spectrum analyzers? The classic superheterodyne spectrum analyzer

    Illustration of test cases

  • 8/22/2019 Fundamentals of Spectrum Analyzer

    76/82

    76

    How does the RBW filter work?

    CLRWR

    A

    1 RM*

    Att 15 dB*Ref -5 dBm

    Center 500 MHz Span 75 kHz7.5 kHz/

    *RBW 1 kHz

    VBW 10 kHz

    SWT 1.2 s*

    PRN

    -100

    -90

    -80

    -70

    -60

    -50

    -40

    -30

    -20

    -10

    1

    Marker 1 [T1 ]

    -99.87 dBm

    500.037500000 MHz

    Comment A: 11

    Date: 27.APR.2005 16:43:42

    Spectrum for FM signal 1kHz mod 3kHz deviationRBW:1kHz

  • 8/22/2019 Fundamentals of Spectrum Analyzer

    77/82

    77

    How does the RBW filter work?

    CLRWR

    A

    1 RM*

    Att 15 dB*Ref -5 dBm

    Center 500 MHz Span 50 kHz5 kHz/

    *RBW 100 Hz

    VBW 1 kHz

    *

    SWT 6 s

    PRN

    -100

    -90

    -80

    -70

    -60

    -50

    -40

    -30

    -20

    -10

    1

    Marker 1 [T1 ]

    -103.71 dBm

    500.025000000 MHz

    Comment A: 11

    Date: 27.APR.2005 16:44:17

    Spectrum for FM signal 1kHz mod 3kHz deviationRBW:100Hz

  • 8/22/2019 Fundamentals of Spectrum Analyzer

    78/82

    78

    How to set the RBW in measurement?

    Spectrum mask measurement RBW is approximately3% to 5% necessary bandwidth.

    Unwanted emission measurement RBW is set

    according to the test specification.

  • 8/22/2019 Fundamentals of Spectrum Analyzer

    79/82

    79

    Channel power measurement

    Integral bandwidth:16kHz

    Center 500 MHz Span 50 kHz5 kHz/

    Ref -5 dBm Att 10 dB

    RBW 100 Hz

    VBW 1 kHz

    SWT 6 s

    *

    1 RM

    CLRWR

    A

    *

    *

    *

    PRN

    -100

    -90

    -80

    -70

    -60

    -50

    -40

    -30

    -20

    -10

    1

    Marker 1 [T1 ]

    -104.43 dBm

    500.025000000 MHz

    CH PWR -4.25 dBm

    C0C0

    Comment A: 11

    Date: 27.APR.2005 16:45:37

  • 8/22/2019 Fundamentals of Spectrum Analyzer

    80/82

    80

    Adjacent channel power measurement

    2 adjacent channel: 25kHz 50kHz

    Ref -5 dBm Att 10 dB

    1 RM

    CLRWR

    A

    *

    *

    Center 500 MHz Span 150 kHz15 kHz/

    * RBW 100 Hz

    VBW 1 kHz

    SWT 18 s

    PRN

    -100

    -90

    -80

    -70

    -60

    -50

    -40

    -30

    -20

    -10

    Tx Channel

    Bandwidth 16 kHz Power -4.23 dBm

    Adjacent Channel

    Bandwidth 16 kHz Lower -79.32 dBSpacing 25 kHz Upper -79.68 dB

    Alternate Channel

    Bandwidth 16 kHz Lower -79.83 dBSpacing 50 kHz Upper -79.93 dB

    1

    Marker 1 [T1 ]

    -101.93 dBm

    500.025000000 MHz

    C0

    C0

    cu2

    cu2

    cu1

    cu1

    cl1

    cl1

    cl2

    cl2

    Comment A: 11

    Date: 27.APR.2005 16:47:51

  • 8/22/2019 Fundamentals of Spectrum Analyzer

    81/82

    81

    Occupied bandwidth

    99% power bandwidth

    Ref -5 dBm Att 10 dB

    1 RM

    CLRWR

    A

    *

    *

    Center 500 MHz Span 50 kHz5 kHz/

    *RBW 100 Hz

    VBW 1 kHzSWT 6 s

    PRN

    -100

    -90

    -80

    -70

    -60

    -50

    -40

    -30

    -20

    -10

    1

    Marker 1 [T1 ]

    -102.21 dBm500.025000000 MHz

    OBW 8.092948718 kHz

    T1

    Temp 1 [T1 OBW]

    -25.59 dBm

    499.995913462 MHzT2

    Temp 2 [T1 OBW]

    -21.82 dBm

    500.004006410 MHz

    Comment A: 11

    Date: 27.APR.2005 16:48:29

  • 8/22/2019 Fundamentals of Spectrum Analyzer

    82/82

    The End

    Thanks for your attention!!

    Any questions?