fundamentals of device and systems packaging

13
Fundamentals of Device and Systems Packaging Technologies and Applications Rao R. Tummala, Ph.D. Editor Georgia Institute of Technology, USA Second Edition Mc Graw Hill New York Chicago San Francisco Athens London Madrid Mexico City Milan New Delhi Singapore Sydney Toronto

Upload: others

Post on 07-Feb-2022

129 views

Category:

Documents


0 download

TRANSCRIPT

Fundamentals of Device and Systems

Packaging Technologies and Applications

Rao R. Tummala, Ph.D. Editor

Georgia Institute of Technology, USA

Second Edition

Mc Graw Hill

New York Chicago San Francisco Athens London Madrid

Mexico City Milan New Delhi Singapore Sydney Toronto

Contents Contributors xvii Preface xix

1 Introduction to Device and Systems Packaging Technologies Prof. Rao R. Tummala 1

1.1 What Is Packaging and Why? 3 1.1.1 What Is Packaging? 4 1.1.2 Why Is Packaging Important? 6 1.1.3 Every IC and Device Has to Be Packaged 7 1.1.4 Controls Performance of Computers 7 1.1.5 Controls Size of Consumer Electronics 7 1.1.6 Controls Reliability of Electronics 7 1.1.7 Controls Cost of Electronic Products 7 1.1.8 Required in Nearly Everything 7

1.2 Anatomy of an Electronic Packaged System from a Packaging Point of View 7

1.2.1 Fundamentals of Packaging 8 1.2.2 Systems Packaging Involves Electrical, Mechanical,

and Materials Technologies 9 1.2.3 Nomenclature 10

1.3 Devices and Moore's Law 11 1.3.1 On-Chip Interconnections 12 1.3.2 Interconnect Materials 13 1.3.3 The Resistance and Capacitance Delays (RC Delays)

of On-Chip Interconnects 14 1.3.4 Future of Device Scaling 15

1.4 Electronic Technology Waves: Microelectronics, RF/Wireless, Photonics, MEMS, and Quantum Devices 16

1.4.1 Microelectronics: The First Technology Wave 16 1.4.2 RF and Wireless: The Second Technology Wave 18 1.4.3 Photonics: The Third Technology Wave 19 1.4.4 Micro-Electro-Mechanical Systems (MEMS):

The Fourth Technology Wave 21 1.4.5 Quantum Devices and Computing: Fifth Wave 22

1.5 Packaging and Moore's Law for Packaging 23 1.5.1 Three Eras in Packaging 23 1.5.2 Moore's Law or SOC Era (1960-2010) 25 1.5.3 Moore's Law for Packaging Era from 2010 to 2025 26 1.5.4 Moore's Law for Systems Era from 2025 27

V

vi Contents

1.6 Electronic Systems Technologies Trends 29 1.6.1 Core Packaging Technologies 29 1.6.2 Packaging Technologies and Their Trends 30

1.7 Future Outlook 33 1.7.1 Emerging Computing Systems 33 1.7.2 Emerging 3D Systems Packaging 34

1.8 How the Book Is Organized 37 1.9 Homework Problems 38

1.10 Suggested Reading 38

Fundamentals of Packaging

2 Fundamentals of Electrical Design for Signals, Power, and Electromagnetic Interference Prof. Eakhwan Song, Prof. Dong Gun Kam, Prof. Joungho Kim, Prof. Madhavan Swaminathan, and Prof. Andrew F. Peterson 43

2.1 What Is Electrical Package Design and Why? 45 2.2 Electrical Anatomy of a Package 45

2.2.1 Fundamentals of Electrical Package Design 47 2.2.2 Nomenclature 51

2.3 Signal Distribution 54 2.3.1 Devices and Interconnections 54 2.3.2 Kirchhoff's Laws and Transit Time Delay 58 2.3.3 Transmission Line Behavior of Interconnections 59 2.3.4 Characteristic Impedance 61 2.3.5 Typical Transmission Line Structures Used as

Package Interconnections 64 2.3.6 Transmission Line Losses 64 2.3.7 Crosstalk 67

2.4 Power Distribution 70 2.4.1 Power Supply Noise 71 2.4.2 Inductive Effects 73 2.4.3 Effective Inductance 75 2.4.4 Effect of Package Design on Inductance 76 2.4.5 Decoupling Capacitors 78

2.5 Electromagnetic Interference 81 2.6 Summary and Future Trends 85 2.7 Homework Problems 87 2.8 Suggested Reading 89

3 Fundamentals of Thermal Technologies Dr. Kamal Sikka, Prof. Yogendra Joshi, and Mr. Justin Broughton 91

3.1 What Is Thermal Management and Why? 93 3.2 Anatomy of a Thermal Package System 94

3.2.1 Fundamentals of Heat Transfer 94 3.2.2 Nomenclature 103

Contents

3.3 Chip Level Thermal Technologies 104 3.3.1 Thermal Interface Materials (TIMs) 104 3.3.2 Heat Spreaders 109 3.3.3 Thermal Vias 113

3.4 Module Level Thermal Technologies 114 3.4.1 Heat Sinks 114 3.4.2 Heat Pipes and Vapor Chambers 117 3.4.3 Closed-Loop Liquid Cooling 121 3.4.4 Cold Plates 122 3.4.5 Immersion Cooling 125 3.4.6 Jet Impingement Cooling 125 3.4.7 Spray Cooling 127

3.5 System Level Thermal Technologies 127 3.5.1 Air Cooling 128 3.5.2 Hybrid Cooling 130 3.5.3 Immersion Cooling 132

3.6 Power and Cooling Technologies for Electric Vehicles 132 3.7 Summary and Future Trends 134 3.8 Homework Problems 135 3.9 Suggested Reading 136

Fundamentals of Thermo-Mechanical Reliability Prof. Suresh K. Sitaraman, Dr. Krishna Tunga, and Prof. John H. L. Pang ... 137

4.1 What Is Thermo-Mechanical Reliability? 139 4.2 Anatomy of a Package with Failures and Failure Mechanisms 139

4.2.1 Fundamentals of Thermo-Mechanical Reliability 141 4.2.2 Thermo-Mechanical Modeling 143 4.2.3 Nomenclature 147

4.3 Types of Thermo-Mechanical-Induced Failures and Design Guidelines for Reliability 148 4.3.1 Fatigue Failures 150 4.3.2 Brittle Fractures 154 4.3.3 Creep-Induced Failures 157 4.3.4 Delamination-Induced Failures 158 4.3.5 Plastic Deformation Failures 161 4.3.6 Warpage-Induced Failures 162

4.4 Summary and Future Trends 167 4.5 Homework Problems 167 4.6 Suggested Reading 168

Fundamentals of Package Materials at Microscale and Nanoscale Dr. Himani Sharma, Prof. Markondeya Raj Pulugurtha, Prof. C. P. Wong, and Dr. Rabindra Das 171

5.1 What Is the Role of Materials in Packaging? 173 5.2 Anatomy of a Package with a Variety of Materials 173

5.2.1 Fundamentals of Package Materials 173 5.2.2 Nomenclature 175

5.3 Package Materials, Processes, and Properties 177 5.3.1 Substrate Materials, Processes, and Properties 177 5.3.2 Interconnection and Assembly Materials, Processes,

and Properties 188 5.3.3 Passive Component Materials, Processes,

and Properties 196 5.3.4 Thermal and Thermal Interface Materials (TIMs),

Processes, and Properties 207 5.4 Summary and Future Trends 214 5.5 Homework Problems 215 5.6 Suggested Reading 216

Fundamentals of Ceramic, Organic, Glass, and Silicon Package Substrates Mr. Chandra Nair, Dr. Venky Sundaram, Prof. Markondeya Raj Pulugurtha, Mr. Fuhan Liu, Dr. Vijay Sukumaran, and Mr. Bartlet H. DeProspo 217

6.1 What Is a Package Substrate and Why? 219 6.2 Anatomy of Three Package Substrates: Ceramics,

Organic Laminates, and Silicon 219 6.2.1 Fundamentals of Package Substrates 223 6.2.2 Nomenclature 227

6.3 Package Substrate Technologies 231 6.3.1 Historical Trends 231

6.4 Thick-Film Substrates 236 6.4.1 Ceramic Substrates 237

6.5 Thin-Film Substrates 244 6.5.1 Organic Substrates 244 6.5.2 Glass Substrates 261

6.6 Ultra-Thin-Film Substrates with Semiconductor Packaging Processes 267

6.6.1 Silicon Substrates 268 6.7 Summary and Future Trends 277 6.8 Homework Problems 278 6.9 Suggested Reading 279

Fundamentals of Passive Components and Integration with Active Devices Prof. Markondeya Raj Pulugurtha, Dr. Parthasarathi Chakraborti, Dr. John Prymak, Dr. Swapan Bhattacharaya, Dr. Saumya Gandhi, and Dr. Dibyajat Mishra... 281

7.1 What Are Passive Components and Why? 283 7.2 Anatomy of Passive Components 283

7.2.1 Fundamentals of Passive Components 286 7.2.2 Nomenclature 308

7.3 Passive Component Technologies 311 7.3.1 Discrete Passives 311 7.3.2 Integrated Passive Devices (IPDs) 312

Contents

7.3.3 Embedded Discrete Passives 314 7.3.4 Embedded Thin-Film Passives 314

7.4 Functional Modules with Passives and Actives 316 7.4.1 RF Modules 316 7.4.2 Power Modules 319 7.4.3 Voltage Regulator Power Modules 325

7.5 Summary and Future Trends 326 7.6 Homework Problems 328 7.7 Suggested Reading 329

Fundamentals of Chip-to-Package Interconnections and Assembly Dr. Vanessa Smet, Dr. Ninad Shahane, and Dr. Eric Perfecto 331

8.1 What Are Chip-to-Package Interconnections and Assembly and Why? 333

8.2 Anatomy of an Interconnection and Assembly 333 8.2.1 Types of Chip-Level Interconnections

and Assembly Technologies 334 8.2.2 Fundamentals of Interconnections and Assembly 336 8.2.3 Fundamentals of Assembly and Bonding 339 8.2.4 Nomenclature 341

8.3 Interconnection and Assembly Technologies 342 8.3.1 Evolution 342

8.4 Interconnections and Assembly Technologies 345 8.4.1 Wire-Bonding 345 8.4.2 Tape Automated Bonding (TAB) 348 8.4.3 Flip-Chip Interconnection and Assembly

Technology 350 8.4.4 Copper Pillar with Solder Cap Technology 353 8.4.5 SLID Interconnection and Assembly Technology 354

8.5 Future Trends in Interconnection and Assembly Technologies... 357 8.5.1 Extension of SLID 357

8.6 Homework Problems 363 8.7 Suggested Reading 365

Fundamentals of Embedded and Fan-Out Packaging Dr. Beth Keser, Mr. Tailong Shi, and Prof. Rao R. Tummala 367

9.1 What Is Embedding and Fan-Out Packaging and Why? 369 9.1.1 Why Embedding and Fan-Out Packaging? 370

9.2 Anatomy of a Fan-Out Wafer-Level Package (FO-WLP) 371 9.2.1 A Typical Fan-Out Wafer-Level Package Process 371 9.2.2 Fundamentals of Fan-Out Wafer-Level

Package Technology 373 9.2.3 Nomenclature 374

9.3 Fan-Out Wafer-Level Package Technologies 376 9.3.1 Types 376 9.3.2 Materials and Processes 380 9.3.3 Fan-Out Wafer-Level Packaging Tools 387

9.3.4 Challenges in Fan-Out Wafer-Level Packaging Technology 390

9.3.5 Applications of Fan-Out Wafer-Level Packaging 391 9.4 Panel-Level Package (PLP) 393

9.4.1 What Is Panel-Level Packaging and Why? 393 9.4.2 Types of Manufacturing Infrastructure

for Panel-Level Packaging 394 9.4.3 Applications of Panel-Level Packaging 395

9.5 Summary and Future Trends 402 9.6 Homework Problems 403 9.7 Suggested Reading 403

Fundamentals of 3D Packaging with and without TSV Prof. Subramanian S. Iyer, Dr. Mukta Farooq, Prof. Rao R. Tummala, Mr. Omkar Gupte, Mr. Siddharth Ravichandran, Mr. Bartlet H. DeProspo, and Mr. Nithin Nedumthakady 407 10.1 What Are 3D ICs with TSV and Why? 409

10.1.1 Why 3D ICs with TSVs? 409 10.2 Anatomy of a 3D Package with TSV 411

10.2.1 Fundamentals of 3D ICs with TSV 412 10.2.2 Nomenclature 415

10.3 3D ICs with TSV Technologies 416 10.3.1 Through-Silicon-Vias (TSVs) 416 10.3.2 Ultra-Thin ICs 423 10.3.3 Back-End-of-Line (BEOL) RDL Wiring 425 10.3.4 Chip-to-Chip Interconnections within the 3D Stack . . . 426 10.3.5 Packages for 3D IC Stacks 430 10.3.6 Underfill 436

10.4 Summary and Future Trends 437 10.5 Homework Problems 438 10.6 Suggested Reading 439 10.7 Acknowledgment 440

Fundamentals of RF and Millimeter-Wave Packaging Dr. Srikrishna Sitaraman, Prof. Emmanouü M. Tentzeris, Prof. Markondeya Raj Pulugurtha, Dr. Junki Min, Prof. Rao R. Tummala, and Prof. John Papapolymerou 441 11.1 What Is RF and Why? 443

11.1.1 History and Evolution 444 11.1.2 When Was the First Mobile Phone Introduced? 444

11.2 Anatomy of an RF System 445 11.2.1 Fundamentals of RF 446 11.2.2 RF Nomenclature 464

11.3 RF Technologies and Applications 467 11.3.1 Transceiver 467 11.3.2 Transmitter 467

Contents

11.3.3 Receiver 468 11.3.4 Modulation Scheines 469 11.3.5 Antenna 469 11.3.6 Components in RF Front-End Module 471 11.3.7 Filters 473 11.3.8 RF Materials and Components 475 11.3.9 RF Modeling and Characterization Techniques 481

11.3.10 Applications of RF 483 11.4 What Is a Millimeter-Wave System? 486 11.5 Anatomy of a Millimeter-Wave Package 486

11.5.1 Fundamentals of Millimeter-Wave Packaging 486 11.6 Millimeter-Wave Technologies and Applications 492

11.6.1 5G and Beyond 492 11.6.2 Automotive Radars 492 11.6.3 Millimeter-Wave Imaging 493

11.7 Summary and Future Trends 494 11.8 Homework Problems 495 11.9 Suggested Reading 496

Fundamentals of Optoelectronics Packaging Dr. Bruce C. Chou, Prof. Gee Kung Chang, Dr. Daniel Guidotti, and Mr. Rui Zhang 497 12.1 What Is Optoelectronics? 499 12.2 Anatomy of an Optoelectronics System 499

12.2.1 Fundamentals of Optoelectronics 500 12.2.2 Nomenclature 504

12.3 Optoelectronic Technologies 506 12.3.1 Active Optoelectronic Devices 506 12.3.2 Passive Optical Devices 515 12.3.3 Optical Interconnections 519

12.4 Optoelectronic Systems, Applications, and Markets 527 12.4.1 Optoelectronic Systems 527 12.4.2 Applications of Optoelectronics 534 12.4.3 Optoelectronics Markets 538

12.5 Summary and Future Trends 540 12.6 Homework Problems 540 12.7 Suggested Reading 545

Fundamentals of MEMS and Sensor Packaging Prof. Peter Hesketh, Prof. Oliver Brand, and Prof. Klaus-Juergen Wolter 547 13.1 What Are MEMS? 549

13.1.1 Historical Evolution 549 13.2 Anatomy of a MEMS Package 551

13.2.1 Fundamentals of MEMS Packaging 552 13.2.2 Nomenclature 556

13.3 MEMS and Sensor Device Fabrication Technologies 558 13.3.1 Photolithographic Pattern Transfer 558 13.3.2 Thin-Film Deposition 559

13.3.3 Wet and Dry Etching 561 13.3.4 Bulk and Surface Micromachining of Silicon 562 13.3.5 Wafer Bonding 565 13.3.6 Laser Micromachining 566 13.3.7 Process Integration 566

13.4 MEMS Packaging Technologies 567 13.4.1 MEMS Package Materials 568 13.4.2 MEMS Package Assembly Processes 571

13.5 Application of MEMS and Sensors 576 13.5.1 Pressure Sensors 578 13.5.2 Accelerometers and Gyroscopes 579 13.5.3 Projection Displays 582

13.6 Summary and Future Trends 583 13.7 Homework Problems 584 13.8 Suggested Reading 584

Fundamentals of Package Encapsulation, Molding, and Sealing Prof. C. P. Wong, Dr. Treliant Fang, and Dr. Pengli Zhu 587 14.1 What Is Sealing and Encapsulation and Why? 589 14.2 Anatomy of an Encapsulated and a Sealed Package 589

14.2.1 Fundamentals of Encapsulation and Sealing 589 14.2.2 Nomenclature 596

14.3 Properties of Encapsulants 597 14.3.1 Mechanical Properties 597 14.3.2 Thermal Properties 599 14.3.3 Physical Properties 601

14.4 Encapsulation Materials 601 14.4.1 Epoxy and Related Materials 602 14.4.2 Cyanate Ester 604 14.4.3 Urethanes 605 14.4.4 Silicones 606

14.5 Encapsulation Processes 607 14.5.1 Molding 607 14.5.2 Liquid Encapsulation 610

14.6 Hermetic Sealing 614 14.6.1 Sealing Processes 614

14.7 Summary and Future Trends 618 14.8 Homework Problems 618 14.9 Suggested Reading 619

Fundamentals of Printed Wiring Boards Mr. Shinichi Iketani, Dr. Sundar Kamath, Dr. Koushik Ramachandran, and Prof. Rao R. Tummala 621 15.1 What Is a Printed Wiring Board? 623 15.2 Anatomy of a Printed Wiring Board 624

15.2.1 Fundamentals of Printed Wiring Boards 625 15.2.2 Types of PWBs 625

Contents XÜi

15.2.3 PWB Material Grades 627 15.2.4 Single- to Multi-Layer Boards and Their Applications . . . 627 15.2.5 PWB Design Elements 628 15.2.6 Nomenclature 629

15.3 Printed Wiring Board Technologies 631 15.3.1 PWB Materials 631 15.3.2 PWB Fabrication 637 15.3.3 PWB Applications 644

15.4 Summary and Future Trends 646 15.5 Homework Problems 648 15.6 Suggested Reading 649

16 Fundamentals of Board Assembly Dr. Mulugeta Abtezv, Dr. Sundar Kamath, and Prof. Rao R. Tummala 651 16.1 What Is a Printed Circuit Board Assembly (PCBA) and W h y ? . . . . 653 16.2 Anatomy of Printed Circuit Board Assembly 654

16.2.1 Fundamentals of PCBA 654 16.2.2 Nomenclature 656

16.3 PCBA Technologies 657 16.3.1 PCB Substrate 658 16.3.2 Package Substrates 658

16.4 Types of Printed Circuit Board Assembly 666 16.4.1 Plated Through Hole (PTH) Assembly 666 16.4.2 Surface Mount Assembly (SMA) 667

16.5 Types of Assembly Soldering Processes 668 16.5.1 Reflow Soldering 668 16.5.2 Wave Soldering with PTH 682

16.6 Summary and Future Trends 684 16.7 Homework Problems 686 16.8 Suggested Reading 687 16.9 Acknowledgment 687

Applications of Packaging Technologies

17 Applications of Packaging Technologies in Future Car Electronics Mr. Haksun Lee, Prof. Rao R. Tummala, and Prof. Klaus-Juergen Wolter ... 691 17.1 What Are Future Car Electronics and Why? 693 17.2 Anatomy of a Future Car 695

17.2.1 Fundamentals of a Future Car 695 17.2.2 Nomenclature 696

17.3 Future Car Electronic Technologies 697 17.3.1 Computing and Communications 697 17.3.2 Sensing Electronics 699 17.3.3 High-Power Electronics 704

17.4 Summary and Future Trends 708

17.5 Homework Problems 17.6 Suggested Reading . .

708 709

Applications of Packaging Technologies in Bioelectronics Prof. Markondeya Raj Pulugurtha, Dr. Melinda Varga, and Prof. Rao R. Tummala 711 18.1 What Are Bioelectronics? 713

18.1.1 Bioelectronics Applications 713 18.1.2 Anatomy of a Bioelectronic System 715

18.2 Packaging Technologies for Bioelectronic Systems 716 18.2.1 Biocompatible and Biostable Packaging 717 18.2.2 Heterogeneous Integration 719

18.3 Examples of Bioelectronic Implants 720 18.3.1 Pacemakers and Electronic Stents 720 18.3.2 Cochlear Implants 721 18.3.3 Retinal Prosthetics 723 18.3.4 Neuromuscular Stimulators 724 18.3.5 Brain Neural Recording and Stimulations 726

18.4 Summary and Future Trends 727 18.5 Homework Problems 728 18.6 Suggested Reading 728

Applications of Packaging Technologies in Communication Systems Mr. Muhammad Ali, Prof. Markondeya Raj Pulugurtha, and Prof. Rao R. Tummala 729 19.1 What Are Communication Systems and Why? 731 19.2 Anatomy of Two Communication Systems:

Wired and Wireless 731 19.2.1 Anatomy of a Wired Communication System 732 19.2.2 Anatomy of a Wireless Communication System 732

19.3 Communication System Technologies 733 19.3.1 Historical Evolution 733 19.3.2 Communication System Technologies 735 19.3.3 Wireless Communication System Technologies 738

19.4 Summary and Future Trends 750 19.5 Homework Problems 750 19.6 Suggested Reading 751

Applications of Packaging Technologies in Computing Systems Dr. Ravi Mahajan, Dr. Sandeep Sane, Dr. Kashyap Mohan, and Prof. Rao R. Tummala 753 20.1 What Is Computer Packaging? 755 20.2 The Anatomy of a Computer Package 756

20.2.1 Fundamentals of Computer Packaging 756 20.2.2 Types of Computing Systems 757 20.2.3 Nomenclature 758

Contents

20.3 Computer Packaging Technologies 759 20.3.1 Evolution 759 20.3.2 Interconnection Technologies 759 20.3.3 Interconnection Designs for Signal and Power 760

20.4 Thermal Technologies 762 20.4.1 Thermal Management 762 20.4.2 Thermo-Mechanical Reliability 763 20.4.3 Material Technologies 765

20.5 Summary and Future Trends 766 20.5.1 Beginning of Moore's Law for Packaging 766 20.5.2 Moore's Law for Packaging: Cost 767

20.6 Homework Problems 768 20.7 Suggested Reading 768 20.8 Acknowledgments 768

Applications of Packaging Technologies in Flexible Electronics Mr. Siddharth Ravichandran, Prof. Markondeya Raj Pulugurtha, Dr. Vanessa Smet, and Prof. Rao R. Tummala 769 21.1 What Are Flexible Electronics and Why? 771

21.1.1 Applications 771 21.2 Anatomy of a Flexible Electronic System 773

21.2.1 Fundamentals of Flexible Electronics Technologies 774 21.2.2 Nomenclature 774

21.3 Flexible Electronics Technologies 776 21.3.1 Component Technologies 776 21.3.2 Process Integration of Flexible Electronics

Technologies 783 21.3.3 Component Assembly on Flexible Substrates 787

21.4 Summary and Future Trends 791 21.5 Homework Problems 792 21.6 Suggested Reading 792

Applications of Packaging Technologies in Smartphones Mr. Siddharth Ravichandran, and Prof. Rao R. Tummala 793 22.1 What Are Smartphones? 795

22.1.1 Why Smartphones? 795 22.1.2 Historical Evolution of Smartphones 796

22.2 Anatomy of a Smartphone 796 22.2.1 Fundamentals of Smartphones 797 22.2.2 Nomenclature 797

22.3 Smartphone Packaging Technologies 799 22.3.1 Application Processor Packaging 799 22.3.2 Memory Packaging 800 22.3.3 RF Packaging 801 22.3.4 Power Packaging 802 22.3.5 MEMS and Sensors Packaging 804

XVi Contents

22.4 Systems Packaging in Smartphones 804 22.5 Summary and Future Trends 806 22.6 Homework Problems 806 22.7 Suggested Reading 807

Index 809