fundamental physics i

172
Fundamental Physics I FALL 2009-2010 Dr. Joseph Trout

Upload: others

Post on 10-Dec-2021

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Fundamental Physics I

Fundamental Physics I

FALL 2009-2010

Dr. Joseph Trout

Page 2: Fundamental Physics I

Dimensions:Length: meter●1790 - One ten-millionth of the distance from the equator to either pole.●1889 - Platinum- iridium rod●1960 - 1,650,763.73 wavelength of orange light produced by krypton-86●1983 - Distance light travels in 1/ 299,792,458 of a second.

Time: second●1/86,400 of a mean solar day●9,192,631,770 oscillations of a cesium atom.

Mass: kilogram●platinum – iridium cylinder

Page 3: Fundamental Physics I

Prefixes:

yotta Y 1024

zetta Z 1021

exa E 1018

peta P 1015

tera T 1012

giga G 109

mega M 106

kilo k 103

hecto h 102

deka da 101

deci d 10-1

centi c 10-2

milli m 10-3

micro µ 10-6

nano n 10-9

pico p 10-12

femto f 10-15

atto a 10-18

zepto z 10-21

yocto y 10-24

Page 4: Fundamental Physics I

Prefixes:

yotta Y 1024

zetta Z 1021

exa E 1018

peta P 1015

tera T 1012

giga G 109

mega M 106

kilo k 103

hecto h 102

deka da 101

deci d 10-1

centi c 10-2

milli m 10-3

micro µ 10-6

nano n 10-9

pico p 10-12

femto f 10-15

atto a 10-18

zepto z 10-21

yocto y 10-24

Page 5: Fundamental Physics I

Prefixes:

yotta Y 1024

zetta Z 1021

exa E 1018

peta P 1015

tera T 1012

giga G 109

mega M 106

kilo k 103

hecto h 102

deka da 101

deci d 10-1

centi c 10-2

milli m 10-3

micro µ 10-6

nano n 10-9

pico p 10-12

femto f 10-15

atto a 10-18

zepto z 10-21

yocto y 10-24

Page 6: Fundamental Physics I

Prefixes:

Mass

Length

Time

1kilogram=1kg=1000 g=1 X 103g

1centimeter=1cm=0.01m=1 X 10−2m1kilometer=1 km=1000m=1 X 103m

1microsecond=1 s=0.000001 s=1 X 10−6 s1nanosecond=1ns=0.000000001 s=1 X 10−9 s

Page 7: Fundamental Physics I

1mile=1.609m1km=0.621mi1hr=3600 s1 year=3.156 X 107 s1kg=0.0685 slug1 lb=4.448 N

Page 8: Fundamental Physics I

1mile=1.609km

1mile1.609km

=1

1.609km1mile

=1

Conversion Factors:

Page 9: Fundamental Physics I

1mile=1.609 km

1mile1.609 km

=1

5 km=?miles

5 km1mile1.609 km =3.11mi

Page 10: Fundamental Physics I

1mile=1.609 km

5 km=?miles

5 km1mile1.609 km =3.11mi

Page 11: Fundamental Physics I

1hr=3600 s1mi=1609m

20ms=?mph

20ms 1mile1609m

Page 12: Fundamental Physics I

1hr=3600 s1mi=1609m

20ms=?mph

20ms 1mile1609m

Page 13: Fundamental Physics I

1hr=3600 s1mi=1609m

20ms=?mph

20ms 1mile1609m 3600 s

1hr

Page 14: Fundamental Physics I

1hr=3600 s1mi=1609m

20ms=?mph

20ms 1mile1609m 3600 s

1hr =44.75mph

Page 15: Fundamental Physics I

1hr=3600 s1mi=1609m

20ms=?mph

20ms 1mile1609m 3600 s

1hr =44.75mph

Page 16: Fundamental Physics I

1hr=3600 s1mi=1609m

20ms=?mph

20ms 1mile1609m 3600 s

1hr =44.75mph

Page 17: Fundamental Physics I

1hr=3600 s1mi=1609m

60mph=?m /s

60mihr 1609m

1mi 1hr3600 s =26.82m /s

Page 18: Fundamental Physics I

1hr=3600 s1mi=1609m

60mph=?m /s

60mihr 1609m

1mi 1hr3600 s =26.82m /s

Page 19: Fundamental Physics I

1mi=1609m

3mi3=?m3

3mi31609m1mi

3

=1.25 X 1010m3

Page 20: Fundamental Physics I

Scalar – Magnitude only.

Example: mass, distance, speed Example: m, x, v

Vector – Magnitude and Direction.

Example: displacement,velocity, acceleration, forceExample: x ,v ,a , F

Page 21: Fundamental Physics I

Distance – scalar – magnitude of the total distance traveled.

Displacement – vector – distance between final position and initial position AND the direction.

Page 22: Fundamental Physics I

Displacement in One Dimension:

Direction will either be positive or negative.

Page 23: Fundamental Physics I

Distance vs. Displacement:

X= 0.0 m X= 2.0 m X=4.0 mX=-2.0 mX= -4.0 m

distance= x=4.0m

Page 24: Fundamental Physics I

Distance vs. Displacement:

X= 0.0 m X= 2.0 m X=4.0 mX=-2.0 mX= -4.0 m

distance= x=4.0mdisplacement=x=x f−x i=4.0m−0.0m=4.0m

Page 25: Fundamental Physics I

Distance vs. Displacement:

X= 0.0 m X= 2.0 m X=4.0 mX=-2.0 mX= -4.0 m

distance=4.0m8.0m=12m

displacement x=x f−x i=−4m−0m=−4m

Page 26: Fundamental Physics I

Start Finish

Marathon distance = 26 miles

Marathon displacement = -0.25 miles

+x

Page 27: Fundamental Physics I

Displacement= x=x f−x i

Page 28: Fundamental Physics I

28

Scalar – Magnitude ONLY

Vector – Magnitude and Direction

distance=5milesmass=6 kg

Example :Velocityv=40m / s Northv=40m / s in positive x direction.v=40m / s@30o

Page 29: Fundamental Physics I

29

y

x=60o

R=10m@60o

Page 30: Fundamental Physics I

30

y−axis

x−axisz−axis

i

j

k

Vector Notation

Page 31: Fundamental Physics I

31

i

j Vector Notation

A=4m i

B=3m j

Page 32: Fundamental Physics I

32

i

j Vector Notation

A=4m i

B=3m j

R=AB

Page 33: Fundamental Physics I

33

i

j Vector Notation

A=4m i

B=3m j

R=ABR=4m i3m j

Page 34: Fundamental Physics I

34

Pythagoras was a Greek philosopher who made important developments in mathematics, astronomy, and the theory of music. The theorem now known as Pythagoras's theorem was known to the Babylonians 1000 years earlier but he may have been the first to prove it.

Page 35: Fundamental Physics I

35

x

yr 2=x 2 y2

Page 36: Fundamental Physics I

36

x

yr=x 2 y2

Page 37: Fundamental Physics I

37

x=4m

y=3m

r=4m 23m 2=16m29m2=25m2=5m

r

Page 38: Fundamental Physics I

38x=6m

y=7m

r=6m 27m 2=36m249m2=85m2=9.22m

r

Page 39: Fundamental Physics I

39

x

yr

sin= yr

cos=xr

tan= yr

r=x2 y2

Page 40: Fundamental Physics I

40

adj

opphyp

sin=opphyp

cos=adjhyp

tan=oppadj

Page 41: Fundamental Physics I

41

i

j Vector Notation

4m

3m

R=ABR=4m i3m j

∣R∣=4m 23m 2=25m2=5m

tan=oppadj

=tan−13m4m =36.87o

Page 42: Fundamental Physics I

42

i

j Vector Notation

4m

3m

R=ABR=4m i3m [email protected]

∣R∣=4m 23m 2=25m2=5m

tan=oppadj

=tan−13m4m =36.87o

Page 43: Fundamental Physics I

43

i

j Vector Notation

R x

R y

∣R∣=10m

R=40o

R=10m@40o

Page 44: Fundamental Physics I

44

i

j Vector Notation

R x

R y

∣R∣=10m

R=10m@40o

R=40o

cos=adjhyp

cosR=R x∣R∣

R x=∣R∣cosR=10mcos 40o =7.66m

Page 45: Fundamental Physics I

45

i

j Vector Notation

R x=7.66m

R y

∣R∣=10m

R=10m@40o

R=40o

sin=opphyp

sinR=R y∣R∣

R y=∣R∣sinR=10m sin 40o =6.43m

Page 46: Fundamental Physics I

46

i

j Vector Notation

R x=7.66m

R y=6.43m

∣R∣=10m

R=10m@40oR=R x iR y j=7.66m i6.43m j

R=40o

Page 47: Fundamental Physics I

47

i

j Vector Notation

R x=7.66m

R y=6.43m

∣R∣=10m

R=10m@40oR=R x iR y j=7.66m i6.43m j

R=40o

Check:∣R∣=R x2R y2∣R∣=7.66m 2 6.43m 2=10m

tan =R yR x

=tan−16.43m7.66m =40o

Page 48: Fundamental Physics I

48

Vector Notation

i

jA

A x=3m

A y=4m A=Ax iA y j=3m i4m j

III

IVIII

Page 49: Fundamental Physics I

49

Vector Notation

i

jA

A x=3m

A y=4m A=Ax iA y j=3m i4m j

∣A∣=3m 24m 2=5m

A=tan−14m3m =53.13o

III

IVIII

Page 50: Fundamental Physics I

50

Vector Notation

i

jA

A x=3m

A y=4m A=Ax iA y j=3m i4m jA=∣A∣@[email protected]

∣A∣=3m 24m 2=5m

A=tan−14m3m =53.13o

A

III

IVIII

Page 51: Fundamental Physics I

51

Vector Notation

i

j

B

Bx=4m

B y=2m

B=B x iB y j=−4m i2m j

B

III

IVIII

Page 52: Fundamental Physics I

52

Vector Notation

i

j

B

Bx=−4m

B y=2m

B=B x iB y j=−4m i2m j

B

∣B∣=−4m 22m 2=4.47m

III

IVIII

Page 53: Fundamental Physics I

53

Vector Notation

i

j

B

Bx=−4m

B y=2m

B=B x iB y j=−4m i2m j

∣B∣=−4m 22m 2=4.47m

B=tan−12m−4m =−26.57o

B

?????

B '

III

IVIII

Page 54: Fundamental Physics I

54

Vector Notation

i

j

B

Bx=−4m

B y=2m

B=B x iB y j=−4m i2m j

∣B∣=−4m 22m 2=4.47m

B=tan−12m−4m =−26.57o

B

?????

B '

B=180oB 'B=180o−26.57o=153.43o

III

IVIII

Page 55: Fundamental Physics I

55

Vector Notation

i

j

B

Bx=−4m

B y=2m

B=B x iB y j=−4m i2m jB=∣B∣@[email protected]

∣B∣=−4m 22m 2=4.47m

B=tan−12m−4m =−26.57o

B

?????

B '

B=180oB 'B=180o−26.57o=153.43o

III

IVIII

Page 56: Fundamental Physics I

56

Vector Notation

i

j

C

C x=−3m

C y=−6m

C=C x iC y j=−3m i−6m j

C

III

IVIII

Page 57: Fundamental Physics I

57

Vector Notation

i

j

C

C x=−3m

C y=−6m

C=C x iC y j=−3m i−6m j

C

CII

IVIII ∣C∣=−3m 2−6m 2=6.71m

C=tan−1−6m−3m =71.57o ?????

Page 58: Fundamental Physics I

58

Vector Notation

i

j

C

C x=−3m

C y=−6m

C=C x iC y j=−3m i−6m jII

IVIII ∣C∣=−3m 2−6m 2=6.71m

C=tan−1−6m−3m =71.57o ?????

C

I

C '

C=180oC 'C=180o71.57o=251.57o

Page 59: Fundamental Physics I

59

Vector Notation

i

j

C

C x=−3m

C y=−6m

C=C x iC y j=−3m i−6m jC=∣C∣@[email protected]

IVIII ∣C∣=−3m 2−6m 2=6.71m

C=tan−1−6m−3m =71.57o ?????

C

I

C '

C=180oC 'C=180o71.57o=251.57o

Page 60: Fundamental Physics I

60

Vector Notation

i

j

D

D x=3m

D y=−3m

D=Dx iD y j=3m i−3m jD=∣D∣@D=4.24m@−45oII

IVIII ∣D∣=3m 2−3m 2=4.24m

D=tan−1−3m3m =−45o ?????

D

I

Page 61: Fundamental Physics I

61

Vector Notation

i

j

D

D x=3m

D y=−3m

D=Dx iD y j=3m i−3m jD=∣D∣@D=4.24m@−45oII

IVIII ∣D∣=3m 2−3m 2=4.24m

D=tan−1−3m3m =−45o ?????

D

I

D '

Page 62: Fundamental Physics I

62

Vector Notation

i

j

D

D x=3m

D y=−3m

D=Dx iD y j=3m i−3m jD=∣D∣@D=4.24m@−45o=4.24m@315oII

IVIII ∣D∣=3m 2−3m 2=4.24m

D=tan−1−3m3m =−45o ?????

D

I

D 'D=360oC 'D=360o−45o=315o

Page 63: Fundamental Physics I

63

Adding Vectors

Page 64: Fundamental Physics I

64

Adding Vectors

5m

5m

−5m

−5m A

B

A=5m i0m jB=0m i6m j

Page 65: Fundamental Physics I

65

Adding Vectors

5m

5m

−5m

−5m A

B

A=5m i0m jB=0m i6m j

C C=AB=5m i6m j

Page 66: Fundamental Physics I

66

Adding Vectors

5m

5m

−5m

−5m A

B

A=5m i0m jB=0m i6m j

C C=AB=5m i6m j

∣C∣=5m 26m 2=7.81m

C=tan−16m5m =50.19o

Page 67: Fundamental Physics I

67

Adding Vectors

5m

5m

−5m

−5m A

A=5m i0m jB=3m i5m j

B

Page 68: Fundamental Physics I

68

Adding Vectors

5m

5m

−5m

−5m A

B

A=5m i0m j

C=AB=8m i5m j

∣C∣=8m 25m 2=9.43m

C=tan−15m8m =32.00o

B=3m i5m j

C

Page 69: Fundamental Physics I

69

Adding Vectors

5m

5m

−5m

−5m A

B

A=5m i0m jB=−5m i5m j

Page 70: Fundamental Physics I

70

Adding Vectors

5m

5m

−5m

−5m A

B

A=5m i0m jB=−5m i5m j

Page 71: Fundamental Physics I

71

Adding Vectors

5m

5m

−5m

−5m A

B

A=5m i0m jB=−5m i5m j

C

Page 72: Fundamental Physics I

72

Adding Vectors

5m

5m

−5m

−5m A

B

A=5m i0m jB=−5m i5m j

C

C=AB=0m i5m j

∣C∣=0m 25m 2=5.00mC=90.00o

Page 73: Fundamental Physics I

73

Adding Vectors

5m

5m

−5m

−5m

AB

A=7m i3m jB=−5m i5m j

Page 74: Fundamental Physics I

74

Adding Vectors

5m

5m

−5m

−5m

AB

A=7m i3m jB=−5m i5m j

C

Page 75: Fundamental Physics I

75

Adding Vectors

5m

5m

−5m

−5m

AB

A=7m i3m jB=−5m i5m j

C

C=AB=2m i8m j

∣C∣=2m 28m 2=8.25m

C=tan−18m2m =75.96o

C

Page 76: Fundamental Physics I

76

Adding Vectors

5m

5m

−5m

−5m

A

A=7m i3m jB=−5m i5m jC=4m i−2m j

B

C

Page 77: Fundamental Physics I

77

Adding Vectors

5m

5m

−5m

−5m

A

B

A=7m i3m jB=−5m i5m jCC=4m i−2m j

D=ABC=6m i6m jD

Page 78: Fundamental Physics I

78

Adding Vectors

5m

5m

−5m

−5m

AB

A=7m i3m jB=−5m i5m j

C

C=4m i−2m j

D=ABC=6m i6m j

Page 79: Fundamental Physics I

79

Adding Vectors

5m

5m

−5m

−5m

AB

A=7m i3m jB=−5m i5m j

C

C=4m i−2m j

D=ABC=6m i6m jAB

Page 80: Fundamental Physics I

80

Adding Vectors

5m

5m

−5m

−5m

A=7m i3m jB=−5m i5m j

C

C=4m i−2m j

D=ABC=6m i6m jAB

ABC

Page 81: Fundamental Physics I

81

Adding Vectors

5m

5m

−5m

−5m

A=7m i3m jB=−5m i5m j

C

C=4m i−2m j

D=ABC=6m i6m jABC=D

Page 82: Fundamental Physics I

82

x=100m Tugboat with broken rudder. Can only go straight. It takes ten seconds to cross calm lake.

v x= x t

=100m10 s

=10m / s

Page 83: Fundamental Physics I

83

x=100m Tugboat with broken rudder. Can only go straight. It takes ten seconds to cross calm lake.

v x= x t

=100m10 s

=10m / s

v x=10m / s

Page 84: Fundamental Physics I

84

x=100m

Tugboat with broken rudder. Can only go straight. It takes ten seconds to cross lake. Now consider strong current.

v x=10m / s

v y=5m / s

x=100m

y=v y t=5m / s 10 s =50m

Page 85: Fundamental Physics I

85

x=100m

Tugboat with broken rudder. Can only go straight. It takes ten seconds to cross lake. Now consider strong current.

v y=5m / s

x=100m

y=50mv

Page 86: Fundamental Physics I

86

x=100m

Tugboat with broken rudder. Can only go straight. It takes ten seconds to cross lake. Now consider strong current.

v y=5m / s

x=100m

y=50mv

v=v x iv y jv=10m / s i5m / s j

Page 87: Fundamental Physics I

87

x=100m

Tugboat with broken rudder. Can only go straight. It takes ten seconds to cross lake. Now consider strong current.

v y=5m / s

x=100m

y=50mv

v=v x iv y jv=10m /s i5m / s j

∣v∣=10m /s 25m /s 2=11.18m /s

=tan−15m /s10m /s =26.57o

Page 88: Fundamental Physics I

88

x=100m

Tugboat with broken rudder. Can only go straight. It takes ten seconds to cross lake. Now consider strong current.

v y=5m / s

x=100m

y=50mv

v=11.18m /[email protected]

r= x 2 y 2

r=100m 250m 2=111.80m

Page 89: Fundamental Physics I

89

x=100m

Tugboat with broken rudder. Can only go straight. It takes ten seconds to cross lake. Now consider strong current.

v y=5m / s

x=100m

y=50mv

v=11.18m / [email protected]

r=111.80m

v= r t

=111.80m10 s

=11.18m / s

Page 90: Fundamental Physics I

90

x=100m

Tugboat with broken rudder. Can only go straight. It takes ten seconds to cross lake. Now consider strong current.

v y=5m / s

x=100m

y=50mv

v=11.18m / [email protected]

r=111.80m

v= r t

=111.80m10 s

=11.18m / s

v x=10m / s

v y=5m / s=26.57o

∣v∣=11.18m / s

Page 91: Fundamental Physics I

91

Adding Vectors

10m / s

10m / s

−10m / s

−10m / s

v=17.20m / [email protected]

Page 92: Fundamental Physics I

92

Adding Vectors

10m / s

10m / s

−10m / s

−10m / s

v=17.20m / [email protected]

v x=∣v∣cosv x=17.20m / s cos54.46o

v x=10m / s

v y=∣v∣sinv y=17.20m / s sin 54.46o

v y=14m / s

Page 93: Fundamental Physics I

93

Projectile Motion

ymaxyo

Rangev f

vo

Page 94: Fundamental Physics I

94

Projectile Motion

=30o

∣vo∣=10m / s

Page 95: Fundamental Physics I

95

Projectile Motion

∣vo∣=10m / s

=30o

v x

v y

vox=10m / s cos 30o=8.66m / svo y=10m /s sin 30o=5.00m / s

Page 96: Fundamental Physics I

96

Projectile Motion

∣vo∣=10m / s

=30o

v x

v y

vox=10m / s cos 30o=8.66m / svo y=10m /s sin 30o=5.00m / s

∣vo∣=vox2 vo y2 =9.9997m / s≈10m / s

=tan−1vo yvox =30o

Page 97: Fundamental Physics I

97

Scalar (Dot) ProductScalar (Dot) Product

Page 98: Fundamental Physics I

98

Vector (Cross) ProductVector (Cross) Product

Page 99: Fundamental Physics I

99

Vector (Cross) ProductVector (Cross) Product

Page 100: Fundamental Physics I

100

Vector (Cross) ProductVector (Cross) Product

Page 101: Fundamental Physics I

Displacement=x=x f−x i

average speed=vave= xt

average velocity=vave=x t

=x f−x it f−t i

Page 102: Fundamental Physics I

vave= x t

If you travel 300 miles in 6 hours:

vave

= 300 mi / 6 hours = 50 mph

Page 103: Fundamental Physics I

1)Travel 6 m in 3s.2)Travel 24 m in 3s.3)Stop for 2 s.4)Travel 10 m in 2s.

vave=6.0m24.0m0m10.0m 3.0 s3.0 s2.0 s2.0 s

=4.0ms

Page 104: Fundamental Physics I

1)Travel 6 m in 3s.2)Travel 24 m in 3s.3)Stop for 2 s.4)Travel 10 m in 2s.

0 2 4 6 8 10 120

4

8

12

16

20

24

28

32

36

40

Position vs. Time

Time (s)

Pos

ition

(m)

Page 105: Fundamental Physics I

1)Travel 6 m in 3s.2)Travel 24 m in 3s.3)Stop for 2 s.4)Travel 10 m in 2s.

vave=distancetime

=6m24m0m10m3s3s2s2 s

=4ms

v=40m−0m10 s−0 s =4ms

Page 106: Fundamental Physics I

Define Instantaneous Velocity:

v inst=v=limx0

x t

v=d xdt

Page 107: Fundamental Physics I

Define Instantaneous Velocity:v inst=v=lim

x0x t

v=d xdt

x=6mst5m

v=dxdt

=ddt 6ms t5m=6m

s

Page 108: Fundamental Physics I

Define Instantaneous Velocity:v inst=v=lim

x0x t

v=d xdt

x=−3ms2 t

22mst7m

v=dxdt

=ddt −3m

s2 t22mst7m

v=−3ms2 t2m

s

Page 109: Fundamental Physics I

Define Instantaneous Velocity:

0 2 4 6 8 10 120

4

8

12

16

20

24

28

32

36

40

Position vs. Time

Time (s)

Posi

tion

(m)v inst=v=lim

x0 x t

Page 110: Fundamental Physics I

1)Travel 6 m in 3s.

v=x f−x it f−t i

=6.0m−0.0m3.0s−0.0 s

=2.0m / s

2) Travel 24 m in 3s.

v=x f−x it f−t i

=30.0m−6.0m6.0s−3.0 s

=8.0m/ s

0 2 4 6 8 10 120

5

10

15

20

25

30

35

40

45

Position vs. Time

Time (s)

Pos

ition

(m)

Page 111: Fundamental Physics I

3) Stop for 2s.

v=x f−x it f−t i

=30.0m−30.0m8.0s−6.0 s

=0.0m /s

4) Travel 10 m in 2s.

v=x f−x it f−t i

=40.0m−3.0m10.0s−8.0 s

=5.0m / s

0 2 4 6 8 10 120

5

10

15

20

25

30

35

40

45

Position vs. Time

Time (s)

Pos

ition

(m)

Page 112: Fundamental Physics I

Equation of a Line:

0 1 2 3 4 5 60

5

10

15

20

25

Y vs X

X ( m )

Y ( m

)

y=m xb

m=slope= y x

=y f− yix f−xi

b= y intercept

Page 113: Fundamental Physics I

Equation of a Line:

0 1 2 3 4 5 60

5

10

15

20

25

Y vs X

X ( m )

Y ( m

)

y=m xb

m= y x

=y f− yix f−x i

=15m−5m5m−0m

=2

b=5m

Page 114: Fundamental Physics I

Equation of a Line:

0 1 2 3 4 5 60

5

10

15

20

25

Y vs X

X ( m )

Y ( m

)

y=m xb

m= y x

=y f− yix f−x i

=15m−5m5m−0m

=2

b=5m

y=2 x5

Page 115: Fundamental Physics I

Equation of a Line:

m= y x

=y f− yix f−x i

=−16m−2m6m−0m

=−3

b=2m

y=−3 x2

0 1 2 3 4 5 6 7-20-18-16-14-12-10

-8-6-4-20246

Y vs X

X ( m )

Y (

m )

Page 116: Fundamental Physics I

Equation of a Line:

y=−3 x2

0 1 2 3 4 5 6 7-20-18-16-14-12-10

-8-6-4-20246

Y vs X

X ( m )

Y (

m )

What is the value of y at x = 4 m ?

Page 117: Fundamental Physics I

Equation of a Line:

y=−3 x2

0 1 2 3 4 5 6 7-20-18-16-14-12-10

-8-6-4-20246

Y vs X

X ( m )

Y (

m )

What is the value of y at x = 4 m ?

y=−342=−10

Page 118: Fundamental Physics I

0 1 2 3 4 5 60

4

8

12

16

20

24

28

32

36

40

Position vs. Time

Time ( s )

Posi

tion

(m)

Velocity = change in position over the change in time

Velocity = slope of position vs. time plot

v=36m−4m5 s−0 s

=6ms

Page 119: Fundamental Physics I

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 4605

10152025303540455055606570

Position vs. Time

Time (s)

Posi

tion

(m)

A

B

C

D

E

Page 120: Fundamental Physics I

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 4605

10152025303540455055606570

Position vs. Time

Time (s)

Posi

tion

(m)

A

B

C

D

E

vc=5m−35m24 s−14 s

=−3ms

Page 121: Fundamental Physics I

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 4605

10152025303540455055606570

Position vs. Time

Time (s)

Posi

tion

(m)

A

B

C

D

E

vd=65m−5m40 s−28 s

=5ms

Page 122: Fundamental Physics I

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 4605

10152025303540455055606570

Position vs. Time

Time (s)

Pos

ition

( m

)

A

BC

D

E

0.0 m 10.0 m 20.0 m 30.0 m 40.0 m 50.0 m

A BC

DE

Page 123: Fundamental Physics I

0 2 4 6 8 10 12 14 16 18 20 22 24 26-40

-30

-20

-10

0

10

20

30

40

50

60

70

Position vs. Time

Time ( s )

Posi

tion

(m)

A

BC

DE

FG

H

I

J

Page 124: Fundamental Physics I

0 2 4 6 8 10 12 14 16 18 20 22 24 26-40

-30

-20

-10

0

10

20

30

40

50

60

70

Position vs. Time

Time (s)

Posi

tion

(m)

A

BC

E

F H

I

J

D

G

Page 125: Fundamental Physics I

0 2 4 6 8 10 12 14 16 18 20 22 24 26-40

-30

-20

-10

0

10

20

30

40

50

60

70

Position vs. Time

Time ( s )

Posi

tion

( m )

A

BC

E

F H

I

J

D

G

Stopped at B, D, G, I

Velocity is zero.

Page 126: Fundamental Physics I

0 2 4 6 8 10 12 14 16 18 20 22 24 26-40

-30

-20

-10

0

10

20

30

40

50

60

70

Position vs. Time

Time ( s )

Posi

tion

(m)

A

BC

E

F H

I

J

D

G

Moving forward at A, C, H

Velocity is positive.

Page 127: Fundamental Physics I

0 2 4 6 8 10 12 14 16 18 20 22 24 26-40

-30

-20

-10

0

10

20

30

40

50

60

70

Position vs. Time

Time ( s )

Posi

tion

(m)

A

BC

E

F H

I

J

D

G

Moving backward at E, F, J

Velocity is negative.

Page 128: Fundamental Physics I

0 2 4 6 8 10 12 14 16 18 20 22 24 26-40

-30

-20

-10

0

10

20

30

40

50

60

70

Position vs. Time

Time ( s )

Posi

tion

(m)

A

BC

E

F H

I

J

D

G

vave=−30m−5m26 s−0 s

=−1.3ms

Entire Trip

Page 129: Fundamental Physics I

0 2 4 6 8 10 12 14 16 18 20 22 24 26-40

-30

-20

-10

0

10

20

30

40

50

60

70

Position vs. Time

Time (s)

Posi

tion

(m)

A

BC

E

F H

I

J

D

G

vE=45m−50m11 s−9 s

=−2.5ms

Page 130: Fundamental Physics I

Acceleration: Time rate change of velocity.

aave=v t

=v f−v it f−t i

ainst=a= t0v t

= t0v f−vit f−t i

[a ]=ms2

Page 131: Fundamental Physics I

Special Case: Velocity equals a constant.

v=constant

v= x t

=x f−x it f−t i

=constant

Page 132: Fundamental Physics I

Special Case: Velocity equals a constant.

v=constant

v= x t

=x f−x it f−t i

=constant

Let: x i=xoat t i=0.0s

v=x−xot

x=xovt

Page 133: Fundamental Physics I

A runner starts at x = +20 m and runs at a constant velocity of +5 m/s. Where will the runner be at 100 s?

x=v txox=5m

s100 s20m=520m

Page 134: Fundamental Physics I

A runner starts at x = +20 m and runs at a constant velocity of +2 m/s. Where will the runner be at 100 s?

x=v txox=2m

s100 s20m=220m

0 20 40 60 80 100 120 1400

40

80

120

160

200

240

280

Position vs. Time

Time (s)

Pos

ition

(m)

Page 135: Fundamental Physics I

Special Case: Acceleration is constant.

a=constant

a=v t

=v f−vit f−t i

v f=via t f−t i

Page 136: Fundamental Physics I

Special Case: Acceleration is constant.

a=constantv=voat

x=xovo t12a t2

v2=vo22a x

Page 137: Fundamental Physics I

Special Case: Acceleration is constant.

a=constant

a=v t

=v f−vit f−t i

v f=via t f−t i

x i=xo , vi=voat t i=0.0s

v=voat

Page 138: Fundamental Physics I

Special Case: Acceleration is constant.

x i=xo , vi=voat t i=0.0sa=constantv=voat

If acceleration is a constant and we know the initial velocity, then we can predict the velocity at any time (t).

We would also like to predict the position if we know the initial position.

Page 139: Fundamental Physics I

Special Case: Acceleration is constant.x i=xo , v i=voat t i=0.0s

a=constantv=voat

vaverage=x−xot

Page 140: Fundamental Physics I

Special Case: Acceleration is constant.x i=xo , v i=voat t i=0.0s

a=constantv=voat

vaverage=x−xot

=vvo

2

Page 141: Fundamental Physics I

Special Case: Acceleration is constant. x i=xo , v i=voat t i=0.0s

a=constantv=voat

x−xot

=vvo

2

Page 142: Fundamental Physics I

Special Case: Acceleration is constant. x i=xo , vi=voat t i=0.0s

a=constantv=voat

x−xot

=vvo

22x−xo=vvot

Page 143: Fundamental Physics I

Special Case: Acceleration is constant. x i=xo , vi=voat t i=0.0s

a=constantv=voat

x−x ot

=vvo

22x−xo=vvo t

2x−xo=[voat ]vo t

Page 144: Fundamental Physics I

Special Case: Acceleration is constant. x i=xo , vi=voat t i=0.0s

a=constantv=voat

x−x ot

=vvo

22x−xo=vvo t

2x−xo=[voat ]vo t2 x−xo=vo tat

2vo t

Page 145: Fundamental Physics I

Special Case: Acceleration is constant. x i=xo , vi=voat t i=0.0s

a=constantv=voat

x−x ot

=vvo

22x−xo=vvo t

2x−xo=[voat ]vo t2 x−xo=vo tat

2vo t2x−xo=2vo tat

2

Page 146: Fundamental Physics I

Special Case: Acceleration is constant. x i=xo , vi=voat t i=0.0s

a=constantv=voat

x−x ot

=vvo

22x−xo=vvo t

2x−xo=[voat ]vo t2 x−xo=vo tat

2vo t2x−xo=2vo tat

2

x−xo=vo t12at 2

Page 147: Fundamental Physics I

Special Case: Acceleration is constant. x i=xo , vi=voat t i=0.0s

a=constantv=voat

x−x ot

=vvo

22x−xo=vvo t

2x−xo=[voat ]vo t2 x−xo=vo tat

2vo t2x−xo=2vo tat

2

x−xo=vo t12at 2

x=xovo t12at 2

Page 148: Fundamental Physics I

Special Case: Acceleration is constant. x i=xo , vi=voat t i=0.0s

a=constantv=voat

x=xovo t12a t2

Page 149: Fundamental Physics I

Special Case: Acceleration is constant. x i=xo , vi=voat t i=0.0s

a=constantv=voat

x=xovo t12a t2 v=voat

t=v−voa

Page 150: Fundamental Physics I

Special Case: Acceleration is constant. x i=xo , vi=voat t i=0.0s

a=constantv=voat

x=xovo t12a t2

x=xovo v−voa

12a v−voa

2

v=voat

t=v−voa

Page 151: Fundamental Physics I

Special Case: Acceleration is constant. x i=xo , vi=voat t i=0.0s

a=constantv=voat

x=xovo t12a t2

x−xo=vo v−voa

12a v−voa

2

v=voat

t=v−voa

Page 152: Fundamental Physics I

Special Case: Acceleration is constant. x i=xo , vi=voat t i=0.0s

a=constantv=voat

x=xovo t12a t 2

x−xo=vov−voa 12av−voa

2

x−xo=vo v−vo

2

a1

2av−vo2a2

v=voat

t=v−voa

Page 153: Fundamental Physics I

Special Case: Acceleration is constant. x i=xo , vi=voat t i=0.0s

a=constantv=voat

x=xovo t12a t 2

x−xo=vov−voa 12av−voa

2

x−xo=vo v−vo

2

a1

2av−vo2a2

x−xo=vo v−vo

2

a1

2v−vo

2

a

v=voat

t=v−voa

Page 154: Fundamental Physics I

Special Case: Acceleration is constant. x i=xo , vi=voat t i=0.0s

a=constantv=voat

x=xovo t12a t 2

x−xo=vov−voa 12av−voa

2

x−xo=vo v−vo

2

a1

2av−vo2a2

x−xo=vo v−vo

2

a1

2v−vo

2

a

x−xo=vo v−vo

2

a1

2 v2−2v vovo

2

a

v=voat

t=v−voa

Page 155: Fundamental Physics I

Special Case: Acceleration is constant. x i=xo , vi=voat t i=0.0s

a=constantv=voat

x=xovo t12a t 2

x−xo=vov−voa 12a v−voa

2

x−xo=vo v−vo

2

a 12av−vo2a2

x−xo=vo v−vo

2

a 12v−vo

2

a

x−xo=vo v−vo

2

a 12 v

2−2v vovo2

a 2a x=2vo v−2vo

2v2−2v vovo2

2a x=v2−vo2

v=voat

t=v−voa

Page 156: Fundamental Physics I

Special Case: Acceleration is constant. x i=xo , vi=voat t i=0.0s

a=constantv=voat

x=xovo t12a t2

x−xo=vov−voa 12av−voa

2

x−xo=vo v−vo

2

a1

2av−vo2a2

x−x o=vo v−vo

2

a1

2v−vo

2

a

x−xo=vo v−vo

2

a1

2 v2−2v vovo

2

a 2a x=2vo v−2vo

2v2−2v vovo2

2a x=v2−vo2

v2=vo22a x

v=voat

t=v−voa

Page 157: Fundamental Physics I

Special Case: Acceleration is constant.

a=constantv=voat

x=xovo t12a t2

v2=vo22a x

Special Case: Velocity is constant.

Review:

a=0v=constantx=x ovo t

Page 158: Fundamental Physics I

Special Case: Acceleration is constant in One Dimension in the +x and or -x direction.

Moving forward or backward.

ax=constantv x=v xoa x t

x=xov xo t12a x t

2

v x2=v xo

2 2a x x

Page 159: Fundamental Physics I

Special Case: Acceleration is constant in One Dimension in the +y and or -y direction.

Moving up or down.

a y=constantv y=v yoa y t

y= yov yo t12a y t

2

v y2=v yo

2 2a y y

Page 160: Fundamental Physics I

Special Case: One Dimensional Motion near the surface of the earth.

a y=−g=−9.8 ms2=constant

g=9.8 ms2

Page 161: Fundamental Physics I

Special Case: One Dimensional Motion near the surface of the earth.

a y=−g=−9.8 ms2=constant

g=9.8 ms2

v y=v yo−g t

y= yov yo t−12g t2

v y2=v yo

2 −2g x

FREEFALL

Page 162: Fundamental Physics I

A runner with a mass of 60 kg is in the starting blocks to run a 300 meter race along a straight track. The starter's gun goes off at the time t = 0.0 s. The runner starts from rest and accelerates with a constant acceleration of 1.20 m /s2 . 1. What is the time required for the runner to run the race?2. How fast is the runner running when he crosses the finish line?3. What is his velocity at the half way mark?4. Where is he at 2.0 seconds?

Page 163: Fundamental Physics I

A runner with a mass of 60 kg is in the starting blocks to run a 300 meter race along a straight track. The starter's gun goes off at the time t = 0.0 s. The runner starts from rest and accelerates with a constant acceleration of 1.2 m /s2 . 1. What is the time required for the runner to run the race?

x=xovo t12a t 2

x=0012a t2

x=12a t2

t=2 xa=2300m

1.2 ms2

=22.36 s

Page 164: Fundamental Physics I

A runner with a mass of 60 kg is in the starting blocks to run a 300 meter race along a straight track. The starter's gun goes off at the time t = 0.0 s. The runner starts from rest and accelerates with a constant acceleration of 1 m /s2 .

2. How fast is the runner running when he crosses the finish line?

v2=vo22a x

v2=2a x

v=2a x=21.20 ms2 300m=26.83 m

s

Page 165: Fundamental Physics I

A runner with a mass of 60 kg is in the starting blocks to run a 300 meter race along a straight track. The starter's gun goes off at the time t = 0.0 s. The runner starts from rest and accelerates with a constant acceleration of 1.2 m /s2 .

2. How fast is the runner running when he crosses the finish line?

A second method: We know that it took 22.36 s to complete the race?v=voat

v=01.20ms

22.36 s

v=26.83ms

Page 166: Fundamental Physics I

A runner with a mass of 60 kg is in the starting blocks to run a 300 meter race along a straight track. The starter's gun goes off at the time t = 0.0 s. The runner starts from rest and accelerates with a constant acceleration of 1.2 m /s2 .

3. What is his velocity at the half way mark?

v2=vo22a x

v2=2a x

v=2a x=2 1.20 ms2 150m=18.97 m

s

Page 167: Fundamental Physics I

A runner with a mass of 60 kg is in the starting blocks to run a 300 meter race along a straight track. The starter's gun goes off at the time t = 0.0 s. The runner starts from rest and accelerates with a constant acceleration of 1.2 m /s2 .

4. Where is he at 2.0 seconds?

x=x ovo t12a t2

x=12a t2

x=121.2ms2 2.0 s 2=2.4m

Page 168: Fundamental Physics I

A runner with a mass of 60 kg is in the starting blocks to run a 300 meter race along a straight track. The starter's gun goes off at the time t = 0.0 s. The runner starts from rest and accelerates with a constant acceleration of 1.2 m /s2 .

0 5 10 15 20 250

0.2

0.4

0.6

0.8

1

1.2

1.4

Acelleration vs. Time

Time(s)

a ( m

/s2

)

Page 169: Fundamental Physics I

A runner with a mass of 60 kg is in the starting blocks to run a 300 meter race along a straight track. The starter's gun goes off at the time t = 0.0 s. The runner starts from rest and accelerates with a constant acceleration of 1.2 m /s2 .

0 5 10 15 20 250

5

10

15

20

25

30

Velocity vs. Time

Time(s)

v (m

/s)

Page 170: Fundamental Physics I

A runner with a mass of 60 kg is in the starting blocks to run a 300 meter race along a straight track. The starter's gun goes off at the time t = 0.0 s. The runner starts from rest and accelerates with a constant acceleration of 1.2 m /s2 .

0 5 10 15 20 250

50

100

150

200

250

300

350

Position vs. Time

Time(s)

x (m

)

Page 171: Fundamental Physics I

A runner with a mass of 60 kg is in the starting blocks to run a 300 meter race along a straight track. The starter's gun goes off at the time t = 0.0 s. The runner starts from rest and accelerates with a constant acceleration of 1.2 m /s2 .

0 5 10 15 20 250

50

100

150

200

250

300

350

Position vs. Time

Time(s)

x (m

)

Page 172: Fundamental Physics I

A runner with a mass of 60 kg is in the starting blocks to run a 300 meter race along a straight track. The starter's gun goes off at the time t = 0.0 s. The runner starts from rest and accelerates with a constant acceleration of 1.2 m /s2 .

0 5 10 15 20 250

50

100

150

200

250

300

350

Position vs. Time

Time(s)

x (m

)