fullyyp g depleted soi...

42
Fully Depleted SOI Technologies Bich-Yen Nguyen

Upload: others

Post on 18-Jan-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Fullyyp g Depleted SOI Technologiesmos-ak.org/munich_2013/presentations/09_Bich-Yen_Nguyen_MOS-AK_Munich_2013.pdfChallenges of Continued CMOS Scaling • Increased standby power dissipation

Fully Depleted SOI Technologies y p gBich-Yen Nguyen

Page 2: Fullyyp g Depleted SOI Technologiesmos-ak.org/munich_2013/presentations/09_Bich-Yen_Nguyen_MOS-AK_Munich_2013.pdfChallenges of Continued CMOS Scaling • Increased standby power dissipation

AcknowledgementsAcknowledgementsSOITEC Team:• Jean-Michel Bidault • Nicolas Daval

IBM Team:• Kangguo Cheng• Ali KhakifiroozNicolas Daval

• Frederic Allibert• Ludovic Ecarnot • Konstantin Bourdelle

Ali Khakifirooz• Bruce Doris• Ghavam Shahidi

• Walter Schwarzenbach• Mariam Sadaka • Phuong Nguyen

Carlos Mazure

STM Team:• Qing Liu • Franck Arnaud

Nicolas Planes• Carlos Mazure • Olivier Bonnin • Christophe Malevillle• Justin Wang

• Nicolas Planes• Giorgio Cesana

Global Foundries :Justin WangCEA/Leti Team:• Olivier Weber • Francois Andrieu

Global Foundries :• Scott Luning

• Maul Vinet• Olivier Faynot

2MOS-AK/GSA Workshop, April 11-12, 2013

Page 3: Fullyyp g Depleted SOI Technologiesmos-ak.org/munich_2013/presentations/09_Bich-Yen_Nguyen_MOS-AK_Munich_2013.pdfChallenges of Continued CMOS Scaling • Increased standby power dissipation

• CMOS Landscape Beyond 28nm Node

• Value propositions of the Planar Fully Depletet SOI Technology

• Performance and Power Benchmarking

• FDSOI Device and Substrate RoadmapFDSOI Device and Substrate Roadmap

• Summary

MOS-AK/GSA Workshop, April 11-12, 2013

Page 4: Fullyyp g Depleted SOI Technologiesmos-ak.org/munich_2013/presentations/09_Bich-Yen_Nguyen_MOS-AK_Munich_2013.pdfChallenges of Continued CMOS Scaling • Increased standby power dissipation

CMOS Landscape Beyond 28nm

4MOS-AK/GSA Workshop, April 11-12, 2013

Page 5: Fullyyp g Depleted SOI Technologiesmos-ak.org/munich_2013/presentations/09_Bich-Yen_Nguyen_MOS-AK_Munich_2013.pdfChallenges of Continued CMOS Scaling • Increased standby power dissipation

Challenges of Continued CMOS Scaling

• Increased standby power dissipationSource: IBM, T.C. Chen, ISSCC 2006

• Increased standby power dissipation

• Amplified Vth variability

⇒Impact Yield

5

⇒Impact Yield⇒Limit Vdd scaling

MOS-AK/GSA Workshop, April 11-12, 2013

Page 6: Fullyyp g Depleted SOI Technologiesmos-ak.org/munich_2013/presentations/09_Bich-Yen_Nguyen_MOS-AK_Munich_2013.pdfChallenges of Continued CMOS Scaling • Increased standby power dissipation

Leakage Power is still a Major Issue Despite the Use of Hi-K DielectricUse of Hi K Dielectric

High-K/Metal Gate StackStack

SiON/Poly Gate Stack

6

Source: IBS

MOS-AK/GSA Workshop, April 11-12, 2013

Page 7: Fullyyp g Depleted SOI Technologiesmos-ak.org/munich_2013/presentations/09_Bich-Yen_Nguyen_MOS-AK_Munich_2013.pdfChallenges of Continued CMOS Scaling • Increased standby power dissipation

New Device Architectures

2003 2005 2007 2009 2011

90nm

65nm

45 nm

32nm

22nm

Strained Silicon

High-K / Metal Gate

F ll D l t d Introd ction of Ne

Introduction of New Materials

Fully Depleted Devices

Introduction of New Device Architecture

7MOS-AK/GSA Workshop, April 11-12 2013

Page 8: Fullyyp g Depleted SOI Technologiesmos-ak.org/munich_2013/presentations/09_Bich-Yen_Nguyen_MOS-AK_Munich_2013.pdfChallenges of Continued CMOS Scaling • Increased standby power dissipation

Fully Depleted Technology Landscape

Intel IBM STM

Foundries –16/14 nm

Foundries Foundries

MOS-AK/GSA Workshop, April 11-12, 2013

Page 9: Fullyyp g Depleted SOI Technologiesmos-ak.org/munich_2013/presentations/09_Bich-Yen_Nguyen_MOS-AK_Munich_2013.pdfChallenges of Continued CMOS Scaling • Increased standby power dissipation

Value Propositions of the PlanarFully Depleted SOI TechnologyFully Depleted SOI Technology

9MOS-AK/GSA Workshop, April 11-12, 2013

Page 10: Fullyyp g Depleted SOI Technologiesmos-ak.org/munich_2013/presentations/09_Bich-Yen_Nguyen_MOS-AK_Munich_2013.pdfChallenges of Continued CMOS Scaling • Increased standby power dissipation

Alternate FD Device Architectures: Planar FDSOI or Vertical Multi-Gate FinFET-SOI

G G

Minimum Design

DisruptionMax l bilit

S D

Bulk Si

Buried OXS DG

S DGDisruption scalability

Bulk SiBuried oxide

Conventional Planar Bulk Transistor

Planar Single-or double Gate FDSOI

Vertical Multiple-Gate FinFET SOI

Buried oxide

MOS-AK/GSA Workshop, April 11-12, 2013

Page 11: Fullyyp g Depleted SOI Technologiesmos-ak.org/munich_2013/presentations/09_Bich-Yen_Nguyen_MOS-AK_Munich_2013.pdfChallenges of Continued CMOS Scaling • Increased standby power dissipation

The End of Conventional MOSFET- The Era of FD Device Architecture

22nmPlanar

11MOS-AK/GSA Workshop, April 11-12, 2013

Page 12: Fullyyp g Depleted SOI Technologiesmos-ak.org/munich_2013/presentations/09_Bich-Yen_Nguyen_MOS-AK_Munich_2013.pdfChallenges of Continued CMOS Scaling • Increased standby power dissipation

Planar ETSOI Structure and Advantages

Junctions

Gate Material

Film & BOX

Isolation Body Bias

Thin Silicon Channel

‐‐ ‐ Hybrid BulkGround Plane

• Total dielectric isolation– Lower S/D capacitances

– Lower S/D leakages

• No channel doping, no pocket implant– Improved VT variation

• Ultra thin BOX optiong

– Latch-up immunity

• Ultra thin Body (TSi~1/3LG)– Excellent short channel immunity

Ultra thin BOX option– Back bias control

• Ground plane implantationV dj

y

– =>Low SCE, small SS & DIBL– VT adjustment

Source: STM J. Hartmann,, GSA Apr. 2012

MOS-AK/GSA Workshop, April 11-12, 2013

Page 13: Fullyyp g Depleted SOI Technologiesmos-ak.org/munich_2013/presentations/09_Bich-Yen_Nguyen_MOS-AK_Munich_2013.pdfChallenges of Continued CMOS Scaling • Increased standby power dissipation

Threshold Voltage MismatchMeasurement Benchmarking

8

m)

Measurement

60% R d ti60% R d ti2.5

3Bulk platformFDSOI MOSFETs

ST 65nmST 45nm

IBM 90nm

Benchmarking

246

vt(m

V.µm

60% Reduction60% Reduction

1.5

2

AV

t (mV

.um

)

Intel 45nm

Intel 65nm

ST FDSOI

HitachiFDSOI

IBM alliance32nm

Bulk 1Bulk 2

Bulk 3Bulk 4

PDSOIDSOI nMOS

pMOS

0A v 50% Reduction50% Reduction

0.5

1

10 20 30 40 50 60

This workST GAA

IMEC FinFET

FDSOI

Source: Thean et al, F l IEDM2003

PDFDSOI MOS

Avt = q √ 2 Nch Wdep / Cox

10 20 30 40 50 60

Gate length L (nm)

Square Vd=1V circle Vd=50mVSource: O. Weber et al, Leti CEA, IEDM2007

• Device matching important to SRAM/Analog circuits (eg. Current mirrors)

• FDSOI (undoped channel) features 50-60% mismatch

Freescale, IEDM2003 Leti CEA, IEDM2007

13

• FDSOI (undoped channel) features 50-60% mismatch improvement over bulk CMOS and PDSOI (doped channel)

MOS-AK/GSA Workshop, April 11-12, 2013

Page 14: Fullyyp g Depleted SOI Technologiesmos-ak.org/munich_2013/presentations/09_Bich-Yen_Nguyen_MOS-AK_Munich_2013.pdfChallenges of Continued CMOS Scaling • Increased standby power dissipation

Scaling rules down to 8nm nodeTCAD with Electrostatic considerationsTCAD with Electrostatic considerations

8

10

)

TSOI (thick BOX=145nm)

TSOI (UTBOX case)TBOX= 25nm

6

8d

TS

OI (

nm

) TSOI (UTBOX case)

NanoWire

25nm

10nm

7 55nm Tsi

2

4

Re

qu

ire

d NanoWire 7.5nm

TBOX= 145nm

0

2 6 10 14 18 22L (nm)

DIBL=100mV/V

• Scalability possible down to LG~10nm, thanks to UTBOX

LG (nm)

Courtesy of CEA-LETI O Faynot et al IEDM 2010;

14

Courtesy of CEA LETI, O. Faynot et. al. IEDM 2010;

MOS-AK/GSA Workshop, April 11-12, 2013

Page 15: Fullyyp g Depleted SOI Technologiesmos-ak.org/munich_2013/presentations/09_Bich-Yen_Nguyen_MOS-AK_Munich_2013.pdfChallenges of Continued CMOS Scaling • Increased standby power dissipation

Multi-VT Solution with Dual Metal Gate/GP

0,6

0,8LVT RVT HVT SHVT

Logic SRAM

BOX

TiN

nMOS

BOX

TaAlN

pMOS

N-GP P-GP Metal

LVT

BOX

TiN

nMOS

BOX

TaAlN

pMOS

N-GP P-GP Metal

LVT

BOX

nMOS

BOX

TaAlN

pMOS

N-GP P-GP

TiNHVT

BOX

nMOS

BOX

TaAlN

pMOS

N-GP P-GP

TiN

BOX

nMOS

BOX

TaAlN

pMOS

N-GP P-GP

TiNHVT

0

0,2

0,4

ld v

olta

ge (V

)

GP-N GP-P

GP-PGP-N

nMOS

BOX

TiN

nMOS

BOX

TaAlN

pMOS

P-GP N-GP

change

GP change

RVT

BOX

TiN

nMOS

BOX

TaAlN

pMOS

P-GP N-GP

change

GP change

RVT

BOX

nMOS

BOX

TaAlN

pMOS

P-GP N-GP

TiNSHVT

BOX

nMOS

BOX

TaAlN

pMOS

P-GP N-GP

TiN

BOX

nMOS

BOX

TaAlN

pMOS

P-GP N-GP

TiNSHVT

-0,6

-0,4

-0,2

Thre

shol

GP-P GP-NGP-NGP-P

pMOS GP change metal

change

-0,8

g

TiN TaAlN/TaN

O. Webber et al., IEDM’10

• Multi Vt requirement for SoC can be achieved for FDSOI device qusing dual WF metal-gate and ground-plane approach without back-bias

MOS-AK/GSA Workshop,, April 11-12, 2013

Page 16: Fullyyp g Depleted SOI Technologiesmos-ak.org/munich_2013/presentations/09_Bich-Yen_Nguyen_MOS-AK_Munich_2013.pdfChallenges of Continued CMOS Scaling • Increased standby power dissipation

Body Bias: Speed & Power ControlFDSOI Workshop San Francisco, Feb. 2012

1.FDSOI

1616MOS-AK/GSA Workshop, April 11-12,, 2013

Page 17: Fullyyp g Depleted SOI Technologiesmos-ak.org/munich_2013/presentations/09_Bich-Yen_Nguyen_MOS-AK_Munich_2013.pdfChallenges of Continued CMOS Scaling • Increased standby power dissipation

Multi-VT Modulation for ETSOI with Back Bias

Leti- VLSI 2010 Q. Liu, ST, VLSI 2010

• VT tuning with BOX = 10nm and VBB , GP • N and PMOS: VT modulation of ≤200mV for 10nm BOX• No degradation of Ion-Ioff trade-off with back-bias up to• No degradation of Ion-Ioff trade-off with back-bias up to

+/-2V

17MOS-AK/GSA Workshop, April 11-12, 2013

Page 18: Fullyyp g Depleted SOI Technologiesmos-ak.org/munich_2013/presentations/09_Bich-Yen_Nguyen_MOS-AK_Munich_2013.pdfChallenges of Continued CMOS Scaling • Increased standby power dissipation

C2 - Confidential 18

Page 19: Fullyyp g Depleted SOI Technologiesmos-ak.org/munich_2013/presentations/09_Bich-Yen_Nguyen_MOS-AK_Munich_2013.pdfChallenges of Continued CMOS Scaling • Increased standby power dissipation

C2 - Confidential 19

Page 20: Fullyyp g Depleted SOI Technologiesmos-ak.org/munich_2013/presentations/09_Bich-Yen_Nguyen_MOS-AK_Munich_2013.pdfChallenges of Continued CMOS Scaling • Increased standby power dissipation

ETSOI Structure by IBM

Lg= 25nmTsi= 6nm

B - SiGe

In-situ boron doped SiGe S/D:

K. Cheng et al, IBM, VLSI 2009

In-situ boron doped SiGe S/D:⇒Lower S/D resistance⇒Reduces parasitic capacitance

20MOS-AK/GSA Workshop, April 11-12, 2013

Page 21: Fullyyp g Depleted SOI Technologiesmos-ak.org/munich_2013/presentations/09_Bich-Yen_Nguyen_MOS-AK_Munich_2013.pdfChallenges of Continued CMOS Scaling • Increased standby power dissipation

20nm FDSOI Performance Improvement VLSI 2011

K. Cheng et al, IBM, VLSI 201120nm FDSOI on Thick BOX

• Ion for both N- and PMOS improved by optimizing S/D resistant and Tinv.

C2 - Confidential 21• 20nm FDSOI RO delay at 0.9v improved by 20% as compared

to those of 28nm Bulk RO at 1vMOS-AK/GSA Workshop, April 11-12, 2013

Page 22: Fullyyp g Depleted SOI Technologiesmos-ak.org/munich_2013/presentations/09_Bich-Yen_Nguyen_MOS-AK_Munich_2013.pdfChallenges of Continued CMOS Scaling • Increased standby power dissipation

Boosting FDSOI Performance with subtrate & strain engineering – IBM, A. Khalifizoor-VLSI 2012

More perf gain

• DC performance of FDSOI is comparable to state of the art planar bulk devices

22

planar-bulk devices• Smaller Lg and junction area => better AC performance

MOS-AK/GSA Workshop, April 11-12, 2013

Page 23: Fullyyp g Depleted SOI Technologiesmos-ak.org/munich_2013/presentations/09_Bich-Yen_Nguyen_MOS-AK_Munich_2013.pdfChallenges of Continued CMOS Scaling • Increased standby power dissipation

C2 - Confidential 23

Page 24: Fullyyp g Depleted SOI Technologiesmos-ak.org/munich_2013/presentations/09_Bich-Yen_Nguyen_MOS-AK_Munich_2013.pdfChallenges of Continued CMOS Scaling • Increased standby power dissipation

C2 - Confidential 24

Page 25: Fullyyp g Depleted SOI Technologiesmos-ak.org/munich_2013/presentations/09_Bich-Yen_Nguyen_MOS-AK_Munich_2013.pdfChallenges of Continued CMOS Scaling • Increased standby power dissipation

FDSOI in a Nutshell

• FD SOI solves most of the CMOS scaling challenges

• FD SOI is SoC friendly

• FD SOI design is equivalent to Bulk• FD SOI design is equivalent to Bulk

• FD SOI process cost equivalent to Bulk LP (28nm)

• FD SOI is a scalable technology

• FD SOI is risk-free alternative to FinFET for LP/G productsFD SOI is risk free alternative to FinFET for LP/G products

25MOS-AK/GSA Workshop, April 11-12, 2013

Page 26: Fullyyp g Depleted SOI Technologiesmos-ak.org/munich_2013/presentations/09_Bich-Yen_Nguyen_MOS-AK_Munich_2013.pdfChallenges of Continued CMOS Scaling • Increased standby power dissipation

Planar FD SOI Value Proposition

FD SOI b i f i h d l hi h f • FD SOI brings a easy manufacturing path to develop high performance and low power CMOS process derivatives– Simple planar technology and transistor architecture– High performance at low supply voltageHigh performance at low supply voltage– Easy way to build different VTs for SoC design– On top of poly biasing, body biasing bring tremendous flexibility to the SoC

design

• FD SOI enables time effective technology and design solutions – Re-use of most of the Bulk process FEOL modules, BEOL is fully identical

Mi ti di it l B lk lib i d d i t FD SOI i h t i ti – Migrating digital Bulk libraries and designs to FD SOI is a re-characterization and signoff

– FD SOI wafer easily etched to implement bulk structures and IPs– EDA flow and design techniques remain identical as Bulkg q

• FD SOI delivers a same performance as those 28nm HP technologies, without back bias (BB) or higher performance with BB at the cost of a 28 LP 28nm LP process

26MOS-AK/GSA Workshop, April 11-12, 2013

Page 27: Fullyyp g Depleted SOI Technologiesmos-ak.org/munich_2013/presentations/09_Bich-Yen_Nguyen_MOS-AK_Munich_2013.pdfChallenges of Continued CMOS Scaling • Increased standby power dissipation

Pl FDSOI B lkPlanar FDSOI vs. Bulk Performance/Power Benchmark

27MOS-AK/GSA Workshop, April 11-12, 2013

Page 28: Fullyyp g Depleted SOI Technologiesmos-ak.org/munich_2013/presentations/09_Bich-Yen_Nguyen_MOS-AK_Munich_2013.pdfChallenges of Continued CMOS Scaling • Increased standby power dissipation

CONFIDENTIAL

Page 29: Fullyyp g Depleted SOI Technologiesmos-ak.org/munich_2013/presentations/09_Bich-Yen_Nguyen_MOS-AK_Munich_2013.pdfChallenges of Continued CMOS Scaling • Increased standby power dissipation

CONFIDENTIAL

Page 30: Fullyyp g Depleted SOI Technologiesmos-ak.org/munich_2013/presentations/09_Bich-Yen_Nguyen_MOS-AK_Munich_2013.pdfChallenges of Continued CMOS Scaling • Increased standby power dissipation

CONFIDENTIAL

Page 31: Fullyyp g Depleted SOI Technologiesmos-ak.org/munich_2013/presentations/09_Bich-Yen_Nguyen_MOS-AK_Munich_2013.pdfChallenges of Continued CMOS Scaling • Increased standby power dissipation

IBM Research

RO Comparison (ETSOI vs. FinFET)610-6

FinFET

/µm

) ETSOIRO DelayVDD

Ioff = 200nA/µm

10-7 0.7V

FP (

A/

finFET*ETSOI

RO Delay (ps/stage)

VDD

10-8

+ I

OF

V 0 9V 13.511.20.7V

8.50.9V

7 9 11 13 15 1710-9

0.7V0.8V

I OFFN VDD= 0.9V 13.511.20.7V

7 9 11 13 15 17Delay (ps/stage)

ETSOI RO is faster than state of the art finFET

*C. Auth, et al. Presented at Symp. VLSI Tech., 2012

3126

ETSOI RO is faster than state-of-the-art finFET Courtesy of Bruce Doris, IBM K. Cheng et al. IEDM 2012

MOS-AK/GSA Workshop, April 11-12, 2013

Page 32: Fullyyp g Depleted SOI Technologiesmos-ak.org/munich_2013/presentations/09_Bich-Yen_Nguyen_MOS-AK_Munich_2013.pdfChallenges of Continued CMOS Scaling • Increased standby power dissipation

Yield Learning Equivalent to Bulk Process

MOS-AK/GSA Workshop, April 11-12, 2013

Page 33: Fullyyp g Depleted SOI Technologiesmos-ak.org/munich_2013/presentations/09_Bich-Yen_Nguyen_MOS-AK_Munich_2013.pdfChallenges of Continued CMOS Scaling • Increased standby power dissipation

Pl FDSOI Ad ti dPlanar FDSOI Adoption and Roadmapp

33MOS-AK/GSA Workshop, April 11-12, 2013

Page 34: Fullyyp g Depleted SOI Technologiesmos-ak.org/munich_2013/presentations/09_Bich-Yen_Nguyen_MOS-AK_Munich_2013.pdfChallenges of Continued CMOS Scaling • Increased standby power dissipation

CONFIDENTIAL

Page 35: Fullyyp g Depleted SOI Technologiesmos-ak.org/munich_2013/presentations/09_Bich-Yen_Nguyen_MOS-AK_Munich_2013.pdfChallenges of Continued CMOS Scaling • Increased standby power dissipation

CONFIDENTIAL

Page 36: Fullyyp g Depleted SOI Technologiesmos-ak.org/munich_2013/presentations/09_Bich-Yen_Nguyen_MOS-AK_Munich_2013.pdfChallenges of Continued CMOS Scaling • Increased standby power dissipation

FD SOI Migration Path

28nm FDSOI 14nm FDSOI

28nm SLP 20nm LPM113CPP90Mx

90CPP64Mx

113CPP 90CPP

2011 2012 2013 2014

113CPP90Mx

90CPP64Mx

Courtesy of ST

• Low risk and effective TTM strategy to migrate Bulk platforms to FD SOI• Straightforward path to re-characterize 20nm LPM design environment

36

Straightforward path to re characterize 20nm LPM design environment to 14nm FD SOI

MOS-AK/GSA Workshop, April 11-12, 2013

Page 37: Fullyyp g Depleted SOI Technologiesmos-ak.org/munich_2013/presentations/09_Bich-Yen_Nguyen_MOS-AK_Munich_2013.pdfChallenges of Continued CMOS Scaling • Increased standby power dissipation

Soitec FD-2D Substrate Options

Ultra‐Thin Top Silicon Layer

Base Silicon

Ultra‐Thin Buried Oxide

Ultra‐Thin Top Silicon Layer

Base Silicon

Ultra‐Thin Buried OxideGS D

Base Silicon

Ultra‐Thin Top Silicon Layer

Base Silicon

Ultra‐Thin Buried Oxide

Soitec FD-2D

GS D

Base Silicon

Sampling now: SOI + strain

Soitec FD-2DEvo14 with sSOI

Soitec FD-2DE 28

Sampling now

GS D

Base Silicon

Soitec FD 2DEvo20

Sampling now

28 nm

In prod now

15 nm / 14 nm

Evo28

22 nm / 20 nm

37

28 nm 15 nm / 14 nm22 nm / 20 nm

MOS-AK/GSA Workshop, April 11-12, 2013

Page 38: Fullyyp g Depleted SOI Technologiesmos-ak.org/munich_2013/presentations/09_Bich-Yen_Nguyen_MOS-AK_Munich_2013.pdfChallenges of Continued CMOS Scaling • Increased standby power dissipation

FD-2D Substrate Uniformity: Thin SOI & Thin Box

SOI12nm

+4Å

SOI Thickness Range @ 3.13 A

Base wafer

BOX

120Å

+2Å

+4Å

6 sigma

Wafer-to-wafer thickness (Å)

BOX Mean @ 250 ±6 AW2W Range < 7 A

-2Å

-4Å

6 sigma

W2W hi k 120 5 A

0

20

40

60

Per

cent

age

252.1 AMax

247.2 AMean

244.5 AMin

BOX Thickness Mean

252.1 AMax

247.2 AMean

244.5 AMin

BOX Thickness Mean

Wafer to wafer thickness (Å) W2W thickness 120 ±5 A

ints

SO

I ro

l (Å

)

225 230 235 240 245 250 255 260 265 270 275BOX Thickness Mean

40

60

cent

age

4 4 AMean

2.7 AMin

BOX Thickness Range

4 4 AMean

2.7 AMin

BOX Thickness Range

Within wafer thickness (Å)

All

waf

ers,

all

poth

ickn

ess

cont

r

0 1 2 3 4 5 6 7 8 9 10BOX Thickness Range

0

20Per

c

6.8 AMax

4.4 AMean

6.8 AMax

4.4 AMean

12 April 2013 38

1 year production at prime spec

A

MOS-AK/GSA Workshop, April 11-12, 2013

Page 39: Fullyyp g Depleted SOI Technologiesmos-ak.org/munich_2013/presentations/09_Bich-Yen_Nguyen_MOS-AK_Munich_2013.pdfChallenges of Continued CMOS Scaling • Increased standby power dissipation

SSummary

39MOS-AK/GSA Workshop, April 11-12, 2013

Page 40: Fullyyp g Depleted SOI Technologiesmos-ak.org/munich_2013/presentations/09_Bich-Yen_Nguyen_MOS-AK_Munich_2013.pdfChallenges of Continued CMOS Scaling • Increased standby power dissipation

Planar FD SOI Summary1. FD SOI provides outstanding benefits for high performance, battery powered

devices

Leading edge performance across the full Vdd range– Leading edge performance across the full Vdd range– Good speed vs leakage trade-off– Record Vdd min for logic and SRAM– Full flexibility in IP design with dynamic voltage scaling and biasingy g y g g g– Better performances than a G process at the cost of an LP technology

2. FD SOI offers a low risk design and manufacturing path for CMOS process derivatives at 28, 20 and 14nm

– No major disruption from current Bulk CMOS process manufacturing – Same EDA flow and design techniques as planar Bulk– Digital designs easy to re-characterize on FD SOIDigital designs easy to re characterize on FD SOI

3. Industry first Fully-Depleted SOC using 28nm FDSOI technology was demonstrated by STM/STE with 3GHz performance

4. 28nm and 14nm FD SOI will be available in foundries in 2013 and 2014, respectively

MOS-AK/GSA Workshop, April 11-12, 2013

Page 41: Fullyyp g Depleted SOI Technologiesmos-ak.org/munich_2013/presentations/09_Bich-Yen_Nguyen_MOS-AK_Munich_2013.pdfChallenges of Continued CMOS Scaling • Increased standby power dissipation

FD-SOI provides unique value

FasterTransistors run at higher frequencies up than bulk CMOS enabling faster processors

This puts more powerful devices in the hands of the end user

CoolerTransistors are more power efficient than bulk CMOS with lower leakage and much wider range of operation points down to lower voltages

Simpler

and much wider range of operation points down to lower voltages

End user devices run cooler and last longer.

SimplerThe manufacturing process for FD-SOI is much simpler than alternatives and making extensive use of existing fab infrastructure

Design porting from bulk is simple and fast

Chi hit t d t ti i l d ft i i l f d i

41 (10)

Chip architecture and construction are simpler and software is simpler for devices manufacturers

MOS-AK/GSA Workshop, April 11-12, 2013

Page 42: Fullyyp g Depleted SOI Technologiesmos-ak.org/munich_2013/presentations/09_Bich-Yen_Nguyen_MOS-AK_Munich_2013.pdfChallenges of Continued CMOS Scaling • Increased standby power dissipation

Thank You