fuel for exercise: bioenergetics and muscle metabolism

45
Fuel for Exercise: Bioenergetics and Muscle Metabolism

Upload: cornelia-geraldine-mcgee

Post on 18-Dec-2015

271 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Fuel for Exercise: Bioenergetics and Muscle Metabolism

Fuel for Exercise:Bioenergetics and Muscle Metabolism

Page 2: Fuel for Exercise: Bioenergetics and Muscle Metabolism

TerminologyTerminology

• Substrates– Fuel sources from which we make energy

(adenosine triphosphate [ATP])– Carbohydrate, fat, protein

• Bioenergetics– Process of converting substrates into energy– Performed at cellular level

• Metabolism: chemical reactions in the body

Page 3: Fuel for Exercise: Bioenergetics and Muscle Metabolism

Measuring Energy ReleaseMeasuring Energy Release

• Can be calculated from heat produced

• 1 calorie (cal) = heat energy required to raise 1 g of water from 14.5°C to 15.5°C

• 1,000 cal = 1 kcal = 1 Calorie (dietary)

Page 4: Fuel for Exercise: Bioenergetics and Muscle Metabolism

CarbohydrateCarbohydrate

• All carbohydrate converted to glucose– 4.1 kcal/g; ~2,500 kcal stored in body– Primary ATP substrate for muscles, brain– Extra glucose stored as glycogen in liver, muscles

• Glycogen converted back to glucose when needed to make more ATP

• Glycogen stores limited (2,500 kcal), must rely on dietary carbohydrate to replenish

Page 5: Fuel for Exercise: Bioenergetics and Muscle Metabolism

FatFat

• Efficient substrate, efficient storage– 9.4 kcal/g– +70,000 kcal stored in body

• Energy substrate for prolonged, less intense exercise– High net ATP yield but slow ATP production– Must be broken down into free fatty acids (FFAs)

and glycerol– Only FFAs are used to make ATP

Page 6: Fuel for Exercise: Bioenergetics and Muscle Metabolism

Table 2.1Table 2.1

Page 7: Fuel for Exercise: Bioenergetics and Muscle Metabolism

ProteinProtein

• Energy substrate during starvation– 4.1 kcal/g– Must be converted into glucose (gluconeogenesis)

• Can also convert into FFAs (lipogenesis)– For energy storage– For cellular energy substrate

Page 8: Fuel for Exercise: Bioenergetics and Muscle Metabolism

Figure 2.1Figure 2.1

Page 9: Fuel for Exercise: Bioenergetics and Muscle Metabolism

Stored Energy: Stored Energy: High-Energy PhosphatesHigh-Energy Phosphates

• ATP stored in small amounts until needed

• Breakdown of ATP to release energy– ATP + water + ATPase ADP + Pi + energy

– ADP: lower-energy compound, less useful

• Synthesis of ATP from by-products– ADP + Pi + energy ATP (via phosphorylation)

– Can occur in absence or presence of O2

Page 10: Fuel for Exercise: Bioenergetics and Muscle Metabolism

Figure 2.4Figure 2.4

Page 11: Fuel for Exercise: Bioenergetics and Muscle Metabolism

Bioenergetics: Basic Energy SystemsBioenergetics: Basic Energy Systems

• ATP storage limited

• Body must constantly synthesize new ATP

• Three ATP synthesis pathways– ATP-PCr system (anaerobic metabolism)– Glycolytic system (anaerobic metabolism)– Oxidative system (aerobic metabolism)

Page 12: Fuel for Exercise: Bioenergetics and Muscle Metabolism

ATP-PCr SystemATP-PCr System

• Anaerobic, substrate-level metabolism

• ATP yield: 1 mol ATP/1 mol PCr

• Duration: 3 to 15 s

• Because ATP stores are very limited, this pathway is used to reassemble ATP

Page 13: Fuel for Exercise: Bioenergetics and Muscle Metabolism

ATP-PCr SystemATP-PCr System

• Phosphocreatine (PCr): ATP recycling– PCr + creatine kinase Cr + Pi + energy

– PCr energy cannot be used for cellular work– PCr energy can be used to reassemble ATP

• Replenishes ATP stores during rest

• Recycles ATP during exercise until used up (~3-15 s maximal exercise)

Page 14: Fuel for Exercise: Bioenergetics and Muscle Metabolism

Figure 2.5Figure 2.5

Page 15: Fuel for Exercise: Bioenergetics and Muscle Metabolism

Figure 2.6Figure 2.6

Page 16: Fuel for Exercise: Bioenergetics and Muscle Metabolism

Glycolytic SystemGlycolytic System

• Anaerobic

• ATP yield: 2 to 3 mol ATP/1 mol substrate

• Duration: 15 s to 2 min

• Breakdown of glucose via glycolysis

Page 17: Fuel for Exercise: Bioenergetics and Muscle Metabolism
Page 18: Fuel for Exercise: Bioenergetics and Muscle Metabolism
Page 19: Fuel for Exercise: Bioenergetics and Muscle Metabolism

Glycolytic SystemGlycolytic System

• Uses glucose or glycogen as its substrate– Must convert to glucose-6-phosphate– Costs 1 ATP for glucose, 0 ATP for glycogen

• Pathway starts with glucose-6-phosphate, ends with pyruvic acid– 10 to 12 enzymatic reactions total– All steps occur in cytoplasm– ATP yield: 2 ATP for glucose, 3 ATP for glycogen

Page 20: Fuel for Exercise: Bioenergetics and Muscle Metabolism

Glycolytic SystemGlycolytic System

• Cons– Low ATP yield, inefficient use of substrate

– Lack of O2 converts pyruvic acid to lactic acid

– Lactic acid impairs glycolysis, muscle contraction

• Pros– Allows muscles to contract when O2 limited

– Permits shorter-term, higher-intensity exercise than oxidative metabolism can sustain

Page 21: Fuel for Exercise: Bioenergetics and Muscle Metabolism

Glycolytic SystemGlycolytic System

• Phosphofructokinase (PFK)– Rate-limiting enzyme

ATP ( ADP) PFK activity

ATP PFK activity– Also regulated by products of Krebs cycle

• Glycolysis = ~2 min maximal exercise

• Need another pathway for longer durations

Page 22: Fuel for Exercise: Bioenergetics and Muscle Metabolism

Oxidative SystemOxidative System

• Aerobic

• ATP yield: depends on substrate– 32 to 33 ATP/1 glucose– 100+ ATP/1 FFA

• Duration: steady supply for hours

• Most complex of three bioenergetic systems

• Occurs in the mitochondria, not cytoplasm

Page 23: Fuel for Exercise: Bioenergetics and Muscle Metabolism

Oxidation of CarbohydrateOxidation of Carbohydrate

• Stage 1: Glycolysis

• Stage 2: Krebs cycle

• Stage 3: Electron transport chain

Page 24: Fuel for Exercise: Bioenergetics and Muscle Metabolism

Figure 2.8Figure 2.8

Page 25: Fuel for Exercise: Bioenergetics and Muscle Metabolism

Oxidation of Carbohydrate:Oxidation of Carbohydrate:Glycolysis RevisitedGlycolysis Revisited

• Glycolysis can occur with or without O2

– ATP yield same as anaerobic glycolysis– Same general steps as anaerobic glycolysis but, in

the presence of oxygen,– Pyruvic acid acetyl-CoA, enters Krebs cycle

Page 26: Fuel for Exercise: Bioenergetics and Muscle Metabolism

Oxidation of Carbohydrate:Oxidation of Carbohydrate:Krebs CycleKrebs Cycle

• 1 Molecule glucose 2 acetyl-CoA– 1 molecule glucose 2 complete Krebs cycles– 1 molecule glucose double ATP yield

• 2 Acetyl-CoA 2 GTP 2 ATP

• Also produces NADH, FADH, H+

– Too many H+ in the cell = too acidic– H+ moved to electron transport chain

Page 27: Fuel for Exercise: Bioenergetics and Muscle Metabolism

Figure 2.9Figure 2.9

Page 28: Fuel for Exercise: Bioenergetics and Muscle Metabolism

Oxidation of Carbohydrate:Oxidation of Carbohydrate:Electron Transport ChainElectron Transport Chain

• H+, electrons carried to electron transport chain via NADH, FADH molecules

• H+, electrons travel down the chain– H+ combines with O2 (neutralized, forms H2O)

– Electrons + O2 help form ATP

– 2.5 ATP per NADH– 1.5 ATP per FADH

Page 29: Fuel for Exercise: Bioenergetics and Muscle Metabolism

Oxidation of Carbohydrate:Oxidation of Carbohydrate:Energy YieldEnergy Yield

• 1 glucose = 32 ATP

• 1 glycogen = 33 ATP

• Breakdown of net totals– Glycolysis = +2 (or +3) ATP– GTP from Krebs cycle = +2 ATP– 10 NADH = +25 ATP– 2 FADH = +3 ATP

Page 30: Fuel for Exercise: Bioenergetics and Muscle Metabolism

Figure 2.11Figure 2.11

Page 31: Fuel for Exercise: Bioenergetics and Muscle Metabolism

Oxidation of FatOxidation of Fat

• Triglycerides: major fat energy source

– Broken down to 1 glycerol + 3 FFAs– Lipolysis, carried out by lipases

• Rate of FFA entry into muscle depends on concentration gradient

• Yields ~3 to 4 times more ATP than glucose

• Slower than glucose oxidation

Page 32: Fuel for Exercise: Bioenergetics and Muscle Metabolism

-Oxidation of Fat-Oxidation of Fat

• Process of converting FFAs to acetyl-CoA before entering Krebs cycle

• Requires up-front expenditure of 2 ATP

• Number of steps depends on number of carbons on FFA– 16-carbon FFA yields 8 acetyl-CoA– Compare: 1 glucose yields 2 acetyl-CoA

– Fat oxidation requires more O2 now, yields far more ATP later

Page 33: Fuel for Exercise: Bioenergetics and Muscle Metabolism

Oxidation of Fat:Oxidation of Fat:Krebs Cycle, Electron Transport ChainKrebs Cycle, Electron Transport Chain

• Acetyl-CoA enters Krebs cycle

• From there, same path as glucose oxidation

• Different FFAs have different number of carbons– Will yield different number of acetyl-CoA molecules– ATP yield will be different for different FFAs– Example: for palmitic acid (16 C): 129 ATP net yield

Page 34: Fuel for Exercise: Bioenergetics and Muscle Metabolism
Page 35: Fuel for Exercise: Bioenergetics and Muscle Metabolism
Page 36: Fuel for Exercise: Bioenergetics and Muscle Metabolism

Table 2.2Table 2.2

Page 37: Fuel for Exercise: Bioenergetics and Muscle Metabolism

Oxidation of ProteinOxidation of Protein

• Rarely used as a substrate – Starvation– Can be converted to glucose (gluconeogenesis)– Can be converted to acetyl-CoA

• Energy yield not easy to determine– Nitrogen presence unique– Nitrogen excretion requires ATP expenditure– Generally minimal, estimates therefore ignore

protein metabolism

Page 38: Fuel for Exercise: Bioenergetics and Muscle Metabolism

Figure 2.12Figure 2.12

Page 39: Fuel for Exercise: Bioenergetics and Muscle Metabolism

Interaction Among Energy SystemsInteraction Among Energy Systems

• All three systems interact for all activities– No one system contributes 100%, but– One system often dominates for a given task

• More cooperation during transition periods

Page 40: Fuel for Exercise: Bioenergetics and Muscle Metabolism

Figure 2.13Figure 2.13

Page 41: Fuel for Exercise: Bioenergetics and Muscle Metabolism

Table 2.3Table 2.3

Page 42: Fuel for Exercise: Bioenergetics and Muscle Metabolism

Oxidative Capacity of MuscleOxidative Capacity of Muscle

• Not all muscles exhibit maximal oxidative capabilities

• Factors that determine oxidative capacity– Enzyme activity– Fiber type composition, endurance training

– O2 availability versus O2 need

Page 43: Fuel for Exercise: Bioenergetics and Muscle Metabolism

Enzyme ActivityEnzyme Activity

• Not all muscles exhibit optimal activity of oxidative enzymes

• Enzyme activity predicts oxidative potential

• Representative enzymes– Succinate dehydrogenase– Citrate synthase

• Endurance trained versus untrained

Page 44: Fuel for Exercise: Bioenergetics and Muscle Metabolism

Fiber Type Composition Fiber Type Composition and Endurance Trainingand Endurance Training

• Type I fibers: greater oxidative capacity– More mitochondria– High oxidative enzyme concentrations– Type II better for glycolytic energy production

• Endurance training– Enhances oxidative capacity of type II fibers– Develops more (and larger) mitochondria– More oxidative enzymes per mitochondrion

Page 45: Fuel for Exercise: Bioenergetics and Muscle Metabolism

Oxygen Needs of MuscleOxygen Needs of Muscle

• As intensity , so does ATP demand• In response

– Rate of oxidative ATP production – O2 intake at lungs

– O2 delivery by heart, vessels

• O2 storage limited—use it or lose it

• O2 levels entering and leaving the lungs accurate estimate of O2 use in muscle