fubini theorem for stable processes - uni-jena.de · supported by the academy hassan ii of sciences...

31
Fubini Theorem for Stable Processes Youssef Ouknine joint work with Mohamed Erraoui March 2-13, 2009, Jena Supported by the Academy Hassan II of Sciences and Technology Youssef Ouknine Facult´ e des Sciences Semlalia March 2-13, 2009, Jena

Upload: others

Post on 18-Oct-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Fubini Theorem for Stable Processes - uni-jena.de · Supported by the Academy Hassan II of Sciences and Technology Youssef Ouknine Facult e des Sciences Semlalia March 2-13, 2009,

Fubini Theorem for Stable Processes

Youssef Ouknine

joint work with Mohamed Erraoui

March 2-13, 2009, Jena

Supported by the Academy Hassan II of Sciences andTechnology

Youssef Ouknine Faculte des Sciences Semlalia March 2-13, 2009, Jena

Page 2: Fubini Theorem for Stable Processes - uni-jena.de · Supported by the Academy Hassan II of Sciences and Technology Youssef Ouknine Facult e des Sciences Semlalia March 2-13, 2009,

MotivationFubini-type techniques are used to establish identities in lawwith functionals of Levy processes.To calculate explicitly the Laplace transform of suchfunctionals.

HistoryStochastic Fubini theorem for quadratic functionals ofBrownian motion was first proved by Donati-Martin and Yor(1991).First extension of Stochastic Fubini theorem to symmetricstable process was established by Donati-Martin, Song and Yor(1994).Stochastic Fubini theorem for general Gaussian measures isproved by Deheuvels et al. (2004).

ObjectiveWe present new identities in law for quadratic functionals ofstable processes. In particular, our results provide atwo-parameter generalization of a celebrated identity in law,involving the path variance of a Brownian bridge, due toDonati Martin and Yor (1991).

Youssef Ouknine Faculte des Sciences Semlalia March 2-13, 2009, Jena

Page 3: Fubini Theorem for Stable Processes - uni-jena.de · Supported by the Academy Hassan II of Sciences and Technology Youssef Ouknine Facult e des Sciences Semlalia March 2-13, 2009,

A process X = {Xt, t ≥ 0} such that X0 = 0 is called a Levyprocess if it has stationary independent increments, and Xt iscontinuous in probability. The Levy exponent Ψ is given by

E (exp(iξXt)) = exp (−tΨ (ξ)) ,

where Ψ has the Levy-Khintchine representation

Ψ (ξ) =12σ2ξ2 − iγξ −

∫R

(eiξx − 1− iξx1{|x|≤1}

)ϑ (dx) ,

with γ ∈ R and ϑ is a positive Radon measure on R\ {0} (calledthe Levy measure) defined by

ϑ (A) = E [# {t ∈ [0, 1] : ∆Xt 6= 0, ∆Xt ∈ A}] , A ∈ B (R) ,

and verifying the integrability condition:∫R

(1 ∧ x2

)ϑ (dx) <∞.

Excellent reference on Levy processes is [4].Youssef Ouknine Faculte des Sciences Semlalia March 2-13, 2009, Jena

Page 4: Fubini Theorem for Stable Processes - uni-jena.de · Supported by the Academy Hassan II of Sciences and Technology Youssef Ouknine Facult e des Sciences Semlalia March 2-13, 2009,

A Levy process (Xt)t≥0 is called α-stable if the Levy measuretakes the form

ϑ (dx) = (m1Ix<0 +m2Ix>0) |x|−(1+α) dx

for some positive constants m1 and m2. The following hold:

1 when 0 < α < 2, α 6= 1,

E [exp {iξ Xt}] = exp{− t |ξ|α

(1− iβ ξ

|ξ|tan

(πα

2

))},

where β ∈ [−1, 1]2 when α = 2, the above formula becomes

E [exp {iξ Xt}] = exp{− t ξ2

},

3 when α = 1,

E [exp {iξ Xt}] = exp {−t (|ξ| − iγξ)} ,

where γ ∈ R is the drift coefficient.

Youssef Ouknine Faculte des Sciences Semlalia March 2-13, 2009, Jena

Page 5: Fubini Theorem for Stable Processes - uni-jena.de · Supported by the Academy Hassan II of Sciences and Technology Youssef Ouknine Facult e des Sciences Semlalia March 2-13, 2009,

When β = 0, X is said to be symmetric α-stable. In this case theLevy exponent Ψ is given by

E (exp(iξXt)) = exp {− t |ξ|α}

Recall that

For α ∈ (0, 1) the paths of Xt are non-decreasing and theprocess is called stable subordinators.

For α ∈ (1, 2) X is a martingale.

For all α ∈ (0, 1) ∪ (1, 2) , Xt is a semimartingale.

Youssef Ouknine Faculte des Sciences Semlalia March 2-13, 2009, Jena

Page 6: Fubini Theorem for Stable Processes - uni-jena.de · Supported by the Academy Hassan II of Sciences and Technology Youssef Ouknine Facult e des Sciences Semlalia March 2-13, 2009,

Stable sheet

I denotes the class of all 2-dimensional sets in R2+ of the type

2×i=1

(si, ti].

f : R2+ −→ R, the increment f (I) of f over the set I ∈ I is

defined by

f

(2×i=1

(si, ti])

= f (t1, t2)− f (t1, s2)− f (s1, t2) + f (s1, s2)

λ denotes the 2-dimensional Lebesgue measure.

Youssef Ouknine Faculte des Sciences Semlalia March 2-13, 2009, Jena

Page 7: Fubini Theorem for Stable Processes - uni-jena.de · Supported by the Academy Hassan II of Sciences and Technology Youssef Ouknine Facult e des Sciences Semlalia March 2-13, 2009,

X ={Xt, t ∈ R2

+

}be stochastic process such that:

(i) The increments X (Ij) are independents ∀Ij ∈ I disjointsets, j ∈ {1, · · · , k} and ∀k ∈ N

(ii) For any I ∈ I and ξ ∈ R

E exp (iξ X (I)) = exp (−λ (I) |ξ|α) (1)

Youssef Ouknine Faculte des Sciences Semlalia March 2-13, 2009, Jena

Page 8: Fubini Theorem for Stable Processes - uni-jena.de · Supported by the Academy Hassan II of Sciences and Technology Youssef Ouknine Facult e des Sciences Semlalia March 2-13, 2009,

The starting point of this study is Fubini theorem for Stablemeasures.

Let (A,A, µ) and (B,B, ν) be two measurable spaces, with µ andν are σ-finite measures.

Let{Xαµ (h) : h ∈ Lα(A,A, µ)

}and

{Xβν (k) : k ∈ Lβ (B,B, ν)

}be two stable symmetric processes, with α, β ∈ (0, 2] \ {1}

Youssef Ouknine Faculte des Sciences Semlalia March 2-13, 2009, Jena

Page 9: Fubini Theorem for Stable Processes - uni-jena.de · Supported by the Academy Hassan II of Sciences and Technology Youssef Ouknine Facult e des Sciences Semlalia March 2-13, 2009,

such that:

E[exp

{iλXα

µ (h)}]

= exp{−∫A |λh(a)|α µ (da)

}∀h ∈ Lα(A,A, µ),

and

E[exp

{iλXβ

ν (k)}]

= exp{−∫B|λk(b)|β ν (db)

}∀ k ∈ Lβ (B,B, ν) .

The following identity holds almost surely∫A

(∫Bφ (a, b)Xβ

ν (db))Xαµ (da) =

∫B

(∫Aφ (a, b)Xα

µ (da))Xβν (db) .

(2)

Youssef Ouknine Faculte des Sciences Semlalia March 2-13, 2009, Jena

Page 10: Fubini Theorem for Stable Processes - uni-jena.de · Supported by the Academy Hassan II of Sciences and Technology Youssef Ouknine Facult e des Sciences Semlalia March 2-13, 2009,

Theorem

Let φ : A×B → R be a bounded A⊗ B-measurable function. For

Yβ,α =∫A

∣∣∣∣∫Bφ (a, b)Xβ

ν (db)∣∣∣∣α µ (da)

and

Yα,β =∫B

∣∣∣∣∫Aφ (a, b)Xα

µ (da)∣∣∣∣β ν (db) ,

we have the following identity

(Yβ,α)1/γ Tγd= Yα,β, (3)

where γ = α/β and Tγ is a one-sided stable random variable withexponent γ, which is assumed to be independent of Yβ,α.

Youssef Ouknine Faculte des Sciences Semlalia March 2-13, 2009, Jena

Page 11: Fubini Theorem for Stable Processes - uni-jena.de · Supported by the Academy Hassan II of Sciences and Technology Youssef Ouknine Facult e des Sciences Semlalia March 2-13, 2009,

For α = β the identity in law (3) becomes∫A

∣∣∣∣∫Bφ (a, b)Xα

ν (db)∣∣∣∣α µ (da) d=

∫B

∣∣∣∣∫Aφ (a, b)Xα

µ (da)∣∣∣∣α ν (db) .

(4)

Proof.

Taking the characteristic functions of both sides of (2), for anyλ ∈ R, we obtain:

E[exp

(− |λ|α

∫A

∣∣∣∫B φ (a, b)Xβν (db)

∣∣∣α µ (da))]

=E[exp

(− |λ|β

∫B

∣∣∫A φ (a, b)Xα

µ (da)∣∣β ν (db)

)].

(5)

Taking u = |λ|α, as a new variable, the equality (5) becomes

E[exp

(−u∫A

∣∣∣∫B φ (a, b)Xβν (db)

∣∣∣α µ (da))]

=E[exp

(−u1/γ

∫B

∣∣∫A φ (a, b)Xα

µ (da)∣∣β ν (db)

)].

Youssef Ouknine Faculte des Sciences Semlalia March 2-13, 2009, Jena

Page 12: Fubini Theorem for Stable Processes - uni-jena.de · Supported by the Academy Hassan II of Sciences and Technology Youssef Ouknine Facult e des Sciences Semlalia March 2-13, 2009,

Proof.

On the other, it is easy to see that

E[exp

(−u∫A

∣∣∣∫B φ (a, b)Xβν (db)

∣∣∣α µ (da))]

=

E[exp

(−{u1/γ

(∫A

∣∣∣∫B φ (a, b)Xβν (db)

∣∣∣α µ (da))1/γ

}γ)]=

E[exp

(−u1/γ

(∫A

∣∣∣∫B φ (a, b)Xβν (db)

∣∣∣α µ (da))1/γ

)],

Hence, we have obtained

E[exp

(−u1/γ

∫A

∣∣∣∫B φ (a, b)Xβν (db)

∣∣∣α µ (da))]

=

E[exp

(−u1/γ

(∫B

∣∣∫A φ (a, b)Xα

µ (da)∣∣β ν (db)

)1/γTγ

)],

which is equivalent to (3).Youssef Ouknine Faculte des Sciences Semlalia March 2-13, 2009, Jena

Page 13: Fubini Theorem for Stable Processes - uni-jena.de · Supported by the Academy Hassan II of Sciences and Technology Youssef Ouknine Facult e des Sciences Semlalia March 2-13, 2009,

Special cases

Let % be a probability on [0, 1] and set At = % ([0, t]).

The function Ct = inf {s : As > t} ∧ 1 for t ∈ [0, 1], is increasingand right-continuous.

Moreover ACt ≥ t and CAt ≥ t for every t and

At = inf {s : Cs > t} .

We have ∫ t

0h(s)% (ds) =

∫ t

0h(s)dAs =

∫ At

0h(Cs)ds. (6)

Youssef Ouknine Faculte des Sciences Semlalia March 2-13, 2009, Jena

Page 14: Fubini Theorem for Stable Processes - uni-jena.de · Supported by the Academy Hassan II of Sciences and Technology Youssef Ouknine Facult e des Sciences Semlalia March 2-13, 2009,

Now we assume the following condition :

(H) : A is continuous and A0 = 0.

Note that, under condition H, we have

ACt ≥ t, % ([Ct− , Ct[) = 0 and supp (%) = {s ∈ [0, 1] : s = CAs} .

Youssef Ouknine Faculte des Sciences Semlalia March 2-13, 2009, Jena

Page 15: Fubini Theorem for Stable Processes - uni-jena.de · Supported by the Academy Hassan II of Sciences and Technology Youssef Ouknine Facult e des Sciences Semlalia March 2-13, 2009,

Proposition

We have∫ 1

0% (du)

∣∣∣∣{Xu −∫ 1

0Xs% (ds)

}∣∣∣∣α d=∫ 1

0du |XAu −AuX1|α

d=∫ 1

0dCu |Xu − uX1|α

(7)

Youssef Ouknine Faculte des Sciences Semlalia March 2-13, 2009, Jena

Page 16: Fubini Theorem for Stable Processes - uni-jena.de · Supported by the Academy Hassan II of Sciences and Technology Youssef Ouknine Facult e des Sciences Semlalia March 2-13, 2009,

Proof.

Let us consider the function φ : [0, 1]2 → R defined by

φ (u, s) =[I(s≤Cu) − (A1 −As)

].

On one hand, using integration by parts formula, we have∫ 1

0dXsφ (u, s) =

{XCu −

(X1A1 −

∫ 1

0AsdXs

)}

={XCu −

∫ 1

0Xs−dAs

}.

By condition H, yields∫ 1

0dXsφ (u, s) =

{XCu −

∫ 1

0XsdAs

}.

Youssef Ouknine Faculte des Sciences Semlalia March 2-13, 2009, Jena

Page 17: Fubini Theorem for Stable Processes - uni-jena.de · Supported by the Academy Hassan II of Sciences and Technology Youssef Ouknine Facult e des Sciences Semlalia March 2-13, 2009,

Proof.

On other hand since A1 = 1 we obtain∫ 1

0dXsφ (s, u) =

∫ 1

0dXs

[I(u≤Cs) − (A1 −Au)

]= −XAu +AuX1.

Now using the equality (3), it yields∫ 1

0du∣∣∣{XCu −

∫ 10 XsdAs

}∣∣∣α d=∫ 1

0du |XAu −AuX1|α

d=∫ 1

0dCu |Xu − uX1|α ,

where we have used (6) in the last equality.

Youssef Ouknine Faculte des Sciences Semlalia March 2-13, 2009, Jena

Page 18: Fubini Theorem for Stable Processes - uni-jena.de · Supported by the Academy Hassan II of Sciences and Technology Youssef Ouknine Facult e des Sciences Semlalia March 2-13, 2009,

Remark

(i) Let (Bs, s ≤ 1) is a Brownian motion. It is well known that thefollowing identity holds∫ 1

0%(dt)

(Bu −

∫ 1

0%(ds)Bs

)2d=∫ 1

0B2%[0,t]dt, (8)

where(Bs, s ≤ 1

)is a standard Brownian bridge. It follows from

(6) that∫ 1

0%(dt)

(Bu −

∫ 1

0%(ds)Bs

)2d=∫ 1

0B2%[0,t]dt =

∫ 1

0B2sdCs.

This corresponds to the case α = 2 in formula (7) since standardBrownian bridge has (Bu − uB1; u ≤ 1) as a representation in law.

Youssef Ouknine Faculte des Sciences Semlalia March 2-13, 2009, Jena

Page 19: Fubini Theorem for Stable Processes - uni-jena.de · Supported by the Academy Hassan II of Sciences and Technology Youssef Ouknine Facult e des Sciences Semlalia March 2-13, 2009,

Remark

(ii) For p > 0, let %(du) = du p up−1, we have

At = tp and Ct = t1/p.

From formula (7), we obtain∫ 1

0du p up−1

∣∣∣∣{Bu − ∫ 1

0psp−1Bsds

}∣∣∣∣2 d=∫ 1

0du |Bup − upB1|2

d=1p

∫ 1

0duu

1p−1∣∣∣Bu∣∣∣2 .

Note that for p = 1 we obtain∫ 1

0du

∣∣∣∣{Bu − ∫ 1

0Bsds

}∣∣∣∣2 d=∫ 1

0du∣∣∣Bu∣∣∣2 ,

which is well known see ([2]).

Youssef Ouknine Faculte des Sciences Semlalia March 2-13, 2009, Jena

Page 20: Fubini Theorem for Stable Processes - uni-jena.de · Supported by the Academy Hassan II of Sciences and Technology Youssef Ouknine Facult e des Sciences Semlalia March 2-13, 2009,

Let µ (da) = ν (db) be the Lebesgue measure on [0, 1]2, so that

(A,A, µ) = (B,B, ν) =(

[0, 1]2 ,B(

[0, 1]2), dt ds

).

We consider now the random variables

Zα (s1, s2) =∫ ∫

[0,1]2φ (s1, s2, t1, t2)Xα (dt1, dt2) ,

and

Zβ (t1, t2) =∫ ∫

[0,1]2φ (s1, s2, t1, t2)Xβ (ds1, ds2) .

In this special case, the conclusion of Theorem 1 becomes(∫ ∫[0,1]2

|Zα (s1, s2)|β ds1ds2

)1/γ

Tγd=∫ ∫

[0,1]2

∣∣∣Zβ (t1, t2)∣∣∣α dt1dt2.

Youssef Ouknine Faculte des Sciences Semlalia March 2-13, 2009, Jena

Page 21: Fubini Theorem for Stable Processes - uni-jena.de · Supported by the Academy Hassan II of Sciences and Technology Youssef Ouknine Facult e des Sciences Semlalia March 2-13, 2009,

For α = β and

φ1 (s1, s2, t1, t2) = 1[0,s1](t1)1[0,s2](t2)− s1s2,

we obtain the following distributional identities:∫ 1

0

∫ 1

0|Xα (s1, s2)− s1s2Xα (1, 1)|α ds1ds2

=∫ 1

0

∫ 1

0

∣∣∣∣Xα

(2×i=1

(si, 1])−∫ 1

0

∫ 1

0t1t2X

α (dt1, dt2)∣∣∣∣α ds1ds2

=∫ 1

0

∫ 1

0

∣∣∣∣Xα

(2×i=1

(si, 1])−∫ 1

0

∫ 1

0Xα

(2×i=1

(ui, 1])du1du2

∣∣∣∣α ds1ds2

Youssef Ouknine Faculte des Sciences Semlalia March 2-13, 2009, Jena

Page 22: Fubini Theorem for Stable Processes - uni-jena.de · Supported by the Academy Hassan II of Sciences and Technology Youssef Ouknine Facult e des Sciences Semlalia March 2-13, 2009,

For α = β and

φ2 (s1, s2, t1, t2) = 1[0,s1](t1)1[0,s2](t2)− s11[0,s2](t2)

−s21[0,s1](t1) + s1s2.

we have ∫ 1

0

∫ 1

0|Xα (s1, s2)− s1Xα (1, s2)

−s2Xα (s1, 1) + s1s2Xα (1, 1)|α ds1ds2

=∫ 1

0

∫ 1

0

∣∣∣∣Xα

(2×i=1

(si, 1])−∫ 1

0Xα ((s1, 1]× (u2, 1]) du2

−∫ 1

0Xα ((u1, 1]× (s2, 1]) du1

+∫ 1

0

∫ 1

0Xα ((ui, 1]× (u2, 1]) du1du2

∣∣∣∣α ds1ds2.Youssef Ouknine Faculte des Sciences Semlalia March 2-13, 2009, Jena

Page 23: Fubini Theorem for Stable Processes - uni-jena.de · Supported by the Academy Hassan II of Sciences and Technology Youssef Ouknine Facult e des Sciences Semlalia March 2-13, 2009,

Using the following distributional identity between processes{Xα

(2×i=1

(si, 1]), (s1, s2) ∈ [0, 1]2

}d={

Xα (1− s1, 1− s2) , (s1, s2) ∈ [0, 1]2},

with the change variable

(r1, r2) = (1− s1, 1− s2)

the above identities become

Youssef Ouknine Faculte des Sciences Semlalia March 2-13, 2009, Jena

Page 24: Fubini Theorem for Stable Processes - uni-jena.de · Supported by the Academy Hassan II of Sciences and Technology Youssef Ouknine Facult e des Sciences Semlalia March 2-13, 2009,

∫ 1

0

∫ 1

0|Xα (s1, s2)− s1s2Xα (1, 1)|α ds1ds2

=∫ 1

0

∫ 1

0

∣∣∣∣Xα (r1, r2)−∫ 1

0

∫ 1

0Xα (u1, u2) du1du2

∣∣∣∣α dr1dr2,and ∫ 1

0

∫ 1

0|Xα (s1, s2)− s1Xα (1, s2)

−s2Xα (s1, 1) + s1s2Xα (1, 1) |αds1ds2

=∫ 1

0

∫ 1

0

∣∣∣∣Xα (r1, r2)−∫ 1

0Xα (r1, u2) du2

−∫ 1

0Xα (u1, r2) du1 +

∫ 1

0

∫ 1

0Xα (u1, u2) du1du2

∣∣∣∣α dr1dr2.Youssef Ouknine Faculte des Sciences Semlalia March 2-13, 2009, Jena

Page 25: Fubini Theorem for Stable Processes - uni-jena.de · Supported by the Academy Hassan II of Sciences and Technology Youssef Ouknine Facult e des Sciences Semlalia March 2-13, 2009,

Remark

It should be noted that the above identities are the extension of(7) to the two parameter case.

Youssef Ouknine Faculte des Sciences Semlalia March 2-13, 2009, Jena

Page 26: Fubini Theorem for Stable Processes - uni-jena.de · Supported by the Academy Hassan II of Sciences and Technology Youssef Ouknine Facult e des Sciences Semlalia March 2-13, 2009,

Integration by parts formula

It is well known that Theorem 1 has several applications. Namely,we give here two examples yielding integration by parts formula.

One parameter case

Let 0 ≤ a < b <∞, and f, g : [a, b]→ R+ be two continuousfunctions with f decreasing and g increasing. Let us now choose

A = B = [a, b]

µ (dx) = −df(x)+δb (dx) f(b) and ν (dy) = dg(y)+δa (dy) g(a).

Youssef Ouknine Faculte des Sciences Semlalia March 2-13, 2009, Jena

Page 27: Fubini Theorem for Stable Processes - uni-jena.de · Supported by the Academy Hassan II of Sciences and Technology Youssef Ouknine Facult e des Sciences Semlalia March 2-13, 2009,

It follows from (4) of Theorem (1) that∫ b

a− df(x) |Xα(g(x))|α + f(b) |Xα(g(b))|α

d=∫ b

adg(y) |Xα(f(y))|α + g(a) |Xα(f(a))|α .

Remark

We recall that the above integration by parts formula was shownby Donati-Marti n et al using the discrete version of theFubini-type identity in law

Youssef Ouknine Faculte des Sciences Semlalia March 2-13, 2009, Jena

Page 28: Fubini Theorem for Stable Processes - uni-jena.de · Supported by the Academy Hassan II of Sciences and Technology Youssef Ouknine Facult e des Sciences Semlalia March 2-13, 2009,

Two parameters case

Let 0 ≤ a, c < b, d <∞, and f1, g1 : [a, b]→ R+ (resp.f2, g2 : [c, d]→ R+) be two continuous functions, with f1 (resp.f2) decreasing, and g1 (resp. g2) increasing. Let us now choose

A = B = [a, b]× [c, d]

µ (dx1, dx2) = {−df1(x1) + δb (dx1) f1(b)} {−df2(x2) + δd (dx2) f2(d)}

ν (dy1, dy2) = {dg1(y1) + δa (dy1) g1(a)} {dg2(y2) + δc (dy2) g2(c)} .

Youssef Ouknine Faculte des Sciences Semlalia March 2-13, 2009, Jena

Page 29: Fubini Theorem for Stable Processes - uni-jena.de · Supported by the Academy Hassan II of Sciences and Technology Youssef Ouknine Facult e des Sciences Semlalia March 2-13, 2009,

Using once again (4) we obtain∫ b

a

∫ d

cdf1(x1)df2(x2) |Xα

2 (g1 (x1) , g2 (x2))|α

−f1(b)∫ d

cdf2(x2) |Xα

2 (g1 (b) , g2 (x2))|α

+f1(b)f2(d) |Xα2 (g1 (b) , g2 (d))|α

−f2(d)∫ b

adf1(x1) |Xα

2 (g1 (x1) , g2 (d))|α

d=∫ b

a

∫ d

cdg1(y1)dg2(y2) |Xα

1 (f1 (y1) , f2 (y2))|α

+g1(a)∫ d

cdg2(y2) |Xα

1 (f1 (a) , f2 (y2))|α

+g1(a)g2(c) |Xα1 (f1 (a) , f2 (c))|α

+g2(c)∫ b

adg1(y1) |Xα

1 (f1 (y1) , f2 (c))|α

Youssef Ouknine Faculte des Sciences Semlalia March 2-13, 2009, Jena

Page 30: Fubini Theorem for Stable Processes - uni-jena.de · Supported by the Academy Hassan II of Sciences and Technology Youssef Ouknine Facult e des Sciences Semlalia March 2-13, 2009,

Particular cases

1 g1(a) = g2(c) = f1(b) = f2(d) = 0, we obtain∫ b

a

∫ d

cdf1(x1)df2(x2) |Xα (g1 (x1) , g2 (x2))|α

d=∫ b

a

∫ d

cdg1(y1)dg2(y2) |Xα (f1 (y1) , f2 (y2))|α

2 a = c = 0 and b = d = 1, g1(y) = g2(y) = y2 andf1(x) = f2(x) = log (1/x)∫ 1

0

∫ 1

0

∣∣∣∣∣ 1

(x1x2)1/αXα

(x2

1, x22

)∣∣∣∣∣α

dx1dx2

d=∫ 1

0

∫ 1

0

∣∣∣(y1y2)1/αXα (log (1/y1) , log (1/y2))∣∣∣α dy1dy2

Youssef Ouknine Faculte des Sciences Semlalia March 2-13, 2009, Jena

Page 31: Fubini Theorem for Stable Processes - uni-jena.de · Supported by the Academy Hassan II of Sciences and Technology Youssef Ouknine Facult e des Sciences Semlalia March 2-13, 2009,

.Deheuvels, G.Peccati and M.Yor: On quadratic functionals ofthe Brownian sheet and related processes, Stoch. Proc. Appl(2006), 116 (3), 493-538.

C.Donati-Martin and M.Yor: Fubini’s theorem for doubleWiener integrals and variance of the Brownian path, Annalesde l’Institut H. Poincare (1991), 181-200.

C. Donati-Martin, S. Song and M. Yor: Symmetric stableprocesses, Fubini’s theorem and some extension of theCiesielski-Taylor identities in law, Stochastics and StochasticsReports (1994), 50, 1-33.

K. Sato: Levy processes and infinitely divisible distributions,Cambridge Press, Cambridge (1999).

Youssef Ouknine Faculte des Sciences Semlalia March 2-13, 2009, Jena