from synapse to spiny dendrite paul bressloff berton earnshaw · march 26, 2009 bressloff,...

68
Multiple spatial scales of AMPA receptor trafficking From synapse to spiny dendrite Paul Bressloff Berton Earnshaw Department of Mathematics University of Utah March 26, 2009 Bressloff, Earnshaw (Utah) Multiple scales of AMPAR trafficking March 26, 2009 1 / 52

Upload: truongcong

Post on 26-Feb-2019

214 views

Category:

Documents


0 download

TRANSCRIPT

Multiple spatial scales of AMPA receptor traffickingFrom synapse to spiny dendrite

Paul Bressloff Berton Earnshaw

Department of MathematicsUniversity of Utah

March 26, 2009

Bressloff, Earnshaw (Utah) Multiple scales of AMPAR trafficking March 26, 2009 1 / 52

AMPA receptor trafficking Introduction

The amazing brain

Bressloff, Earnshaw (Utah) Multiple scales of AMPAR trafficking March 26, 2009 2 / 52

AMPA receptor trafficking Introduction

Neurons communicate at synapses

Bressloff, Earnshaw (Utah) Multiple scales of AMPAR trafficking March 26, 2009 3 / 52

AMPA receptor trafficking Introduction

Communication at a synapse

Kandel, Schwartz & Jessel (2000)

Bressloff, Earnshaw (Utah) Multiple scales of AMPAR trafficking March 26, 2009 4 / 52

AMPA receptor trafficking Introduction

Synapses can “learn”

Collingridge et al., Nat Rev Neurosci (2004)

Bressloff, Earnshaw (Utah) Multiple scales of AMPAR trafficking March 26, 2009 5 / 52

AMPA receptor trafficking Introduction

Synapses “learn” by regulating receptor numbers

LTDDepressed PotentiatedNaïve LTP

Bressloff, Earnshaw (Utah) Multiple scales of AMPAR trafficking March 26, 2009 6 / 52

AMPA receptor trafficking Introduction

Synapses located in dendritic spines

Matus, Science (2000)

Bressloff, Earnshaw (Utah) Multiple scales of AMPAR trafficking March 26, 2009 7 / 52

AMPA receptor trafficking Introduction

Receptor trafficking at a synapse

Bressloff, Earnshaw (Utah) Multiple scales of AMPAR trafficking March 26, 2009 8 / 52

AMPA receptor trafficking Introduction

Receptors diffuse laterally between synapses

Triller & Choquet, Nat. Rev. Neurosci. (2003)

Bressloff, Earnshaw (Utah) Multiple scales of AMPAR trafficking March 26, 2009 9 / 52

AMPA receptor trafficking Introduction

Long-range transport of receptors

1. somatic exocytosis

2. lateral membrane diffusion

3. surface entry into spine

4. local exo/endocytosis

12 3

4

Groc & Choquet, 2006

Bressloff, Earnshaw (Utah) Multiple scales of AMPAR trafficking March 26, 2009 10 / 52

AMPA receptor trafficking Outline

• Single-spine model (deterministic)

• Single-synapse model (stochastic)

• 2D diffusion model

• 1D diffusion models

• Other diffusion-trapping problems

Bressloff, Earnshaw (Utah) Multiple scales of AMPAR trafficking March 26, 2009 11 / 52

AMPA receptor trafficking Single-spine model

Model of single-spine AMPAR trafficking

Spine head:dR

dt=

1

A(µ[U − R ] − kR − h[R − P ])

PSD unbound:dP

dt=

h

a[R − P ] − α[Z − Q]P + βQ +

σEXOC

a

PSD bound:dQ

dt= α[Z − Q]P − βQ

Intracellular:dC

dt= −σEXOC − σDEGC + kR + δ

kσEXO

C

R Uµ

σDEG

hPQ

α(Z-Q)

β

δAMPA receptor

scaffolding protein

PSD Spine Head

ENDEXO

DEGDEL

BAE & Bressloff, J Neurosci (2006)

Bressloff, Earnshaw (Utah) Multiple scales of AMPAR trafficking March 26, 2009 12 / 52

AMPA receptor trafficking Single-spine model

Block exo/endocytosis

Luscher et al., Neuron (1999)

Bressloff, Earnshaw (Utah) Multiple scales of AMPAR trafficking March 26, 2009 13 / 52

AMPA receptor trafficking Single-spine model

LTP simulation

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

10

20

30

40

50

60

70

80

90

100

t [min]

nu

mb

er o

f re

cep

tors

O' Connor et al (PNAS 2005)

GluR1/2

ΙΙ

Ι

GluR2/3

• Activation of GluR1/2 intracellular pool

• Rapid insertion of receptors into ESM

• AMPARs transport slot proteins into PSD

TotalBound GluR1/2Free GluR1/2Bound GluR2/3Free GluR2/3Scaffolding

Bressloff, Earnshaw (Utah) Multiple scales of AMPAR trafficking March 26, 2009 14 / 52

AMPA receptor trafficking Single-spine model

LTD simulation

0 30 60 90 120 150 180 2100

10

20

30

40

50

60

70

t [min]

nu

mb

er o

f re

cep

tors

• Switch from AMPA-GRIP to AMPA-PICK receptor-protein complexes

• Rapid unbinding from PSD and trafficking to ESM followed by endocytosis.

• Unbound scaffolding proteins are degraded.

Dudek & Bear (1993)

PSD ESMPSD ESM ESMPSD

GRIP PICK

TotalScaffolding

Bressloff, Earnshaw (Utah) Multiple scales of AMPAR trafficking March 26, 2009 15 / 52

AMPA receptor trafficking Single-spine model

Conclusions

1 Significant fraction of PSD receptors are mobile (Groc et al., 2004; Ashby et al.,

2006)

• Requires PSD-ESM barrier (Choquet & Triller, 2003)

2 Diffusive impedance of spine neck is significant (Ashby et al., 2006)

3 Insertion of GluR1/2 during LTP must combine synaptic targeting

• Requires increased hopping and binding rate (Schnell et al., 2002) andscaffolding (Shi et al., 2001)

4 Slow exchange of GluR1/2 with GluR2/3 after LTP requiresmaintenance of additional binding sites (McCormack et al., 2006)

5 LTD requires loss of binding sites (Colledge et al., 2003)

Bressloff, Earnshaw (Utah) Multiple scales of AMPAR trafficking March 26, 2009 16 / 52

AMPA receptor trafficking Stochastic single-synapse model

• Single-spine model (deterministic)

• Single-synapse model (stochastic)• 2D diffusion model

• 1D diffusion models

• Other diffusion-trapping problems

Bressloff, Earnshaw (Utah) Multiple scales of AMPAR trafficking March 26, 2009 17 / 52

AMPA receptor trafficking Stochastic single-synapse model

Stochastic model of trafficking at PSDdp

dt= −α(Z − q)p + βq − µp + σ

dq

dt= α(Z − q)p − βq

DEG

ENDEXO

A

PSD

AMPA receptorscaffolding protein

B

PROD

ESM

PSD

ESM

α

βpq

(Z - q) σ

µ

Bressloff & BAE Biophys J (2009)

Bressloff, Earnshaw (Utah) Multiple scales of AMPAR trafficking March 26, 2009 18 / 52

AMPA receptor trafficking Stochastic single-synapse model

Stochastic model of trafficking at PSDdp

dt= −α(Z − q)p + βq − µp + σ

dq

dt= α(Z − q)p − βq

Pn,m(t) = Probn unbound,m bound at time tDEG

ENDEXO

A

PSD

AMPA receptorscaffolding protein

B

PROD

ESM

PSD

ESM

α

βpq

(Z - q) σ

µ

Bressloff & BAE Biophys J (2009)

Bressloff, Earnshaw (Utah) Multiple scales of AMPAR trafficking March 26, 2009 18 / 52

AMPA receptor trafficking Stochastic single-synapse model

Stochastic model of trafficking at PSDdp

dt= −α(Z − q)p + βq − µp + σ

dq

dt= α(Z − q)p − βq

Pn,m(t) = Probn unbound,m bound at time tdPn,m

dt= σPn−1,m + µ(n + 1)Pn+1,m

+ α(n + 1)[Z − (m − 1)]Pn+1,m−1

+ β(m + 1)Pn−1,m+1

− [σ + µn + αn(Z − m) + βm]Pn,m

DEG

ENDEXO

A

PSD

AMPA receptorscaffolding protein

B

PROD

ESM

PSD

ESM

α

βpq

(Z - q) σ

µ

Bressloff & BAE Biophys J (2009)

Bressloff, Earnshaw (Utah) Multiple scales of AMPAR trafficking March 26, 2009 18 / 52

AMPA receptor trafficking Stochastic single-synapse model

Stochastic model of trafficking at PSDdp

dt= −α(Z − q)p + βq − µp + σ

dq

dt= α(Z − q)p − βq

Pn,m(t) = Probn unbound,m bound at time tdPn,m

dt= σPn−1,m + µ(n + 1)Pn+1,m

+ α(n + 1)[Z − (m − 1)]Pn+1,m−1

+ β(m + 1)Pn−1,m+1

− [σ + µn + αn(Z − m) + βm]Pn,m

stochastic gate : 0 < µopen

γ−

−→

←−

γ+

µclosed = 0

σ(t) = Cµ(t) (C bath conc.)

DEG

ENDEXO

A

PSD

AMPA receptorscaffolding protein

B

PROD

ESM

PSD

ESM

α

βpq

(Z - q) σ

µ

Bressloff & BAE Biophys J (2009)

Bressloff, Earnshaw (Utah) Multiple scales of AMPAR trafficking March 26, 2009 18 / 52

AMPA receptor trafficking Stochastic single-synapse model

Analysis in two regimes: un/saturated binding sites• Can do math in two regimes:

• unsaturated binding sites: m(t) ≪ Z for all t (i.e., αn(t) ≪ β)• saturated binding sites: m(t) = Z for all t (i.e., αn(t) ≫ β)

Bressloff, Earnshaw (Utah) Multiple scales of AMPAR trafficking March 26, 2009 19 / 52

AMPA receptor trafficking Stochastic single-synapse model

Analysis in two regimes: un/saturated binding sites• Can do math in two regimes:

• unsaturated binding sites: m(t) ≪ Z for all t (i.e., αn(t) ≪ β)• saturated binding sites: m(t) = Z for all t (i.e., αn(t) ≫ β)

• Unsaturated regime: master equation is linear in n,m• Generating function

G(u, v , t) =

∞∑

n=0

∞∑

m=0

unvmPn,m(t)

satisfies first-order linear PDE

∂G

∂t+ [µ(t)(u − 1) + αZ (u − v)]

∂G

∂u− β(u − v)

∂G

∂v= σ(t)(u − 1)G

Bressloff, Earnshaw (Utah) Multiple scales of AMPAR trafficking March 26, 2009 19 / 52

AMPA receptor trafficking Stochastic single-synapse model

Analysis in two regimes: un/saturated binding sites• Can do math in two regimes:

• unsaturated binding sites: m(t) ≪ Z for all t (i.e., αn(t) ≪ β)• saturated binding sites: m(t) = Z for all t (i.e., αn(t) ≫ β)

• Unsaturated regime: master equation is linear in n,m• Generating function

G(u, v , t) =

∞∑

n=0

∞∑

m=0

unvmPn,m(t)

satisfies first-order linear PDE

∂G

∂t+ [µ(t)(u − 1) + αZ (u − v)]

∂G

∂u− β(u − v)

∂G

∂v= σ(t)(u − 1)G

• Obtain mean, variance from derivatives of G

Eµ(n) =∂G

∂u

∣∣∣∣u=v=1

, Eµ(m) =∂G

∂v

∣∣∣∣u=v=1

Bressloff, Earnshaw (Utah) Multiple scales of AMPAR trafficking March 26, 2009 19 / 52

AMPA receptor trafficking Stochastic single-synapse model

Averaging over realizations of µ

• Can show that

E(n) ≡ 〈Eµ(n)〉 = C + (n0 − C )〈N11〉 + (m0 − CαZ/β)〈N21〉E(m) ≡ 〈Eµ(m)〉 = CαZ/β + (n0 − C )〈N12〉 + (m0 − CαZ/β)〈N22〉

where

N (t) = exp

(−

∫ t

0M(t ′)dt ′

), M(t) =

(µ(t) + αZ −αZ

−β β

)

Bressloff, Earnshaw (Utah) Multiple scales of AMPAR trafficking March 26, 2009 20 / 52

AMPA receptor trafficking Stochastic single-synapse model

Averaging over realizations of µ

• Can show that

E(n) ≡ 〈Eµ(n)〉 = C + (n0 − C )〈N11〉 + (m0 − CαZ/β)〈N21〉E(m) ≡ 〈Eµ(m)〉 = CαZ/β + (n0 − C )〈N12〉 + (m0 − CαZ/β)〈N22〉

where

N (t) = exp

(−

∫ t

0M(t ′)dt ′

), M(t) =

(µ(t) + αZ −αZ

−β β

)

• Can derive a system of ODEs for the averages of the entries of Nusing method of Kubo and Zwanzig

Bressloff, Earnshaw (Utah) Multiple scales of AMPAR trafficking March 26, 2009 20 / 52

AMPA receptor trafficking Stochastic single-synapse model

Saturated binding sites

• Since m(t) = Z for all t, master equation becomes

dPn

dt= µ(t) [CPn−1 + (n + 1)Pn+1(t) − (C + n)Pn]

Bressloff, Earnshaw (Utah) Multiple scales of AMPAR trafficking March 26, 2009 21 / 52

AMPA receptor trafficking Stochastic single-synapse model

Saturated binding sites

• Since m(t) = Z for all t, master equation becomes

dPn

dt= µ(t) [CPn−1 + (n + 1)Pn+1(t) − (C + n)Pn]

• Brown et al. (Biophys J, 2000) showed that

E(n) = (n0 − C )〈w〉 + C

Var(n) = E(n) − n0〈w2〉 + (n0 − C )2(〈w2〉 − 〈w〉2

)

⟨w(t)j

⟩=

(11

)T

exp

[−t

(jµo + γ− −γ+

−γ− γ+

)](Πo

Πc

), (j = 1, 2)

Πo =γ+

γ+ + γ−, Πc =

γ−γ+ + γ−

Bressloff, Earnshaw (Utah) Multiple scales of AMPAR trafficking March 26, 2009 21 / 52

AMPA receptor trafficking Stochastic single-synapse model

FRAP and inverse FRAP experiments

ESMPSD

PSDPSDPSD

PSDPSD

ESMESM ESM

ESMESM

FRAP

inverse FRAP

recovery

recovery

unbleached receptorbleached receptorscaffolding protein

Bressloff, Earnshaw (Utah) Multiple scales of AMPAR trafficking March 26, 2009 22 / 52

AMPA receptor trafficking Stochastic single-synapse model

Simulations of FRAP and inverse FRAP

0 2 4 6 8 10 12 14 16 18 200

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

vari

ance

dynamicstatic

0 0.04 0.08 0.12 0.16 0.20

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16 18 200

1

2

3

4

5

6

7

8

9

10

0 0.04 0.08 0.12 0.16 0.20

1

2

3

4

5

6

7

0 2 4 6 8 10 12 14 16 18 200

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

time [s]

vari

ance

dynamicstaticmean

0 0.04 0.08 0.12 0.16 0.20

0.4

0.8

1.2

1.6

2

0 2 4 6 8 10 12 14 16 18 200

1

2

3

4

5

6

7

8

9

10

time [s]

0 0.04 0.08 0.12 0.16 0.20

2

4

6

8

10

0 2 4 6 8 10 12 14 16 18 200

2

4

6

8

10

12

14

16

18

20

0 0.04 0.08 0.12 0.16 0.20

4

8

12

16

20

0 2 4 6 8 10 12 14 16 18 200

2

4

6

8

10

12

14

16

18

20

time [s]

0 0.04 0.08 0.12 0.16 0.20

4

8

12

16

20

C

F

B

E

A

D

Bressloff, Earnshaw (Utah) Multiple scales of AMPAR trafficking March 26, 2009 23 / 52

AMPA receptor trafficking 2D diffusion model

• Single-spine model (deterministic)

• Single-synapse model (stochastic)

• 2D diffusion model• 1D diffusion models

• Other diffusion-trapping problems

Bressloff, Earnshaw (Utah) Multiple scales of AMPAR trafficking March 26, 2009 24 / 52

AMPA receptor trafficking 2D diffusion model

Treat dendritic membrane as cylinder with holes

x = 0

spine

x = L

Jsoma DEG

ENDEXO

receptor

scaffoldingprotein

PSD

DEL

Bressloff, BAE & Ward, SIAM J Appl Math (2008)

Bressloff, Earnshaw (Utah) Multiple scales of AMPAR trafficking March 26, 2009 25 / 52

AMPA receptor trafficking 2D diffusion model

Diffusion equation on dendritic membrane

∂U

∂t= D∇2U on Ωε

y = πl

x = 0 x = Ly = -πl

Ωε

Ωj

• U = receptor concentration

• Ωε is rectangle (0,L) × (−πl , πl) minus the holes

Ωj = r ∈ Ω0 | |r − rj | ≤ ερ, j = 1, . . . ,N

Bressloff, Earnshaw (Utah) Multiple scales of AMPAR trafficking March 26, 2009 26 / 52

AMPA receptor trafficking 2D diffusion model

Boundary conditions

• Periodic bcs at y = ±πl

• No-flux bc at x = L, and at x = 0

−D∂U

∂x= Jsoma =

σ

2πl

• bcs at the holes:

−D∂U

∂n(r, t) =

µj

2περ(U(r, t) − Rj), r ∈ ∂Ωj

• µj = spine neck hopping rate• Rj = receptor concentration on surface of jth spine

y = πl

x = 0 x = Ly = -πl

Ωε

Ωj

Bressloff, Earnshaw (Utah) Multiple scales of AMPAR trafficking March 26, 2009 27 / 52

AMPA receptor trafficking 2D diffusion model

Treat each spine as before

kσEXO

C

R Uµ

σDEG

hPQ

α(Z-Q)

β

δAMPA receptor

scaffolding protein

PSD Spine Head

ENDEXO

DEGDEL

Bressloff, Earnshaw (Utah) Multiple scales of AMPAR trafficking March 26, 2009 28 / 52

AMPA receptor trafficking 2D diffusion model

Steady-state solution

• Assume concentrations in jth spine see mean value of U on ∂Ωj :

Uj =1

2περ

∂Ωj

U(r)dr

Bressloff, Earnshaw (Utah) Multiple scales of AMPAR trafficking March 26, 2009 29 / 52

AMPA receptor trafficking 2D diffusion model

Steady-state solution

• Assume concentrations in jth spine see mean value of U on ∂Ωj :

Uj =1

2περ

∂Ωj

U(r)dr

• Uj ’s are determined by solving ∇2U = 0 in Ωε with boundaryconditions

Bressloff, Earnshaw (Utah) Multiple scales of AMPAR trafficking March 26, 2009 29 / 52

AMPA receptor trafficking 2D diffusion model

Steady-state solution

• Assume concentrations in jth spine see mean value of U on ∂Ωj :

Uj =1

2περ

∂Ωj

U(r)dr

• Uj ’s are determined by solving ∇2U = 0 in Ωε with boundaryconditions

• But this is hard because of boundary conditions at the holes!

−εD∂U

∂n(r) =

µj

2πρ(U(r) − Rj), r ∈ ∂Ωj

Bressloff, Earnshaw (Utah) Multiple scales of AMPAR trafficking March 26, 2009 29 / 52

AMPA receptor trafficking 2D diffusion model

Three steps for finding approximate steady-state solution

1 Solve assuming U = Uj on the boundary of jth hole

Bressloff, Earnshaw (Utah) Multiple scales of AMPAR trafficking March 26, 2009 30 / 52

AMPA receptor trafficking 2D diffusion model

Three steps for finding approximate steady-state solution

1 Solve assuming U = Uj on the boundary of jth hole• Singular perturbation: match logarithmic solutions in each inner

region|r − rj | = O(ε)

with Green’s function singularities in outer region

|r − rj | = O(1) for all j

Bressloff, Earnshaw (Utah) Multiple scales of AMPAR trafficking March 26, 2009 30 / 52

AMPA receptor trafficking 2D diffusion model

Three steps for finding approximate steady-state solution

1 Solve assuming U = Uj on the boundary of jth hole• Singular perturbation: match logarithmic solutions in each inner

region|r − rj | = O(ε)

with Green’s function singularities in outer region

|r − rj | = O(1) for all j

• Solution has N + 1 unknowns: Uj ’s and integration constant

Bressloff, Earnshaw (Utah) Multiple scales of AMPAR trafficking March 26, 2009 30 / 52

AMPA receptor trafficking 2D diffusion model

Three steps for finding approximate steady-state solution

1 Solve assuming U = Uj on the boundary of jth hole• Singular perturbation: match logarithmic solutions in each inner

region|r − rj | = O(ε)

with Green’s function singularities in outer region

|r − rj | = O(1) for all j

• Solution has N + 1 unknowns: Uj ’s and integration constant

2 Substitute this solution into N simplified bcs at holes

−εD∂U

∂n(r) =

µj

2πρ(Uj − Rj), r ∈ ∂Ωj

Bressloff, Earnshaw (Utah) Multiple scales of AMPAR trafficking March 26, 2009 30 / 52

AMPA receptor trafficking 2D diffusion model

Three steps for finding approximate steady-state solution

1 Solve assuming U = Uj on the boundary of jth hole• Singular perturbation: match logarithmic solutions in each inner

region|r − rj | = O(ε)

with Green’s function singularities in outer region

|r − rj | = O(1) for all j

• Solution has N + 1 unknowns: Uj ’s and integration constant

2 Substitute this solution into N simplified bcs at holes

−εD∂U

∂n(r) =

µj

2πρ(Uj − Rj), r ∈ ∂Ωj

3 Conservation condition gives (N + 1)th equation

σ =∑

µj

(Uj − Rj

)

Bressloff, Earnshaw (Utah) Multiple scales of AMPAR trafficking March 26, 2009 30 / 52

AMPA receptor trafficking 2D diffusion model

Comparison of dendritic receptor concentration

perturbation solution

A

numerical solution

• Dendrite 100µm long, circumference 1µm, ǫρ = 0.1µm

• 100 identical spines spaced 1µm apart, all in a row

• Solutions are almost identical!

• Similar results if spines are not identical, not in a row

Bressloff, Earnshaw (Utah) Multiple scales of AMPAR trafficking March 26, 2009 31 / 52

AMPA receptor trafficking 1D diffusion models

• Single-spine model (deterministic)

• Single-synapse model (stochastic)

• 2D diffusion model

• 1D diffusion models• Other diffusion-trapping problems

Bressloff, Earnshaw (Utah) Multiple scales of AMPAR trafficking March 26, 2009 32 / 52

AMPA receptor trafficking 1D diffusion model with discrete spines

2D model well-approximated by 1D model

When the aspect ratio L/l ≫ 1, we can approximate 2D model by thefollowing 1D model

∂U

∂t= D

∂2U

∂x2−

N∑

j=1

δ(x − xj)µj(Uj − Rj)

−D∂U

∂x

∣∣∣∣x=0

= Jsoma,∂U

∂x

∣∣∣∣x=L

= 0.

Bressloff & BAE, PRE (2007)

Bressloff, Earnshaw (Utah) Multiple scales of AMPAR trafficking March 26, 2009 33 / 52

AMPA receptor trafficking 1D diffusion model with discrete spines

Comparison of models

2D model

0 20 40 60 80 10010

15

20

25

30

35

40

45

x [µm]

rece

ptor

s

Uj

Rj

Sj

B1D model

0 20 40 60 80 10010

15

20

25

30

35

40

45

x [µm]re

cept

ors

Uj

Rj

Sj

D

• 2D model as before• Dendrite 100µm long, circumference 1µm, ǫρ = 0.1µm• 100 identical spines spaced 1µm apart, all in a row

• 1D model use same parameters when relevant

• Solutions are almost identical!

Bressloff, Earnshaw (Utah) Multiple scales of AMPAR trafficking March 26, 2009 34 / 52

AMPA receptor trafficking 1D diffusion model with density of spines

Can we make things even simpler?

Bressloff, Earnshaw (Utah) Multiple scales of AMPAR trafficking March 26, 2009 35 / 52

AMPA receptor trafficking 1D diffusion model with density of spines

Treat spine population as continuous density

If spines are sufficiently dense, treat sum of delta functions as a density η

∂U

∂t= D

∂2U

∂x2− η(x)µ(x)(U − R)

−D∂U

∂x

∣∣∣∣x=0

= Jsoma,∂U

∂x

∣∣∣∣x=L

= 0.

BAE & Bressloff, J Comput Neurosci (2008)

Bressloff, Earnshaw (Utah) Multiple scales of AMPAR trafficking March 26, 2009 36 / 52

AMPA receptor trafficking 1D diffusion model with density of spines

Steady-state solution for identical spines: “cable” equation

• Assume all parameters are x-independent, then get “cable” equationfor receptor trafficking

d2U

dx2− Λ2U = −Λ2R

Λ =

√ηµ

Dis length-scale of diffusive coupling

Bressloff, Earnshaw (Utah) Multiple scales of AMPAR trafficking March 26, 2009 37 / 52

AMPA receptor trafficking 1D diffusion model with density of spines

Steady-state solution for identical spines: “cable” equation

• Assume all parameters are x-independent, then get “cable” equationfor receptor trafficking

d2U

dx2− Λ2U = −Λ2R

Λ =

√ηµ

Dis length-scale of diffusive coupling

• Solve using Green’s function methods

U(x) =Jsoma

D

cosh(Λ(x − L))

Λ sinh(ΛL)+ R

Bressloff, Earnshaw (Utah) Multiple scales of AMPAR trafficking March 26, 2009 37 / 52

AMPA receptor trafficking 1D diffusion model with density of spines

Steady-state receptor concentrations for identical spines

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

20

40

60

80

100

120

140

160

180

200

distance from soma [mm]

nu

mb

er o

r co

nce

ntr

atio

n [

µm-2

]

concentration in dendritenumber in PSDnumber bound in PSD

Piccini & Malinow, 2002

GluR1/2GluR2/3

• Dendrite 1 mm long

• 1,000 identical spines spaced 1µm apart

• Two sources of receptors• at soma• local intracellular delivery

Bressloff, Earnshaw (Utah) Multiple scales of AMPAR trafficking March 26, 2009 38 / 52

AMPA receptor trafficking 1D diffusion model with density of spines

Consequences of diffusive coupling

10-fold reduction inrate of exocytosis

in gray region

0 20 40 60 80 100 120 140 160 180 2000

10

20

30

40

50

60

70

80

distance from soma [µm]

PS

D r

ecep

tors

after perturbationbefore perturbation

10-fold increase inrate of endocytosis

in gray region

0 20 40 60 80 100 120 140 160 180 2000

10

20

30

40

50

60

70

80

distance from soma [µm]

PS

D r

ecep

tors

Bressloff, Earnshaw (Utah) Multiple scales of AMPAR trafficking March 26, 2009 39 / 52

AMPA receptor trafficking 1D diffusion model with density of spines

Steady-state is nice......but what about time-dependent phenomena?

Bressloff, Earnshaw (Utah) Multiple scales of AMPAR trafficking March 26, 2009 40 / 52

AMPA receptor trafficking 1D diffusion model with density of spines

AMPA receptor recycling via thrombin cleavage

Passafaro et al., Nat. Neurosci. (2001)

Bressloff, Earnshaw (Utah) Multiple scales of AMPAR trafficking March 26, 2009 41 / 52

AMPA receptor trafficking 1D diffusion model with density of spines

AMPA receptor recycling via photoinactivation

Adesnik et al., Neuron (2005)Bressloff, Earnshaw (Utah) Multiple scales of AMPAR trafficking March 26, 2009 42 / 52

AMPA receptor trafficking 1D diffusion model with density of spines

Fast or slow recycling of AMPA receptors?

Passafaro et al., 2001 Adesnik et al., 2005

Bressloff, Earnshaw (Utah) Multiple scales of AMPAR trafficking March 26, 2009 43 / 52

AMPA receptor trafficking 1D diffusion model with density of spines

Simulation of photoinactivation of AMPA receptors

0 4 8 12 16 20 240

10

20

30

40

50

60

70

80

90

reco

very

[%

bas

elin

e]

2 221814106

10 µm300 µm

time [hr]

PSD

intracellularpool

inactive AMPAR

active AMPAR

scaffolding protein

Fast insertionfrom pool

Depletion ofpool

Recovery ofpool

Replacement ofbound AMPARs

Bressloff, Earnshaw (Utah) Multiple scales of AMPAR trafficking March 26, 2009 44 / 52

AMPA receptor trafficking Other diffusion-trapping problems

• Single-spine model (deterministic)

• Single-synapse model (stochastic)

• 2D diffusion model

• 1D diffusion models

• Other diffusion-trapping problems

Bressloff, Earnshaw (Utah) Multiple scales of AMPAR trafficking March 26, 2009 45 / 52

AMPA receptor trafficking Other diffusion-trapping problems

CaMKII translocation waves

Rose et al., Neuron (2009)

Bressloff, Earnshaw (Utah) Multiple scales of AMPAR trafficking March 26, 2009 46 / 52

AMPA receptor trafficking Other diffusion-trapping problems

Diffusion-activation model of CaMKII translocation waves

primed CaMKII

activated CaMKII

diffusion-activationtranslocation

b

c

x = Lx = 0

30µm

soma dendrite

a

Bressloff, Earnshaw (Utah) Multiple scales of AMPAR trafficking March 26, 2009 47 / 52

AMPA receptor trafficking Other diffusion-trapping problems

Equations for diffusion-activation model

∂p

∂t= D

∂2p

∂x2− kap

∂a

∂t= D

∂2a

∂x2+ kap − ha

∂s

∂t= ha

• p = concentration of primed CaMKII in shaft

• a = concentration of activated CaMKII in shaft

• s = concentration of activated CaMKII in spines

• k, h = rate of activation, translocation

BAE & Bressloff, In prep.

Bressloff, Earnshaw (Utah) Multiple scales of AMPAR trafficking March 26, 2009 48 / 52

AMPA receptor trafficking Other diffusion-trapping problems

Simulation of diffusion-activation model

0

0.2

0.4

0.6

0.8

1

1.2C

aMK

II [n

orm

. co

nc.

] 10 sec 65 sec

0 30 60 90 120 1500

0.2

0.4

0.6

0.8

1

1.2

x [µm]

CaM

KII

[no

rm. c

on

c.] 140 sec

0 30 60 90 120 150

348 sec

total in spinestotal in dendriteprimed in dendriteactivated in dendrite

x [µm]

Bressloff, Earnshaw (Utah) Multiple scales of AMPAR trafficking March 26, 2009 49 / 52

AMPA receptor trafficking Other diffusion-trapping problems

Calculation of wave speed

• When h = 0 (no translocation), recover Fisher’s equation with speed

c = 2√

Dk

Bressloff, Earnshaw (Utah) Multiple scales of AMPAR trafficking March 26, 2009 50 / 52

AMPA receptor trafficking Other diffusion-trapping problems

Calculation of wave speed

• When h = 0 (no translocation), recover Fisher’s equation with speed

c = 2√

Dk

• When h 6= 0, wave speed is

c = 2√

D(k − h)

0 0.2 0.4 0.6 0.8 10

0.5

1

1.5

2

h/k

c/√(Dk)

0 0.5 1 1.5 20

0.5

1

1.5

2

2.5

3

activation rate k [1/s]

wave spee

d c [

µm/s]

CaMKIIαCaMKIIβ

a b

Bressloff, Earnshaw (Utah) Multiple scales of AMPAR trafficking March 26, 2009 50 / 52

AMPA receptor trafficking Other diffusion-trapping problems

Calculation of wave speed

• When h = 0 (no translocation), recover Fisher’s equation with speed

c = 2√

Dk

• When h 6= 0, wave speed is

c = 2√

D(k − h)

0 0.2 0.4 0.6 0.8 10

0.5

1

1.5

2

h/k

c/√(Dk)

0 0.5 1 1.5 20

0.5

1

1.5

2

2.5

3

activation rate k [1/s]

wave spee

d c [

µm/s]

CaMKIIαCaMKIIβ

a b

• Wave propagation failure when k < hBressloff, Earnshaw (Utah) Multiple scales of AMPAR trafficking March 26, 2009 50 / 52

AMPA receptor trafficking Other diffusion-trapping problems

Other projects with diffusion-trapping models

• other heterosynaptic molecules, e.g. PSD-95

• changes in spine volume during late-phase LTP• mRNA transport/capture/translation• F-actin regulation/stabilization by AMPA receptors

• protein transport/capture during synaptogenesis, e.g. NMDAreceptors

• AMPA receptor trafficking in more detailed model of PSD

• put all the pieces together!

Bressloff, Earnshaw (Utah) Multiple scales of AMPAR trafficking March 26, 2009 51 / 52

AMPA receptor trafficking The end

Thank you!

Thanks to

• Paul Bressloff (Utah)

• Michael Ward (UBC)

• NSF

Bressloff, Earnshaw (Utah) Multiple scales of AMPAR trafficking March 26, 2009 52 / 52