from long-range interactions to collective behaviour and from hamiltonian chaos

56
Senigallia, September 200 5 1 From long-range interactions to collective behaviour and from hamiltonian chaos to stochastic models Yves Elskens umr6633 CNRS — univ. Provence Marseille Coulomb’05 High intensity beam dynamics September 12 - 16, 2005 – Senigallia (AN), Italy http://www.crcpress.com/shopping_cart/products/product_detail.asp?sku=IP464

Upload: oleg-kim

Post on 31-Dec-2015

12 views

Category:

Documents


0 download

DESCRIPTION

Coulomb’05 High intensity beam dynamics September 12 - 16, 2005 – Senigallia (AN), Italy. From long-range interactions to collective behaviour and from hamiltonian chaos to stochastic models Yves Elskens umr6633 CNRS — univ. Provence Marseille. - PowerPoint PPT Presentation

TRANSCRIPT

Senigallia, September 2005 1

From long-range interactions

to collective behaviour

and from hamiltonian chaos

to stochastic modelsYves Elskens

umr6633 CNRS — univ. ProvenceMarseille

Coulomb’05 High intensity beam dynamicsSeptember 12 - 16, 2005 – Senigallia (AN), Italy

http://www.crcpress.com/shopping_cart/products/product_detail.asp?sku=IP464

Senigallia, September 2005 2

• 1. Effective dyn., collective deg. freedom

• 2. Kinetic concepts

• 3. Vlasov

• 4. Limitations, extensions : macroparticle, granularity (N<), entropy production...

• 5. Boltzmann, Landau, Balescu-Lenard

• 6. Quasilinear limit : transport

Senigallia, September 2005 3

1. Long range yields collective degrees of freedom

• Ex. mollified Coulomb (Fourier truncated) : H(q,p) = i

pi2/(2m)

- n i,j kn-2 cos kn.(qi-qj) dt

2 qj = (1/m) n En(qj)

En(x) = - j kn-1 sin kn.(x-qj)

r,n Ar,n(t) sin (kn.x - r,nt)with envelopes A varying slowlyAntoni, Elskens & Sandoz, Phys. Rev. E 57 (1998) 5347

Senigallia, September 2005 4

1 wave and 1 particle

• Integrable system

• Locality in velocity : p-j/kj 2 ~ 4 j Ij1/2

Senigallia, September 2005 5

Beam-plasma paradigm

Underlying plasma electrostatic modes (Langmuir, Bohm-

Gross)

Senigallia, September 2005 6

M waves and N particles

• Effective lagrangian

• Effective hamiltonian H(p, q, I, ) = i pi

2/2 + j j Ij - i,j j Ij1/2 cos (kjqi-j)

coupling type mean field (global), 2 speciesconstants : H, P = i pi + j kj Ij

Senigallia, September 2005 7

Effective hamiltonian

• Dynamical reduction to an effective lagrangian and hamiltonian (“good chaos” vs quasi-constants of motion) N0 >> M + N1 Ex. : N0 particles, Coulomb

M modes (collective, principal) + N1 particles (resonant or test)

Effective dynamics & thermodynamics

Elskens & Escande, Microscopic dynamics of plasmas and chaos (IoP, 2002)

Senigallia, September 2005 8

2. micro- < ... < macroscopic :Kinetic concepts

• Phase space for the dynamics : R6N

Instantaneous state : x = ((q1,p1), ..., (qN,pN))

Probability distribution : f(N)(x,t) dNx Realization : f(N)(y,t) = j=1

N (yj-xj(t))

Evolution (Liouville) : df/dt = -[H,f] tf + j (pj/m).f /qj + j Fj(x).f /pj = 0

Senigallia, September 2005 9

Kinetic concepts

• Observations : space (Boltzmann) R6

Instantaneous state : {(q1,p1), ..., (qN,pN)}Marginal distribution :

f(1)(q1,p1,t) dq1dp1 = .. f(N)(q1,p1,t) j=2

N dqjdp1 ... symmetrized :

f(1s)(q,p,t) = N-1 j f(1)(qj,pj,t)

Senigallia, September 2005 10

Kinetic concepts

• Realization : f(1s)(y,t) = N-1 j=1N (yj-xj(t))

Evolution (BBGKY) : tf(1) + (p/m).qf(1) + F(q,p).pf(1) = 0

with F(q,p) = F[f (N)] = ...

Senigallia, September 2005 11

Kinetic concepts

• Fluid moments : n(q,t) = N f(1s)(q,p,t) dpn u(q,t) = N (p/m) f(1s)(q,p,t) dp...

• Conservation laws by integration and closure

Senigallia, September 2005 12

Kinetic concepts

• Weak coupling : molecular independence approximation

f(N)(q,p,t) j f(1)(qj,pj,t)

... coherent with Liouville ? No !

... supported by dynamical chaos ?

... good approximation ?

Senigallia, September 2005 13

3. Vlasov

• Coupling of mean field type : F1(q,p) = F1[f (N)] = N-1 j=2

N F1j(qj-q1) and for N :

F1(q,p) F1j(q’-q1) f (1s) (q’,p’) dq’dp’ if the force is smooth enough (not pure Coulomb – OK if mollified)then : Vlasov

Spohn, Large scale dynamics of interacting particles (Springer, 1991)

Senigallia, September 2005 14

Vlasov

• Estimates for separation of solutions f(1s)(y,t) - g(1s)(y,t) < f(1s)(y,0) - g(1s)(y,0) et

: majorant for Liapunov exponent in R6N

idea : test particles norm . weak enough for Dirac

Senigallia, September 2005 15

Vlasov

• Ex. : g(1s)(y,0) “smooth” f(1s)(y,0) = N-1 j=1

N (yj-xj(0)) f(1s)(y,0) - g(1s)(y,0) < c N-1/2

• limN limt limt limN

Firpo, Doveil, Elskens, Bertrand, Poleni & Guyomarc'h, Phys. Rev. E 64 (2001) 026407

Senigallia, September 2005 16

4. M waves and N particles

• Effective hamiltonian mean field, 2 species H(p, q, I, ) = i pi

2/2 + j j Ij - i,j j Ij1/2 cos (kjqi-j)

• for M fixed, N : Vlasov

• M=1 : free electron laser, CARL, ...

Senigallia, September 2005 17

4.1. Cold beam instability

Senigallia, September 2005 18

Cold beam instability

Senigallia, September 2005 19

Cold beam instability

Senigallia, September 2005 20

Cold beam instability

Senigallia, September 2005 21

4.2. Instability and damping

Warm beam : L = c df/dv

Senigallia, September 2005 22

Warm beam instability

Senigallia, September 2005 23

Warm beam instability

Senigallia, September 2005 24

Warm beam instability

N2 : Lt = 200

Senigallia, September 2005 25

Warm beam instability

N2 : Lt = 200particles initially in range0.99 < v < 1.00 1.03 < v < 1.04

Senigallia, September 2005 26

Vlasov

• Casimir invariants dt f(1s)(q,p,t) = 0

dt [f(1s)(q,p,t)] dq dp = 0 (if exists) conserve all entropies !

• Trend to equilibrium ? No hamiltonian attractor !... but weak convergence g(q,p) f(1s)(q,p,t) dq dp (for any g)via filamentation

Senigallia, September 2005 27

Warm beam instability

Senigallia, September 2005 28

4.3. Thermalization (M=1) Dynamics : non-linear regimes (trapping)

Canonical ensemble : phase transition

Firpo & Elskens, Phys. Rev. Lett. 84 (2000) 3318

Senigallia, September 2005 29

Thermalization (M>>1)

Y. Elskens & N. Majeri (2005)

Senigallia, September 2005 30

4.4. Chaos & entropy production

• Chaos : Liapunov exponents > 01 = sup limt ln x(t) / x(0) 1+2 = sup limt ln a12(t) /

a12(0) a12(t) = x1(t) x2(t)

...

Senigallia, September 2005 31

Chaos & entropy production

• Hamilton Poincaré-Cartan : dt j=1

3N dpj dqj = 0 symmetric spectrum 6N-j = -j

Liouville : dt j=13N dpjdqj = 0

sum j=16N j = 0

no attractor !

Senigallia, September 2005 32

Chaos & entropy production

• Dynamical complexity : entropy production per time unit

dSmacro/dt < kB hKS ~ kB j j+

Arnold & Avez, Problèmes ergodiques de la mécanique classique (Gauthier-Villars, 1967)Pesin, Russ. Math. Surveys 32 n°4 (1977) 55 Elskens, Physica A 143 (1987) 1Dorfman, An introduction to chaos in nonequilibrium statistical mechanics (Cambridge, 1999)

Senigallia, September 2005 33

5. Kinetic approach : Boltzmann and variations

• Forces with short range (collisions), dilutionBoltzmann Ansatz : tf(1s) + (p/m).qf(1s) + Fext(q,p).pf(1s)

= Q[f(2s)] (BBGKY) Q[f(1s) f(1s)] (non-local in p)

= (f+(1s) f*+(1s) - f(1s) f*(1s)) b(, p*-p) d

dp*

Senigallia, September 2005 34

Boltzmann

• Valid with probability 1 in Grad limit : N , Nr2 = cst

for 0 < t < free/5or for expansion in vacuum...

longer time ? open problem !

Spohn, Large scale dynamics of interacting particles (Springer, 1991)

Senigallia, September 2005 35

Boltzmann

• Entropy :n sBoltzmann(q,t) = - kB f(1s)(q,p,t) ln (f(1s)(q,p,t)/f0)

dp

• H theorem : dsBoltzmann/dt > 0and = iff f(1s) locally maxwellian ; then sBoltzmann[f(1s)] = smicrocan[n,e]

Senigallia, September 2005 36

Boltzmann

• Irreversibility... byproduct of symmetry (microreversibility) of collisions

• H theorem : tool for existence and regularity of solutions

Friedlander & Serre, eds, Handbook of mathematical fluid dynamics (Elsevier, 2001,... )

Senigallia, September 2005 37

Landau, Balescu-Lenard-Guernsey

• Forces with long range and collisionstf(1s) + (p/m).qf(1s) + Fext(q,p).pf(1s)

= - p. U.(p* - p) (f(1s) f*(1s)) dp*

U = (...)dk (Coulomb, Fourier)

Senigallia, September 2005 38

Landau, Balescu-Lenard-Guernsey

• H theorem, maxwellian equilibria• Diagrammatic derivation... “challenge for

the future”

Balescu, Statistical dynamics (Imperial college press, 1997) Spohn, Large scale dynamics of interacting particles (Springer, 1991)

Senigallia, September 2005 39

6. M waves and N particles(weak Langmuir turbulence)

Senigallia, September 2005 40

M waves and N particles

• Effective hamiltonian H(p, q, I, ) = i pi

2/2 + j j Ij - i,j j Ij1/2 cos (kjqi-j)

mean field type coupling, 2 species

constants : H, P = i pi + j kj Ij

Senigallia, September 2005 41

1 wave and 1 particle

• Integrable system

• Locality in velocity : p-j/kj 2 ~ 4 j Ij1/2

Senigallia, September 2005 42

1 particle in 2 waves

• Resonance overlaps = [2(1I1

1/2)1/2+2(2I21/2)1/2] / / 1/k1 - 2/k2

Senigallia, September 2005 43

1 particle in M waves

Bénisti & Escande, Phys. Plasmas 4 (1997) 1576

Senigallia, September 2005 44

Quasilinear limit

• 0 < corr ~ M-1 < t < QL (gas : cf. free) dt q = v dt v = j j kj Ij

1/2 sin (kjq - j) ~ white noise

QL > J-1/3 ln s4/3 (or larger)

• t > box : dynamical independencebox ~ J-1/3

Senigallia, September 2005 45

Stochasticity in parameters dynamical chaos

(1 particle in M waves)

Senigallia, September 2005 46

Stochasticity in parameters dynamical chaos

Senigallia, September 2005 47

Quasilinear limitresonance box (Bénisti & Escande)

Senigallia, September 2005 48

Quasilinear limit : M (s), j random

• Dense wave spectrum vj+1-vj = vj ~ M-1 : “particle diffusion” (Smoluchowski-Fokker-Planck)

t f = v (2 J v f )

• Coupling coefficients (v) = (j/kj) = N j

2/4

• Waves : J(v) = J(j/kj) = kj Ij /(N vj)

Senigallia, September 2005 49

Quasilinear limit : M (s), N

• Dense wave spectrum vj+1-vj = vj ~ M-1 : t f = v Q

• Many particles, poorly coherent : induced and spontaneous emission

t J = Q

• Reciprocity of wave-particle interactions Q = 2 J v f – Fspont f Fspont(v) = - 2 /(N vj)

Senigallia, September 2005 50

Quasilinear limit

• H theorem S = - [f ln (f /f0) + (2)-1 Fspont ln J] dv

• No Casimir invariants for f(v,t)

• Phenomenological equations of markovian type : regeneration of instantaneous stochasticity by “good dynamical chaos”

Senigallia, September 2005 51

Conclusion• Long-range mean field, collective

degrees of freedom + fewer particles

• Smooth Vlasov (+ macroparticle)

• Mean field (e.g. charged particles) simpler than short range (gas) for H-theorem and kinetic eqn

• limN limt limt limN

• N< finite grid

Senigallia, September 2005 52

Senigallia, September 2005 53

Landau damping(non dissipative)

Senigallia, September 2005 54

Landau damping

Senigallia, September 2005 55

Landau damping

Senigallia, September 2005 56

Landau damping Dynamics : non-linear regimes (trapping)

Canonical ensemble : phase transition

Firpo & Elskens, Phys. Rev. Lett. 84 (2000) 3318