fragmentation functions at belle

27
Fragmentation Functions at Belle Anselm Vossen (University of Illinois) Matthias Grosse Perdekamp (University of Illinois) Martin Leitgab (University of Illinois) Akio Ogawa (BNL/RBRC) Ralf Seidl (RBRC) Kieran Boyle (RBRC) for the Belle collaboration SPIN2008, University of Virginia

Upload: nicole

Post on 24-Feb-2016

44 views

Category:

Documents


0 download

DESCRIPTION

Fragmentation Functions at Belle. Anselm Vossen (University of Illinois) Matthias Grosse Perdekamp (University of Illinois) Martin Leitgab (University of Illinois) Akio Ogawa (BNL/RBRC) Ralf Seidl (RBRC) Kieran Boyle (RBRC) for the Belle collaboration. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Fragmentation Functions  at Belle

Fragmentation Functions at Belle

Anselm Vossen (University of Illinois)Matthias Grosse Perdekamp

(University of Illinois)Martin Leitgab (University of Illinois)

Akio Ogawa (BNL/RBRC) Ralf Seidl (RBRC)

Kieran Boyle (RBRC)

for the Belle collaboration

SPIN2008, University of Virginia

Page 2: Fragmentation Functions  at Belle

Outline

• Motivation– Collins FF for transversity extraction in global QCD Analysis

of single transverse spin asymmetries in pp and SIDIS• Measuring Fragmentation Functions at Belle

– Experimental techniques– Collins FF results

• Interference Fragmentation Functions– Planned measurements of IFF at Belle– Recent results from PHENIX

• Summary & Outlook

Page 3: Fragmentation Functions  at Belle

Motivation: Transversity Quark Distributions δq(x) fromTransverse Single Spin Asymmetries in Semi Inclusive Deep Inelastic Scattering

Collins- and IFF- asymmetriesin semi-inclusive deep inelastic scattering (SIDIS) and pp measure

~ δq(x) x CFF(z) combined analysis with CFF from e+e- annihilation

Example: COMPASS results for Collins Asymmetries on proton target (see talk by H. Wollny)

Page 4: Fragmentation Functions  at Belle

Collins Effect in Quark FragmentationJ.C. Collins, Nucl. Phys. B396, 161(1993)

q

momentum hadron relative : 2

zmomentum hadron e transvers:

momentum hadron :

spinquark : momentumquark :

h

sE

EEpp

sk

h

qh

h

h

q

qs

k

hph ,

Collins Effect:Fragmentation of a transversely polarizedquark q into spin-less hadron h carries anazimuthal dependence:

hp

sin

qh spk

Page 5: Fragmentation Functions  at Belle

5

General Form of Fragmentation Functions

h

qhh

hqhqh

hq zM

spkpzHzDpzD

ˆ ),()(),( 2,

1,

1

Number density for finding hadron h from a transversely polarized quark, q:

unpolarized FF Collins FF

Page 6: Fragmentation Functions  at Belle

o Quark spin direction unknown: measurement of Collins function in one hemisphere is not possible sin φ modulation will average out.

o Correlation between two hemispheres with sin φi Collins single spin asymmetries results in cos(φ1+φ2) modulation of the observed di-hadron yield.

Measurement of azimuthal correlations for pion pairs around the jet axis in two-jet events!

Collins FF in e+e- : NeedCorrelation between Hemispheres !

Page 7: Fragmentation Functions  at Belle

7

q1

quark-1 spin

Collins effect in e+e-

quark fragmentation will lead to azimuthalasymmetries in di-hadron correlation measurements!

Experimental requirements: Small asymmetries very large data sample! Good particle ID to high momenta. Hermetic detector

Collins Effect in di-Hadron CorrelationsIn e+e- Annihilation into Quarks!

electron

positron

q2

quark-2 spin

z2 z1

z1,2 relative pion momenta

Page 8: Fragmentation Functions  at Belle

KEKB: L>1.7x1034cm-2s-1 !!• Asymmetric collider• 8GeV e- + 3.5GeV e+

• √s = 10.58GeV (U(4S))• e+e-U(4S)BB• Continuum production:

10.52 GeV• e+e-qq (u,d,s,c)• Integrated Luminosity: >700 fb-1

• >60fb-1 => continuum

8

Belle detectorKEKB

Page 9: Fragmentation Functions  at Belle

Collins Asymmetries in Belle 9 May 28th Large acceptance, good tracking and particle identification!

Page 10: Fragmentation Functions  at Belle

10

Collins Fragmentation: Angles and CrossSection: cos(12) Method (e+e- CMS frame)

j1

1hP

2hPj2

j1j

2

2

21

111

121221

21

sin411

cosq

cm

T

yyyB

zHzHyBddzdzd

Xhheedσ jj

2-hadron inclusive transverse momentum dependent cross section:

Net anti-alignment oftransverse quark spins

e-

e+

Observable: yield, N12 ( φ1+φ2 ) of π+π- pairs

Page 11: Fragmentation Functions  at Belle

11

Collins Fragmentation: Angles and Cross Section cos(20) Method (CMS Frame)

j0

1hP2hP

2

21

11TTTT02

21

21

sin411

pkphkh22cosq

cm

T

yyyB

MMHHyB

ddzdzdXhheedσ Ij

2-hadron inclusive transverse momentum dependent cross section:

Net anti-alignment oftransverse quark spins

Independent of thrust-axis

Convolution integral I over transverse momenta

[Boer,Jakob,Mulders: NPB504(1997)345]

e-

e+

Observable: yield,N0 ( 2φ0 ) of π+π- pairs

Page 12: Fragmentation Functions  at Belle

Examples of fits to azimuthal asymmetries

12

D1 : spin averaged fragmentation function,

H1: Collins fragmentation function

N()/N0

No change in cosine moments when including sine and higher harmonics

20 12)

• Cosine modulations

• clearly visible

• P1 contains information on Collins function

Page 13: Fragmentation Functions  at Belle

13

Methods to eliminate gluon contributions: Double ratios and subtractions

Double ratio method:

Subtraction method:

Pros: Acceptance cancels out

Cons: Works only if effects are small (both gluon radiation and signal)

Pros: Gluon radiation cancels out exactly

Cons: Acceptance effects remain

)(

)(

)(

)(

)(cos1)(sin)2cos(:

2

2

2

2

2

2

0 FavUnfUnfFavq

FavUnfUnfFavq

UnfUnfFavFavq

UnfUnfFavFavq

DDDDe

HHHHe

DDDDe

HHHHeFA

j

2 methods give very small difference in the result

Page 14: Fragmentation Functions  at Belle

14

Measuring Light Quark Fragmentation Functions on the ϒ(4S) Resonance

ii

ii

p

npTThrust

ˆ :

• small B contribution (<1%) in high thrust sample • >75% of X-section continuum under ϒ (4S) resonance• 29 fb-1 547 fb-1 • several systematic errors reduce with more statistics • Charm-tagged Data sample also increases

9.44 9.46

e+e- Center-of-Mass Energy (GeV)

0

5

10

15

20

25

(e+ e

- ha

dron

s)(n

b)

(1S)10.0010.02

0

5

10

15

20

25

(2S)10.34 10.37

0

5

10

15

20

25

(3S)10.54 10.58 10.62

0

5

10

15

20

25

(4S)9.44 9.46

e+e- Center-of-Mass Energy (GeV)

0

5

10

15

20

25

(e+ e

- ha

dron

s)(n

b)

(1S)10.0010.02

0

5

10

15

20

25

(2S)10.34 10.37

0

5

10

15

20

25

5

10

15

20

25

(2S)10.34 10.37

0

5

10

15

20

25

(3S)10.54 10.58 10.62

0

5

10

15

20

(3S)10.54 10.58 10.62

0

5

10

15

20

25

(4S)BB00 BB

e+e-qq, q uds∈

e+e-cc

0.5 0.8 1.0

4s“off”

Page 15: Fragmentation Functions  at Belle

15

Applied Cuts, Binning• Two data sets: off-resonance data ( 29.1 fb-1 ) on-resonance data ( 547 fb-1 )• Track selection:

– pT > 0.1GeV– vertex cut:

dr < 2cm, |dz| <4cm• Acceptance cut

– -0.6 < cosi < 0.9 • Event selection:

– Ntrack 3– Thrust > 0.8 – z1, z2 > 0.2

• Hemisphere cut

• QT < 3.5 GeV• Pion PID selection

0ˆ)ˆ(ˆ)ˆ( 12 nnPnnP hh

z2

0 1 2 3

4 5 6

7 8

9

0.20.3

0.5

0.7

1.0

0.2 0.3 0.5 0.7 1.0

5

86

1

2

3

z1

(z1, z2)-binning

Page 16: Fragmentation Functions  at Belle

16

Final Collins results

Belle 547 fb-1 data set (Phys.Rev.D78:032011,2008.)

Page 17: Fragmentation Functions  at Belle

Combined Analysis: Extract Transversity Distributions

Transversity, δq(x)Tensor Charge

Lattice QCD: Tensor Charge

Factorization + Universality ?!

Theo

rySIDIS

~ δq(x) x CFF(z)~ δq(x) x IFF(z)

e+e-

~ CFF(z1) x CFF(z2)~ IFF(z1) x IFF(z2)

pp jets

~ G(x1) x δq(x2) x CFF(z)

pp h+ + h- + X~ G(x1) x δq(x2) x IFF(z)

pp l+ + l- + X~ δq(x1) x δq(x2)

Page 18: Fragmentation Functions  at Belle

18

Anselmino, Boglione, D’Alesio,Kotzinian, Murgia, Prokudin, Turkand Melis at Transversity 2008,Ferrara. Previously:Phys. Rev. D75:05032,2007

HERMES SIDIS

+ COMPASS SIDIS

+ Belle e+e-

transversity dist.

+ Collins FF

Fit includes:

Extraction of Quark Transversity Distributionsand Collins Fragmentation Functions SIDIS + e+e-

Soffer Bound

Old fit New fit

New fit

Old fit

Page 19: Fragmentation Functions  at Belle

19

Anselmino, Boglione, D’Alesio,Kotzinian, Murgia, Prokudin, TurkPhys. Rev. D75:05032,2007

k┴ transverse quark momentum in nucleonp┴ transverse hadron momentum in fragmentation

hadron FF

quark pdf

The transverse momentum dependencies are unknown and veryDifficult to obtain experimentally!

),()(),(

)sin()sin(),()(),(

22

,122

pzDdy

dkxqkddde

pzHdy

dkxqkdddeA

hqhS

qq

hShqSqhS

qq

CollinsUT

transversit

y

Collins F

F

Collins Extraction of Transversity:unknown Transverse Momentum Dependences!

Page 20: Fragmentation Functions  at Belle

20

Why di-hadron SSA in SIDIS & p+p

• Di-hadron vs single hadron– Collinear factorization– No model uncertainties due to kT dependence of FF and PDF– Doesn’t need quark momentum– No need to separate effects like Sivers/Collins effects in single

hadron measurement– Completely independent measurement

• Di-hadron measurement in fixed target vs collider– At higher scale

• sub-leading twist effects suppressed• factorization assumption better justified

Page 21: Fragmentation Functions  at Belle

Interference Fragmentation–thrust method

• e+e- (+-)jet1()jet2X• Stay in the mass region around r-mass• Find pion pairs in opposite hemispheres• Observe angles j1+j2 between the event-

plane (beam, jet-axis) and the two two-pion planes.

• Transverse momentum is integrated(universal function, evolution easy directly applicable to semi-inclusive DIS and pp)

• Theoretical guidance by papers of Boer,Jakob,Radici[PRD 67,(2003)] and Artru,Collins[ZPhysC69(1996)]

• Early work by Collins, Heppelmann, Ladinsky [NPB420(1994)]

21 21221111 m,zHm,zHA jj cos

j2

j1

1hP

2hP

2h1h PP

Model predictions by:•Jaffe et al. [PRL 80,(1998)]•Radici et al. [PRD 65,(2002)]

Page 22: Fragmentation Functions  at Belle

Expected sensitivities for 60 fb-1

• () () pairs as a function of the invariant mass m,1 x m,2

• Similar distributions to be shown as a function of z,1 x z,2

• Other hadron combinations

22

Page 23: Fragmentation Functions  at Belle

23

Measurements of quark transversity

p+p

SIDIS

e++e-

E704, 1991Large forward SSA

STAR, PHENIX, BRAHMS, 2004~2005Inclusive AN

HERMES 2005, COMPASS 2006AUT

BELLE 2006Collins FF

BELLEIFF

RHICIFF asym.

RHICCollins asym.

JParc, RHIC, FAIRDrell-Yan

COMPASSp target

JLab 3He and 12 GeV

Underway Future1991 2005

CourtesyRuizhe Yang

Page 24: Fragmentation Functions  at Belle

24

Definition of Vectors and Angles

1 2

1 2

1 2

p+p c.m.s. = lab frame

, : momenta of protons

, : momenta of hadrons

( ) / 2

: proton spin orientation

A B

h h

C h h

C h h

B

P P

P P

P P P

R P P

S

1hP

2hP

100 GeVAP

100 GeVBP

CP

BS

pp hhX

1 2hadron plane: ,

scattering plane: ,

h h

C B

P P

P P

: from scattering plane to hadron plane

R : from polarization vector to scattering plane

S

Bacchetta and Radici, PRD70, 094032 (2004)

2 CR

Page 25: Fragmentation Functions  at Belle

25

vs invariant mass of the pairsinUTA

Consistent with 0, despite the second bin of 0h- pairs and the last bin of h+h- pairs are 2 from 0.

Systematic errors

Polarization 5%

Relative lumi. 5x10-4

No systematic effects detected from bunch shuffling

Ruizhe Yang, U of I,PKU RBRC Workshop2008

Page 26: Fragmentation Functions  at Belle

26

Future• Prospects from future large transverse spin

data sample from PHENIX• Sub-percent sensitivity possible

Page 27: Fragmentation Functions  at Belle

Summary & Outlook

• Collins FF at Belle final ->global analysis• 2H Interference FF Analysis underway• Plans for k_T dependent Upol FFs

– Necessary for global analysis w/o model assumptions

• 2H Interference FF at Phenix– First measurement of IFF at p-p collider– Analysis of 2008 data underway