fracture/conduit flow

32
Fracture/Conduit Flow

Upload: kaelem

Post on 07-Jan-2016

33 views

Category:

Documents


0 download

DESCRIPTION

Fracture/Conduit Flow. Fractured rock (NSW Australia). Motivation. Karst. http://research.gg.uwyo.edu/kincaid/Modeling/wakulla/wakcave2.jpg. ~11 m 3 s -1. ~100 m. White Scar, England; photo by Ian McKenzie, Calgary, Canada. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Fracture/Conduit Flow

Fracture/Conduit Flow

Page 2: Fracture/Conduit Flow

Fractured rock (NSW Australia)

Motivation

Page 3: Fracture/Conduit Flow

Karst http://research.gg.uwyo.edu/kincaid/Modeling/wakulla/wakcave2.jpg

~100 m

~11 m3 s-1

White Scar, England; photo by Ian McKenzie, Calgary, Canada

Page 4: Fracture/Conduit Flow

These data and images were produced at the High-Resolution X-ray Computed Tomography Facility of the University of Texas at Austin

Page 5: Fracture/Conduit Flow

Basic Fluid Dynamics

Page 6: Fracture/Conduit Flow

Momentum

• p = mu

Page 7: Fracture/Conduit Flow

Viscosity

• Resistance to flow; momentum diffusion

• Low viscosity: Air

• High viscosity: Honey

• Kinematic viscosity:

Page 8: Fracture/Conduit Flow

Reynolds Number

• The Reynolds Number (Re) is a non-dimensional number that reflects the balance between viscous and inertial forces and hence relates to flow instability (i.e., the onset of turbulence)

• Re = v L/• L is a characteristic length in the system• Dominance of viscous force leads to laminar flow (low

velocity, high viscosity, confined fluid)• Dominance of inertial force leads to turbulent flow (high

velocity, low viscosity, unconfined fluid)

Page 9: Fracture/Conduit Flow

Re << 1 (Stokes Flow)

Tritton, D.J. Physical Fluid Dynamics, 2nd Ed. Oxford University Press, Oxford. 519 pp.

Page 10: Fracture/Conduit Flow

Separation

Page 11: Fracture/Conduit Flow

Eddies, Cylinder Wakes, Vortex Streets

Re = 30

Re = 40

Re = 47

Re = 55

Re = 67

Re = 100

Re = 41Tritton, D.J. Physical Fluid Dynamics, 2nd Ed. Oxford University Press, Oxford. 519 pp.

Page 12: Fracture/Conduit Flow

Eddies and Cylinder WakesS

.Go

kaltu

n

Flo

rida

Inte

rna

tion

al U

nive

rsity

Streamlines for flow around a circular cylinder at 9 ≤ Re ≤ 10.(g=0.00001, L=300 lu, D=100 lu)

Page 13: Fracture/Conduit Flow

Eddies and Cylinder Wakes

Streamlines for flow around a circular cylinder at 40 ≤ Re ≤ 50.(g=0.0001, L=300 lu, D=100 lu) (Photograph by Sadatoshi Taneda. Taneda 1956a, J. Phys. Soc. Jpn., 11, 302-307.)

S.G

oka

ltun

Flo

rida

Inte

rna

tion

al U

nive

rsity

Page 14: Fracture/Conduit Flow

L

Flowuax

yz

Poiseuille Flow

Page 15: Fracture/Conduit Flow

Poiseuille Flow

• In a slit or pipe, the velocities at the walls are 0 (no-slip boundaries) and the velocity reaches its maximum in the middle

• The velocity profile in a slit is parabolic and given by:

x = 0 x = a/2

u(x)

• G can be due to gravitational acceleration (G = g in a vertical slit) or the linear pressure gradient (Pin – Pout)/L

2

2

22x

aGxu

Page 16: Fracture/Conduit Flow

Poiseuille Flow

• Maximum

• Average

x = 0 x = a/2

u(x)

2

2

22x

aGxu

2

max 22

aGu

2max 123

2a

Guuaverage

Page 17: Fracture/Conduit Flow

Poiseuille Flow

S.GOKALTUNFlorida International University

Page 18: Fracture/Conduit Flow

Kirchoff’s Current Law

• Kirchoff’s law states that the total current flowing into a junction is equal to the total current leaving the junction.

II22 II33

node

II11 flows into the node

II22 flows out of the node

II33 flows out of the node II11 = = II22 + + II33

Gustav Kirchoff was an 18th century German mathematician

II11

Page 19: Fracture/Conduit Flow

• Ohm’s law relates the flow of current to the electrical resistance and the voltage drop

• V = IR (or I = V/R) where: – I = Current– V = Voltage drop– R = Resistance

• Ohm’s Law is analogous to Darcy’s law

Page 20: Fracture/Conduit Flow

• Poiseuille's law can related to Darcy’s law and subsequently to Ohm's law for electrical circuits.

• Cubic law:

2

12

1a

L

Puave

AuQ ave

Adx

dhKQ

aaL

PQ 2

12

1

L

PaQ

12

3

12

3aK

A = a *unit depth

Page 21: Fracture/Conduit Flow

Fracture Network

5645342312 PPPPPP

563412 QQQ

4523 QQ

2312 2QQ

56

563

56

45

453

45

34

343

34

23

233

23

12

123

12

1212

2

12

12

2

12

L

Pa

L

Pa

L

Pa

L

Pa

L

Pa

54 lu

-216 lu -

900 lu

Q12

Q34

Q56

P

P12

P23

P34

Q23

Q45P45

P56

108 lu

36 lu

Page 22: Fracture/Conduit Flow

Matrix Form

02 2323

1212

K

L

PK

L

P

02 3434

2323

K

L

PK

L

P

02 4545

3434

K

L

PK

L

P

02 5656

4545

K

L

PK

L

P

P

L

PL

PL

PL

PL

P

LLLLL

KK

KK

KK

KK

0

0

0

0

2000

0200

0020

0002

56

56

45

45

34

34

23

23

12

12

5645342312

5645

4534

3423

2312

5645342312 PPPPPP

Page 23: Fracture/Conduit Flow

Back Solution

• Have conductivities and, from the matrix solution, the gradients– Compute flows

• Also have end pressures– Compute intermediate pressures from Ps

1212 K

L

PQ

Page 24: Fracture/Conduit Flow

a

Hydrologic-Electric AnalogyPoiseuille's law corresponds to the Kirchoff/Ohm’s Law for electrical circuits, where pressure drop Δp is replaced by voltage V and flow rate by current I

I12

I23

I56

I45

ΔP12

ΔP23

ΔP34

ΔP45

ΔP56

I23

I45

R

VI 2max 22

aL

PV

KR

1

I34

0.66 0.11 0.111.0 0.14 0.141.8 0.18 0.194.1 0.27 0.287.2 0.36 0.3743.0 0.87 0.92

ReQ (lu3/ts)

Kirchoff’sLBM

Q = 0.11 lu3/ts Q = 0.11 lu3/ts

Kirchoff LBM

5645342312 PPPPPP

Page 25: Fracture/Conduit Flow

Entry Length Effects

Tritton, D.J. Physical Fluid Dynamics, 2nd Ed. Oxford University Press, Oxford. 519 pp.

Page 26: Fracture/Conduit Flow

Eddies

Re = 93.3 mm x 2.7 mm

3 mm

2 m

m

Bai, T., and Gross, M.R., 1999, J Geophysical Res, 104, 1163-1177

Serpa, CY, 2005, Unpublished MS Thesis, FIU F

low

Page 27: Fracture/Conduit Flow

‘High’ Reynolds Number

• Single cylinder, Re ≈ 41

Taneda, J. Fluid Mech. 1956. (Also Katachi Society web pages)

Page 28: Fracture/Conduit Flow

y = 0.29x + 0.00

R2 = 1.00

0.0E+00

5.0E-04

1.0E-03

1.5E-03

2.0E-03

2.5E-03

3.0E-03

3.5E-03

4.0E-03

0.0E+00 2.0E-03 4.0E-03 6.0E-03 8.0E-03 1.0E-02 1.2E-02 1.4E-02

HEAD GRADIENT

FL

UX

(m

/s)

Non-linear

Non-curving cross joint

0.250

0.255

0.260

0.265

0.270

0.275

0.280

0.285

0.290

0.295

0.1 1.0 10.0 100.0

REYNOLDS NUMBER

HY

DR

AU

LIC

CO

ND

UC

TIV

ITY

(m

/s)

Poiseuille Law Non-linear

Non-curving cross joint

Page 29: Fracture/Conduit Flow

Darcy-Forschheimer Equation

• Darcy:

• +Non-linear drag term:

pa qqqk

pqk

Page 30: Fracture/Conduit Flow

Apparent K as a function of hydraulic gradient

• Gradients could be higher locally• Expect leveling at higher gradient?

0

5

10

15

20

25

30

35

40

1.E-09 1.E-08 1.E-07 1.E-06 1.E-05 1.E-04 1.E-03

Hydraulic Gradient

Hyd

rau

lic C

on

du

ctiv

ity

(m s

-1)

0.001 0.01 0.1 1 10 100 1000Approximate Reynolds Number

Darcy-Forchheimer Equation

= 1

Page 31: Fracture/Conduit Flow

Streamlines at different Reynolds Numbers

• Streamlines traced forward and backwards from eddy locations and hence begin and end at different locations

Re = 152

K = 20 m/s

Re = 0.31

K = 34 m/s

Page 32: Fracture/Conduit Flow

Future• Gray scale as hydraulic conductivity,

turbulence, solutes