fractionator tool kit - honeywell · to mpph conv_fac(10) stream 10 flow input unit conversion...

474
Fractionator Tool Kit User’s Guide 3/98

Upload: lykhanh

Post on 08-Jun-2019

217 views

Category:

Documents


0 download

TRANSCRIPT

Fractionator Tool KitUser’s Guide

3/98

.

Robust Multivariable Predictive Control Technology

Fractionator Tool KitUser’s Guide

Revision 1.1

3/98

Fractionator Tool Kit 04/99Honeywell Inc.

iv

Copyright, Notices, and Trademarks

Printed in U.S.A. – © Copyright 1997 by Honeywell Inc.

While this information is presented in good faith and believed to be accurate,Honeywell disclaims the implied warranties of merchantability and fitness for a

particular purpose and makes no express warranties except as may be stated inits written agreement with and for its customer.

In no event is Honeywell liable to anyone for any indirect, special or consequentialdamages. The information and specifications in this document are subject to

change without notice.

TDC 3000 and TotalPlant are U. S. registered trademarks of Honeywell Inc.

Other product names are trademarks of their respective owners.

HoneywellIndustrial Automation and Control

2500 West Union HillsPhoenix, AZ 85023

(602) 313-4788

04/99 Fractionator Tool Kit vHoneywell Inc.

Table of Contents

COPYRIGHT, NOTICES, AND TRADEMARKS ...................................................... IV

TABLE OF CONTENTS ............................................................................................ V

TOOL KIT ITEM .................................................................................................... TABASTM D86 TEMPERATURE CALCULATION............................................................................... 1

FLASH POINT CALCULATION..................................................................................................... 2

FLASH POINT CALCULATION (REBOILED)............................................................................... 3

FREEZE POINT CALCULATION................................................................................................... 4

INTERNAL LIQUID AND VAPOR CALCULATION ....................................................................... 5

LABORATORY UPDATING SYSTEM........................................................................................... 6

POUR POINT CALCULATION ...................................................................................................... 7

PRESSURE COMPENSATED TEMPERATURE CALCULATION................................................ 8

REID VAPOR PRESSURE CALCULATION.................................................................................. 9

TEMPERATURE CORRECTED SPECIFIC GRAVITY................................................................ 10

WATSON K CALCULATION .......................................................................................................11

04/99 Fractionator Tool Kit viHoneywell Inc.

Hi-Spec Solutions

Honeywell Hi-Spec Solutions • 16404 N. Black Canyon Hwy. • Phoenix, AZ 85023

Advanced Control Package

ASTM D86 Temperature Calculation

CONTROLLED

April 1995Revision 3.0

Hi-Spec Solutions

ASTM D86 Temperature Calculation Revision HistoryRevision 3.0

16404 North Black Canyon Hiway • Phoenix, Az 85023325 Rolling Oaks Dr • Thousand Oaks, CA 91361-1200

10333 Richmond, Suite 1110 • Houston, Tx 77042Chilworth Research Centre • Southampton, United Kingdom • SO1 7NP

Hi-Spec Solutions

ASTM D86 Temperature Calculation Contents

Revision 3.0

Table of Contents

Acronym List ........................................................................................................................................1

Overview...............................................................................................................................................1

Hardware and Software Requirements .................................................................................................3

Instrumentation (Process Inputs)...........................................................................................................4

Process Diagram ...................................................................................................................................5

Detailed Description .............................................................................................................................6Point Structure ..............................................................................................................................7Process Inputs ...............................................................................................................................8Configuration Inputs ...................................................................................................................10Calculation Outputs ....................................................................................................................14

Error Codes .........................................................................................................................................17Diagnostic Error Codes...............................................................................................................18Molecular Weight Error Codes ...................................................................................................22EFV Temperature Error Codes ...................................................................................................23EFV Temperature to ASTM D86 Temperature Error Codes......................................................24

Configuration and Tuning...................................................................................................................25Biases in the ASTM D86 Temperature Calculation Program.....................................................26Tuning Parameters ......................................................................................................................27

Algorithms ..........................................................................................................................................28

Installation Procedure .........................................................................................................................33

Preparation for Installation..................................................................................................................34

Custom Data Segment (CDS) and Parameter List (PL) Installation...................................................35

Building ASTM D86 Calculation Point..............................................................................................36

Configuration Graphics Installation....................................................................................................37

Configure Calculation Point ...............................................................................................................38Point Configuration Using Graphic D86_CFG...........................................................................39Point Configuration through Direct CDS Entry..........................................................................44

Link CL Programs...............................................................................................................................49

Hi-Spec Solutions

ASTM D86 Temperature Calculation Acronym List

Revision 3.0

Acronym List

Term Acronym

Application Module AM

Local Control Network LCN

Universal Station US

control language CL

process variable PV

custom data segment CDS

pounds per square inch psi

Parameter List PL

CL object code file extension AO

Universal Control Network UCN

Equivalent Flash Vaporization EFV

Fluidized Catalytic Cracked FCC

Hi-Spec Solutions

ASTM D86 Temperature Calculation Overview

Revision 3.0 1

Overview

Definition. ASTM D86 temperature is the temperature to which a product must beheated, under prescribed conditions, to distill the desired volume percent of the originalsample.

Application. The ASTM D86 temperatures of a hydrocarbon fraction is an importantspecification for motor gasoline, aviation gasoline, naphtha, kerosene, gas oils, distillatefuel oils, and similar petroleum products. ASTM D86 temperatures define thevolatility characteristics or the boiling range of the product.

Calculation. The ASTM D86 temperature calculation program calculates the inferentialASTM D86 temperature of a hydrocarbon product based on:

• Processinputs :

Temperature, pressure, and flows

• Characterizationinputs:

Watson K, specific gravity and optionallymolecular weight

• Calculatedvalues:

Selected ASTM D86 temperature, equilibriumflash vaporization temperature, effectivepressure, mole fraction and optionally molecularweight.

Incentive. 1. To indicate how closely a hydrocarbon stream is meeting the ASTMD86 temperature specification.

2. To eliminate dead time associated with laboratory analysis and on-lineanalyzers.

3. To provide a real-time input for use in advanced control applications.

Hi-Spec Solutions

ASTM D86 Temperature Calculation Overview

Revision 3.0 2

6050403020100 600

610

620

630

640

650

660

Calc 90%Lab 90%

LGO 90% Cutpoint Data

Sample Number

Hi-Spec Solutions

ASTM D86 Temperature Calculation Hardware and Software Requirements

Revision 3.0 3

Hardware and Software Requirements

Requirement Description

Hardware Platform TDC 3000 AM

Special Boards None

Other Computing Systems None

LCN Release Release 300 or later

AM Load Modules None

US Load Modules None

Other Packages None

Other Control Applications None

Software Inputs Gravities and Watson K factors for the input streams must exist aspoints on the LCN

Hi-Spec Solutions

ASTM D86 Temperature Calculation Instrumentation (Process Inputs)

Revision 3.0 4

Instrumentation (Process Inputs)

Process Input1 Required Recommended

Input stream flow rates XProduct temperature XProduct pressure X

1 Required inputs can sometimes be obtained by inference. However, calculations based upon inferred data can be less accurate than calculations based upon direct readings.

Hi-Spec Solutions

ASTM D86 Temperature Calculation Process Diagram

Revision 3.0 5

Process Diagram

STEAM

KEROSENE

NAPHTHA

OFF GAS

T32

P23

T31 FC4

FC5

TOWER

FC3

FC2FC1

TC2

INTERNAL INTERNALVAPOR REFLUX

PUMPAROUND

Hi-Spec Solutions

ASTM D86 Temperature Calculation Point Structure

Revision 3.0 6

Detailed Description

The tables in this section describe the following ASTM D86 Temperature CalculationPoint program architecture:

• Point Structure

• Process Inputs

• Configuration Inputs

• Calculation Outputs.

Hi-Spec Solutions

ASTM D86 Temperature Calculation Point Structure

Revision 3.0 7

Point Structure

Point Structure

Point Type Application Module Regulatory, CL

PV_Type CL

CTL_Type Any

Custom Data Segment D86_CDS.CL

Algorithm D86_EFV.CL

Insertion Point PV_ALG

Slot 5

Output The calculated inferential temperature of the selected D86 is displayed asthe point’s PV

Hi-Spec Solutions

ASTM D86 Temperature Calculation Process Inputs

Revision 3.0 8

Process Inputs

Process InputsCritical2

Parameter Description Units Yes No

FLOW_PT(1) Tagname for stream 1 flow input Any flow units X

FLOW_PT(2) Tagname for stream 2 flow input Any flow units X

FLOW_PT(3) Tagname for stream 3 flow input Any flow units X

FLOW_PT(4) Tagname for stream 4 flow input Any flow units X

FLOW_PT(5) Tagname for stream 5 flow input Any flow units X

FLOW_PT(6) Tagname for stream 6 flow input Any flow units X

FLOW_PT(7) Tagname for stream 7 flow input Any flow units X

FLOW_PT(8) Tagname for stream 8 flow input Any flow units X

FLOW_PT(9) Tagname for stream 9 flow input Any flow units X

FLOW_PT(10) Tagname for stream 10 flow input Any flow units X

GRAV_PT(1) Tagname for stream 1 gravity input °API or none (S.G.) X

GRAV_PT(2) Tagname for stream 2 gravity input °API or none (S.G.)X

GRAV_PT(3) Tagname for stream 3 gravity input °API or none (S.G.)X

GRAV_PT(4) Tagname for stream 4 gravity input °API or none (S.G.)X

GRAV_PT(5) Tagname for stream 5 gravity input °API or none (S.G.)X

GRAV_PT(6) Tagname for stream 6 gravity input °API or none (S.G.)X

GRAV_PT(7) Tagname for stream 7 gravity input °API or none (S.G.)X

GRAV_PT(8) Tagname for stream 8 gravity input °API or none (S.G.)X

GRAV_PT(9) Tagname for stream 9 gravity input °API or none (S.G.)X

GRAV_PT(10) Tagname for stream 10 gravity input °API or none (S.G.)X

MOLWT(1) Calculated/Entered molecular weight forstream 1

lb/mole X

MOLWT(2) Calculated/Entered molecular weight forstream 2

lb/mole X

Continued

2 Critical indicates that a bad input causes the output of the calculation to be set BAD.

Hi-Spec Solutions

ASTM D86 Temperature Calculation Process Inputs

Revision 3.0 9

Process Inputs (Continued)

Process Inputs

Critical

Parameter Description Units Yes No

MOLWT(3) Calculated/Entered molecular weight forstream 3

lb/mole X

MOLWT(4) Calculated/Entered molecular weight forstream 4

lb/mole X

MOLWT(5) Calculated/Entered molecular weight forstream 5

lb/mole X

MOLWT(6) Calculated/Entered molecular weight forstream 6

lb/mole X

MOLWT(7) Calculated/Entered molecular weight forstream 7

lb/mole X

MOLWT(8) Calculated/Entered molecular weight forstream 8

lb/mole X

MOLWT(9) Calculated/Entered molecular weight forstream 9

lb/mole X

MOLWT(10) Calculated/Entered molecular weight forstream 10

lb/mole X

PRESS_PT Tagname for pressure input Any pressure units X

TEMP_PT Tagname for temperature input °F or °C X

WATK_PT(1) Tagname for stream 1 Watson K factor None X

WATK_PT(2) Tagname for stream 2 Watson K factor None X

WATK_PT(3) Tagname for stream 3 Watson K factor None X

WATK_PT(4) Tagname for stream 4 Watson K factor None X

WATK_PT(5) Tagname for stream 5 Watson K factor None X

WATK_PT(6) Tagname for stream 6 Watson K factor None X

WATK_PT(7) Tagname for stream 7 Watson K factor None X

WATK_PT(8) Tagname for stream 8 Watson K factor None X

WATK_PT(9) Tagname for stream 9 Watson K factor None X

WATK_PT(10) Tagname for stream 10 Watson K factor None X

Hi-Spec Solutions

ASTM D86 Temperature Calculation Configuration Inputs

Revision 3.0 10

Configuration Inputs

Configuration Inputs

Parameter Description Units

CONV_FAC(1) Stream 1 flow input unit conversion factor From input unitsto MPPH

CONV_FAC(2) Stream 2 flow input unit conversion factor From input unitsto MPPH

CONV_FAC(3) Stream 3 flow input unit conversion factor From input unitsto MPPH

CONV_FAC(4) Stream 4 flow input unit conversion factor From input unitsto MPPH

CONV_FAC(5) Stream 5 flow input unit conversion factor From input unitsto MPPH

CONV_FAC(6) Stream 6 flow input unit conversion factor From input unitsto MPPH

CONV_FAC(7) Stream 7 flow input unit conversion factor From input unitsto MPPH

CONV_FAC(8) Stream 8 flow input unit conversion factor From input unitsto MPPH

CONV_FAC(9) Stream 9 flow input unit conversion factor From input unitsto MPPH

CONV_FAC(10) Stream 10 flow input unit conversion factor From input unitsto MPPH

CONV_FAC(11) PRESS_PT input unit multiplicative conversion factor From input unitsto PSI

CONV_FAC(12) Input temperature units flag0 = °F1 = °C

N/A

CONV_FAC(13) Input gravity type flag0 = API1 = Specific Gravity

N/A

CONV_FAC(14) Not used N/A

ENGPAR(1) Number of input flow streams N/A

ENGPAR(2) Local atmospheric pressure, used to convert input gauge toinput absolute units.

Same units asPRESS_PT

ENGPAR(3) Set calculation bad flag0 =>OK;1 => BAD

N/A

ENGPAR(4) Array location of the product flow point. Used to identifythe products WATK(i) and SPGR(i)

N/A

Continued

Hi-Spec Solutions

ASTM D86 Temperature Calculation Configuration Inputs

Revision 3.0 11

Configuration Inputs (Continued)

Configuration Inputs

Parameter Description Units

ENGPAR(5) Selected Volume of the D86 to calculate.0 =EFV;1 = 0%;2 = 10%;3 = 30%;4 = 10%;5 = 70%6 = 90%7 = 100%

N/A

ENGPAR(6) Selects the source for stream 1 molecular weight.1 = Calculated2 = Manually entered

N/A

ENGPAR(7) Selects the source for stream 2 molecular weight.1 = Calculated2 = Manually entered

N/A

ENGPAR(8) Selects the source for stream 3 molecular weight.1 = Calculated2 = Manually entered

N/A

ENGPAR(9) Selects the source for stream 4 molecular weight.1 = Calculated2 = Manually entered

N/A

ENGPAR(10) Selects the source for stream 5 molecular weight.1 = Calculated2 = Manually entered

N/A

ENGPAR(11) Selects the source for stream 6 molecular weight.1 = Calculated2 = Manually entered

N/A

ENGPAR(12) Selects the source for stream 7 molecular weight.1 = Calculated2 = Manually entered

N/A

ENGPAR(13) Selects the source for stream 8 molecular weight.1 = Calculated2 = Manually entered

N/A

ENGPAR(14) Selects the source for stream 9 molecular weight.1 = Calculated2 = Manually entered

N/A

ENGPAR(15) Selects source for stream 10 molecular weight.1 = Calculated2 = Manually entered

N/A

ENGPAR(16) Not used N/A

ENGPAR(17) Not used N/A

Continued

Hi-Spec Solutions

ASTM D86 Temperature Calculation Configuration Inputs

Revision 3.0 12

Configuration Inputs (Continued)

Configuration Inputs

Parameter Description Units

ENGPAR(18) Not used N/A

ENGPAR(19) Not used N/A

ENGPAR(20) Not used N/A

FILTER(1) Filter time for stream 1 flow input minutes

FILTER(2) Filter time for stream 2 flow input minutes

FILTER(3) Filter time for stream 3 flow input minutes

FILTER(4) Filter time for stream 4 flow input minutes

FILTER(5) Filter time for stream 5 flow input minutes

FILTER(6) Filter time for stream 6 flow input minutes

FILTER(7) Filter time for stream 7 flow input minutes

FILTER(8) Filter time for stream 8 flow input minutes

FILTER(9) Filter time for stream 9 flow input minutes

FILTER(10) Filter time for stream 10 flow input minutes

FILTER(11) Filter time for temperature input minutes

FILTER(12) Filter time for pressure input minutes

FILTER(13) Filter time for all gravity inputs,GRAV_PT(1 - 10)

minutes

FILTER(14) Filter time for all Watson K factor inputs, WATK_PT(1 -10)

minutes

FILTER(15) Filter time for multiplicative lab bias, LAB_BIAS(1) minutes

FILTER(16) Filter time for additive lab bias, LAB_BIAS(2) minutes

FILTER(17) Not used minutes

FILTER(18) Not used minutes

LAB_BIAS(1) Multiplicative lab bias ( scales mole fraction )

LAB_BIAS(2) Additive lab bias ( scales D86 temperature )

NUMER(1) Numerator indicator for stream 1 flow;0 = flow not in numerator1 = flow is in numerator

N/A

NUMER(2) Numerator indicator for stream 2 flow;0 = flow not in numerator1 = flow is in numerator

N/A

NUMER(3) Numerator indicator for stream 3 flow;0 = flow not in numerator1 = flow is in numerator

N/A

NUMER(4) Numerator indicator for stream 4 flow;0 = flow not in numerator1 = flow is in numerator

N/A

Continued

Hi-Spec Solutions

ASTM D86 Temperature Calculation Configuration Inputs

Revision 3.0 13

Configuration Inputs (Continued)

Configuration Inputs

Parameter Description Units

NUMER(5) Numerator indicator for stream 5 flow;0 = flow not in numerator1 = flow is in numerator

N/A

NUMER(6) Numerator indicator for stream 6 flow;0 = flow not in numerator1 = flow is in numerator

N/A

NUMER(7) Numerator indicator for stream 7 flow;0 = flow not in numerator1 = flow is in numerator

N/A

NUMER(8) Numerator indicator for stream 8 flow;0 = flow not in numerator1 = flow is in numerator

N/A

NUMER(9) Numerator indicator for stream 9 flow;0 = flow not in numerator1 = flow is in numerator

N/A

NUMER(10) Numerator indicator for stream 10 flow;0 = flow not in numerator1 = flow is in numerator

N/A

Hi-Spec Solutions

ASTM D86 Temperature Calculation Calculation Outputs

Revision 3.0 14

Calculation Outputs

Calculation Outputs

Parameter Description Units

CALC_VAL(1) Calculated ASTM D86 temperature Temperatureinput units

CALC_VAL(2) Calculated EFV temperature Temperatureinput units

CALC_VAL(3) Effective pressure Pressure inputunits absolute

CALC_VAL(4) Mole fraction. Fraction of vapor in equilibrium with theproduct

N/A

CALC_VAL(5) Moles in the numerator of the mole fraction Moles

CALC_VAL(6) Moles in the denominator of the mole fraction Moles

CALC_VAL(7) Filtered product temperature plus bias Input units

CALC_VAL(8) Filtered product pressure plus bias Input unitsabsolute

CALC_VAL(9) The product’s filtered specific gravity N/A

CALC_VAL(10) The product’s filtered Watson K factor N/A

CALC_VAL(11) Moles of flow input 1 Moles

CALC_VAL(12) Moles of flow input 2 Moles

CALC_VAL(13) Moles of flow input 3 Moles

CALC_VAL(14) Moles of flow input 4 Moles

CALC_VAL(15) Moles of flow input 5 Moles

CALC_VAL(16) Moles of flow input 6 Moles

CALC_VAL(17) Moles of flow input 7 Moles

CALC_VAL(18) Moles of flow input 8 Moles

CALC_VAL(19) Moles of flow input 9 Moles

CALC_VAL(20) Moles of flow input 10 Moles

CALC_VAL(21) Not used N/A

CALC_VAL(22) Not used N/A

Continued

Hi-Spec Solutions

ASTM D86 Temperature Calculation Calculation Outputs

Revision 3.0 15

Calculation Outputs (Continued)

Calculation Outputs

Parameter Description Units

FILT_VAL(1) Stream 1 filtered flow input, FLOW_PT(1) Input units

FILT_VAL(2) Stream 2 filtered flow input, FLOW_PT(2) Input units

FILT_VAL(3) Stream 3 filtered flow input, FLOW_PT(3) Input units

FILT_VAL(4) Stream 4 filtered flow input, FLOW_PT(4) Input units

FILT_VAL(5) Stream 5 filtered flow input, FLOW_PT(5) Input units

FILT_VAL(6) Stream 6 filtered flow input, FLOW_PT(6) Input units

FILT_VAL(7) Stream 7 filtered flow input, FLOW_PT(7) Input units

FILT_VAL(8) Stream 8 filtered flow input, FLOW_PT(8) Input units

FILT_VAL(9) Stream 9 filtered flow input, FLOW_PT(9) Input units

FILT_VAL10) Stream 10 filtered flow input, FLOW_PT(10) Input units

FILT_VAL(11) Filtered temperature input, TEMP_PT Input units

FILT_VAL(12) Filtered pressure input, PRESS_PT Input units

FILT_VAL(13) Stream 1 filtered gravity input, GRAV_PT(1) Input units

FILT_VAL(14) Stream 2 filtered gravity input, GRAV_PT(2) Input units

FILT_VAL(15 Stream 3 filtered gravity input, GRAV_PT(3) Input units

FILT_VAL(16) Stream 4 filtered gravity input, GRAV_PT(4) Input units

FILT_VAL(17) Stream 5 filtered gravity input, GRAV_PT(5) Input units

FILT_VAL(18) Stream 6 filtered gravity input, GRAV_PT(6) Input units

FILT_VAL(19) Stream 7 filtered gravity input, GRAV_PT(7) Input units

FILT_VAL(20) Stream 8 filtered gravity input, GRAV_PT(8) Input units

FILT_VAL(21) Stream 9 filtered gravity input, GRAV_PT(9) Input units

FILT_VAL(22) Stream 10 filtered gravity input, GRAV_PT(10) Input units

FILT_VAL(23) Stream 1 filtered Watson K input, WATK_PT(1) None

FILT_VAL(24) Stream 2 filtered Watson K input, WATK_PT(2) None

FILT_VAL(25) Stream 3 filtered Watson K input, WATK_PT(3) None

FILT_VAL(26) Stream 4 filtered Watson K input, WATK_PT(4) None

FILT_VAL(27) Stream 5 filtered Watson K input, WATK_PT(5) None

Continued

Hi-Spec Solutions

ASTM D86 Temperature Calculation Calculation Outputs

Revision 3.0 16

Calculation Outputs (Continued)

Calculation Outputs

Parameter Description Units

FILT_VAL(28) Stream 6 filtered Watson K input, WATK_PT(6) None

FILT_VAL(29) Stream 7 filtered Watson K input, WATK_PT(7) None

FILT_VAL(30) Stream 8 filtered Watson K input, WATK_PT(8) None

FILT_VAL(31) Stream 9 filtered Watson K input, WATK_PT(9) None

FILT_VAL(32) Stream 10 filtered Watson K input, WATK_PT(10) None

FILT_VAL(33) Filtered multiplicative lab bias, LAB_BIAS(1) N/A

FILT_VAL(34) Filtered additive lab bias, LAB_BIAS(2) °F

FILT_VAL(35) Not used N/A

FILT_VAL(36) Not used N/A

PVCALC Calculated hydrocarbon product inferential D86 point Temperatureinput units

REV_NO Program revision number N/A

STATUS(1) Diagnostic indication of location and possible causes ofprogram error

N/A

STATUS(2) Diagnostic indication of subroutine error N/A

Hi-Spec Solutions

ASTM D86 Temperature Calculation Error Codes

Revision 3.0 17

Error Codes

The tables in this section describe the following program error codes:

• Diagnostic error codes

• Molecular weight calculation subroutine error codes

• EFV temperature determination subroutine error codes

• EFV temperature to ASTM D86 temperature determination subroutine error codes.

Hi-Spec Solutions

ASTM D86 Temperature Calculation Diagnostic Error Codes

Revision 3.0 18

Diagnostic Error Codes

Diagnostic Error Codes

Parameter Value Meaning

STATUS(1)3 0.0 No errors

1.0 Set calculation BAD flag on [ENGPAR(3)<>0]

2.0 The number of streams is outside the range of 2 to 10[ENGPAR(1)]

3.0 The product stream number is outside the range of 1 to 10[ENGPAR(4)]

4.0 An incorrect ASTM D86 volume % has been entered[ENGPAR(5)]

5.0 Stream 1 flow input, FLOW_PT(1), has a null point entered or hasa bad PV

6.0 Stream 2 flow input, FLOW_PT(2), has a null point entered or hasa bad PV

7.0 Stream 3 flow input, FLOW_PT(3), has a null point entered or hasa bad PV

8.0 Stream 4 flow input, FLOW_PT(4), has a null point entered or hasa bad PV

9.0 Stream 5 flow input, FLOW_PT(5), has a null point entered or hasa bad PV

10.0 Stream 6 flow input, FLOW_PT(6), has a null point entered or hasa bad PV

11.0 Stream 7 flow input, FLOW_PT(7), has a null point entered or hasa bad PV

12.0 Stream 8 flow input, FLOW_PT(8), has a null point entered or hasa bad PV

13.0 Stream 9 flow input, FLOW_PT(9), has a null point entered or hasa bad PV

14.0 Stream 10 flow input, FLOW_PT(10), has a null point entered orhas a bad PV

15.0 Stream 1 gravity input, GRAV_PT(1), has a null point entered orhas a bad PV

16.0 Stream 2 gravity input, GRAV_PT(2), has a null point entered orhas a bad PV

17.0 Stream 3 gravity input, GRAV_PT(3), has a null point entered orhas a bad PV

18.0 Stream 4 gravity input, GRAV_PT(4), has a null point entered orhas a bad PV

Continued

3 STATUS(1) indicates errors in the calculation.

Hi-Spec Solutions

ASTM D86 Temperature Calculation Diagnostic Error Codes

Revision 3.0 19

Diagnostic Error Codes (Continued)

Diagnostic Error Codes

Parameter Value MeaningSTATUS(1)

3 19.0 Stream 5 gravity input, GRAV_PT(5), has a null point entered orhas a bad PV

20.0 Stream 6 gravity input, GRAV_PT(6), has a null point entered orhas a bad PV

21.0 Stream 7 gravity input, GRAV_PT(7), has a null point entered orhas a bad PV

22.0 Stream 8 gravity input, GRAV_PT(8), has a null point entered orhas a bad PV

23.0 Stream 9 gravity input, GRAV_PT(9), has a null point entered orhas a bad PV

24.0 Stream 10 gravity input, GRAV_PT(10), has a null point enteredor has a bad PV

25.0 Stream 1 Watson K factor input, WATK_PT(1), has a null pointentered or has a bad PV

26.0 Stream 2 Watson K factor input, WATK_PT(2), has a null pointentered or has a bad PV

27.0 Stream 3 Watson K factor input, WATK_PT(3), has a null pointentered or has a bad PV

28.0 Stream 4 Watson K factor input, WATK_PT(4), has a null pointentered or has a bad PV

29.0 Stream 5 Watson K factor input, WATK_PT(5), has a null pointentered or has a bad PV

30.0 Stream 6 Watson K factor input, WATK_PT(6), has a null pointentered or has a bad PV

31.0 Stream 7 Watson K factor input, WATK_PT(7), has a null pointentered or has a bad PV

32.0 Stream 8 Watson K factor input, WATK_PT(8), has a null pointentered or has a bad PV

33.0 Stream 9 Watson K factor input, WATK_PT(9), has a null pointentered or has a bad PV

34.0 Stream 10 Watson K factor input, WATK_PT(10), has a nullpoint entered or has a bad PV

35.0 Stream 1 entered molecular weight, MOLWT(1), has a bad valueor is less than 0.0

Continued

3 STATUS(1) indicates errors in the calculation.

Hi-Spec Solutions

ASTM D86 Temperature Calculation Diagnostic Error Codes

Revision 3.0 20

Diagnostic Error Codes (Continued)

Diagnostic Error Codes

Parameter Value Meaning

STATUS(1)3 36.0 Stream 2 entered molecular weight, MOLWT(2), has a bad value

or is less than 0.0

37.0 Stream 3 entered molecular weight, MOLWT(3), has a bad valueor is less than 0.0

38.0 Stream 4 entered molecular weight, MOLWT(4), has a bad valueor is less than 0.0

39.0 Stream 5 entered molecular weight, MOLWT(5), has a bad valueor is less than 0.0

40.0 Stream 6 entered molecular weight, MOLWT(6), has a bad valueor is less than 0.0

41.0 Stream 7 entered molecular weight, MOLWT(7), has a bad valueor is less than 0.0

42.0 Stream 8 entered molecular weight, MOLWT(8), has a bad valueor is less than 0.0

43.0 Stream 9 entered molecular weight, MOLWT(9), has a bad valueor is less than 0.0

44.0 Stream 10 entered molecular weight, MOLWT(10), has a badvalue or is less than 0.0

45.0 There is an error in calculating stream 1 molecular weight,MOLWT(1). See STATUS(2) in "Molecular Weight ErrorCodes"

46.0 There is an error in calculating stream 2 molecular weight,MOLWT(2). See STATUS(2) in "Molecular Weight ErrorCodes"

47.0 There is an error in calculating stream 3 molecular weight,MOLWT(3). See STATUS(2) in "Molecular Weight ErrorCodes"

48.0 There is an error in calculating stream 4 molecular weight,MOLWT(4). See STATUS(2) in "Molecular Weight ErrorCodes"

49.0 There is an error in calculating stream 5 molecular weight,MOLWT(5). See STATUS(2) in "Molecular Weight ErrorCodes"

50.0 There is an error in calculating stream 6 molecular weight,MOLWT(6). See STATUS(2) in "Molecular Weight ErrorCodes"

Continued

3 STATUS(1) indicates errors in the calculation.

Hi-Spec Solutions

ASTM D86 Temperature Calculation Diagnostic Error Codes

Revision 3.0 21

Diagnostic Error Codes (Continued)

Diagnostic Error Codes

Parameter Value MeaningSTATUS(1)

3 51.0 There is an error in calculating stream 7 molecular weight,MOLWT(7). See STATUS(2) in "Molecular Weight ErrorCodes"

52.0 There is an error in calculating stream 8 molecular weight,MOLWT(8). See STATUS(2) in "Molecular Weight ErrorCodes"

53.0 There is an error in calculating stream 9 molecular weight,MOLWT(9). See STATUS(2) in "Molecular Weight ErrorCodes"

54.0 There is an error in calculating stream 10 molecular weight,MOLWT(10). See STATUS(2) in "Molecular Weight ErrorCodes"

55.0 The temperature input, TEMP_PT, has a null point entered or hasa bad PV

56.0 The pressure input, PRESS_PT, has a null point entered or has abad PV

57.0 The multiplicative lab bias, LAB_BIAS(1) has a bad value

58.0 The additive lab bias, LAB_BIAS(2) has a bad value

59.0 The calculated effective pressure, CALC_VAL(3), has a badvalue

60.0 There is an error in calculating the EFV temperature,CALC_VAL(2). See STATUS(2) in "EFV Temperature ErrorCodes"

61.0 There is an error in converting the EFV temperature,CALC_VAL(2), to the ASTM D86 temperature. See STATUS(2)in "EFV Temperature to ASTM D86 Temperature Error Codes"

3 STATUS(1) indicates errors in the calculation.

Hi-Spec Solutions

ASTM D86 Temperature Calculation Molecular Weight Error Codes

Revision 30 22

Molecular Weight Error Codes

Molecular Weight Error Codes

Parameter Value Meaning

STATUS(2)4 0.0 No errors

1.0 Calculated molecular weight has a bad value

2.0 Input specific gravity has a bad value

3.0 Input Watson K has a bad value

-1.0 Input specific gravity or Watson K equal to or less than 0.0

4 STATUS(2) indicates errors returned by the molecular weight calculation subroutine.

Hi-Spec Solutions

ASTM D86 Temperature Calculation EFV Temperature Error Codes

Revision 2.0 23

EFV Temperature Error Codes

EFV Temperature Error Codes

Parameter Value Meaning

STATUS(2)5 0.0 No errors

1.0 Calculated EFV temperature has a bad value

2.0 Input temperature has a bad value

3.0 Input effective vapor pressure has a bad value

4.0 Input Watson K has a bad value

-1.0 Input temperature, effective vapor pressure, or Watson K has azero or negative value

5 STATUS(2) indicates errors returned by the EFV temperature calculation subroutine.

Hi-Spec Solutions

ASTM D86 Temperature Calculation EFV to ASTM Temperature Error Codes

Revision 3.0 24

EFV Temperature to ASTM D86 Temperature Error Codes

EFV Temperature to ASTM D86 Temperature Error Codes

Parameter Value Meaning

STATUS(2)6 0.0 No errors

1.0 Calculated ASTM D86 temperature has a bad value

2.0 Input EFV temperature has a bad value

3.0 Input specific gravity has a bad value

4.0 Input volume percent distilled has a bad value

-1.0 Input specific gravity has a zero or negative value or the inputvolume percent distilled is less than 1 or greater than 7

6 STATUS(2) indicates errors returned by the EFV temperature to ASTM D86 temperature calculation subroutine.

Hi-Spec Solutions

ASTM D86 Temperature Calculation Configuration and Tuning

Revision 3.0 25

Configuration and Tuning

This section describes the parameters and values used to configure and tune the packageto a specific application.

Biases

• Temperature Bias

• Pressure Bias

• Laboratory Bias.

Tuning

• Multiplicative Bias.

Hi-Spec Solutions

ASTM D86 Temperature Calculation Biases in the D86_EFV Program

Revision 3.0 26

Biases in the ASTM D86 Temperature Calculation Program

The ASTM D86 temperature program is equipped with the following additive biases:

• Input product temperature

• Input pressure

• Additive laboratory bias for the calculated ASTM D86 temperature.

Bias Parameters

Parameter DescriptionT_BIAS Additive bias to input product temperature, TEMP_PTP_BIAS Additive bias to input pressure, PRESS_PTLAB_BIAS(2) Additive laboratory bias to calculated ASTM D86

temperature

Pressure and Temperature Bias. The pressure bias (P_BIAS) and temperature bias(T_BIAS) are added to the input values before performance of the unit conversions andshould be entered in the same units as the input pressure and temperature.

The T_BIAS parameter is used when there is a known error in either the producttemperature indication. The P_BIAS parameter is used when the actual pressure at thedraw tray is not available as an input to the calculation.

Example. If the column overhead pressure is used for PRESS_PT, then P_BIAS is setequal to the pressure change between the column overhead and the draw tray.

Additive Laboratory Bias. The ASTM D86 temperature calculation program biasesthe calculated ASTM D86 temperature using the parameter LAB_BIAS(2) for additivebiasing. Only the additive bias, LAB_BIAS(2), is used dynamically and is expected tobe updated manually or with a laboratory results interface package.

Both PVCALC and CALC_VAL(1) contain the biased calculated ASTM D86temperature. The unbiased temperature is not reported. For unbiased calculated resultsset LAB_BIAS(2) = 0.0.

Hi-Spec Solutions

ASTM D86 Temperature Calculation Tuning Parameters

Revision 3.0 27

Tuning Parameters

If there is a sustained offset between the calculated and laboratory ASTM D86temperatures even with the use of the biasing, the following parameters can be adjusted.

Parameter Suggested Adjustment

LAB_BIAS(1) Decreasing the multiplicative bias the on the mole fraction increases thecalculated ASTM D86 temperature

T_BIAS Increasing the product temperature bias increase the calculated ASTMD86 temperature

Multiplicative Bias [LAB_BIAS(1)]

The mole fraction of hydrocarbon vapor that is in equilibrium with the hydrocarbonproduct is calculated using the internal reflux, all product coming off the column at thedraw tray and above (to the column overhead), and inert material. The multiplicativebias is applied to the mole fraction. The mole fraction is used to determine the partialpressure of the hydrocarbon vapor which is used to determined the EFV temperature.The EFV temperature is then converted to the desired ASTM D86 temperature.

Temperature Bias [T_BIAS]

If the vapor temperature at the draw tray is not directly measured, then the inputtemperature may be biased to give the approximate vapor temperature. The vaportemperature is corrected for pressure to determine the EFV temperature. The EFVtemperature is then converted to the desired ASTM D86 temperature.

Hi-Spec Solutions

ASTM D86 Temperature Calculation Algorithms

Revision 3.0 28

Algorithms

Conversion of Engineering Units. The input process flows can have any units, but theconversion factors must be configured to yield mass, as shown in Equation 1:

flow(i) = FLOW_PT(i).PV * CONV_FAC(i)

Where:

flow(i) = Process flow i converted to mass units for internal useFLOW_PT(i).PV = Input process flow i in any unitsCONV_FAC(i) = Conversion for flow i from input units to mass units

Equation 1: Flow Units Conversion

The input process pressure can have any units. However, the conversion factor must beconfigured to yield pounds per square inch (psi), as shown in Equation 2:

press = ( (PRESS_PT.PV +P_BIAS) *CONV_FAC(11) ) + atm_pres

Where:

press = Process pressure converted to psia for internal usePRESS_PT.PV = Input process pressure in any gauge unitsP_BIAS = Bias to input pressure in input gauge unitsCONV_FAC(11) = Conversion factor for pressure from input units to psiatm_pres = Atmospheric pressure in psi

and When:ENG_PAR(2) <= 0 then atm_pres = 14.696

else atm_pres = ENG_PAR(2) *CONV_FAC(11)

Equation 2: Pressure Units Conversion

Continued

Hi-Spec Solutions

ASTM D86 Temperature Calculation Algorithms

Revision 3.0 29

Algorithms (Continued)

The input process temperature can be in Fahrenheit or Centigrade as indicated byCONV_FAC(12). However, a temperature in °C is converted to °F for internal use asshown in Equation 3:

temp = (TEMP_PT.PV + T_BIAS) * 1.8 + 32

Where:

temp = Process temperature converted to °F for internal useT_BIAS = Temperature input bias in °CTEMP_PT.PV = Input process temperature in °C

Equation 3: Temperature Units Conversion

The gravity inputs can be in °API or specific gravity as indicated by CONV_FAC(13).Inputs in °API are converted to specific gravity for internal use as shown in Equation 4:

f_grav(i) = 141.5 / (GRAV_PT(i).PV + 131.5)

Where:

f_grav = Gravity input i converted to specific gravityGRAV_PT(i).PV = Input gravity i in °API

Equation 4: API to Specific Gravity Conversion

Continued

Hi-Spec Solutions

ASTM D86 Temperature Calculation Algorithms

Revision 3.0 30

Algorithms (Continued)

Molecular Weight Calculation. The molecular weight is calculated from the inputgravity and Watson K factor using the Honeywell standard molecular weightcalculation, as shown in Equation 5:

mol_wt = Function[f_grav, watk, mabp]

Where:

mol_wt = Calculated molecular weightf_grav = Input gravity as a specific gravitywatk = Input Watson K factormabp = Calculated mean average boiling point

Equation 5: Molecular Weight Calculation

Effective Pressure Calculation. The effective pressure is calculated from process flowinputs, in moles, and the pressure input converted to absolute units, as shown inEquation 6:

eff_press = Function[flow(i), lab1, press]

Where:

eff_press = Calculated effective pressureflow(i) = Process flow i converted to mass units for internal uselab1 = Multiplicative biaspress = Process pressure converted to psia for internal use

Equation 6: Effective Pressure Calculation

Continued

Hi-Spec Solutions

ASTM D86 Temperature Calculation Algorithms

Revision 3.0 31

Algorithms (Continued)

EFV Temperature Calculation. Using the effective pressure, process inputtemperature, and Watson K factor, the equivalent temperature of the vapor atatmospheric pressure, Equivalent Flash Vaporization (EFV) temperature, is calculatedusing the Honeywell temperature correction calculation, as shown in Equation 7:

efv = Function[temp, eff_press, watk]

Where:

efv = Calculated Equivalent Flash Vaporization (EFV) temperatureeff_press = Effective pressurewatk = Input Watson K factor

Equation 7: Equivalent Flash Vaporization (EFV) Temperature Calculation

ASTM D86 temperature Calculation. The ASTM D86 temperature is calculatedfrom EFV temperature using the Honeywell ASTM D86 calculation, as shown inEquation 8:

d86_pt = Function[efv, f_grav, d86_vol]

Where:

d86_pt = Calculated ASTM D86 temperatureefv = Calculated Equivalent Flash Vaporization (EFV) temperaturef_grav = Input gravity as a specific gravityd86_vol = The ASTM D86 volume percent where the temperature is to

be calculated

Equation 8: ASTM D86 temperature Calculation

Continued

Hi-Spec Solutions

ASTM D86 Temperature Calculation Algorithms

Revision 3.0 32

Algorithms (Continued)

Biasing. The additive bias factor is provided to reduce the offset between theinferential ASTM D86 temperature and a laboratory or on-line analysis determinedASTM D86 temperature, as shown in Equation 9:

bias_d86 = d86_pt + LAB_BIAS(2)

Where:

bias_d86 = Biased ASTM D86 temperatured86_pt = Calculated ASTM D86 temperatureLAB_BIAS(2) = Additive laboratory bias

Equation 9: ASTM D86 Calculation Biasing

Hi-Spec Solutions

ASTM D86 Temperature Calculation Installation Procedure

Revision 3.0 33

Installation Procedure

This document describes the installation procedure for D86_EFV software on the TDC3000 System Application Module.

This section covers the following topics:

• Preparation for Installation

• Custom Data Segment (CDS) and Parameter List (PL) Installation

• Building ASTM D86 Calculation Point

• Configuration Graphics Installation.

Hi-Spec Solutions

ASTM D86 Temperature Calculation Preparation for Installation

Revision 3.0 34

Preparation for Installation

Step ActionGather media Gather the following items:

• Removable media containing the directory D86Make mediabackup

Make a backup copy of media/directory on a US with drives nand m configured as follows:

Media:FCOPY $Fn $FmDirectory only:CD $Fm>vol> D86COPY $Fn>D86>*.* $Fm>D86>= -V -DWhere $Fn is the drive with the source media and $Fm isthe drive with the target media.

Hi-Spec Solutions

ASTM D86 Temperature Calculation CDS and PL Installation

Revision 3.0 35

Custom Data Segment (CDS) and Parameter List (PL) Installation

This procedure must be done once per LCN installation.

Step ActionSet volumepathnames

From Modify Volume Paths display:CL CUSTOM GDF: NET>CDSG>USER DEFLT PATH: $Fn>D86

CompileD86_CDS.CL

From the Command Processor Display, compile the CDS file,D86_CDS:

CL $Fn>D86>D86_CDS.CL -ULIf it is necessary to change the CDS due to a software revision,refer to the Application Module Data ControlLanguage/Application Module Data Entry

Parameter list There is no parameter list for the standard ASTM D86calculation package

Hi-Spec Solutions

ASTM D86 Temperature Calculation Building D86 Point Calculation Point

Revision 3.0 36

Building ASTM D86 Calculation Point

A calculation point is required for each ASTM D86 temperature calculated

Step ActionModify ExceptionBuild file,D86_EFV.EB

From the Command Processor Display:ED $Fn>D86>D86_EFV.EB [ENTER]Edit template as follows:

&N point nameUNIT = unit numberPTDESC ="point descriptor text"KEYWORD = "keyword"PERIOD = as required

Load EB file. From the Builder Commands Display:Select the EXCEPTION BUILD target.Fill in ports as:

REFERENCE PATH NAME: $Fn>D86Load Entities (select target)Pathname for SOURCE file: D86_EFV.EBPathname for IDF file: D86_EFV.DB[ENTER]

Verify load When the load is complete, verify point loading by calling thepoint detail from the [DETAIL] button.

Hi-Spec Solutions

ASTMD86 Temperature Calculation Configuration Graphics Installation

Revision 2.0 37

Configuration Graphics Installation

Graphics must be compiled and installed once per LCN.

Step ActionGo to PictureEditor

Enter the Picture Editor, one of two ways:From the Engineering Main Menu select the Pictureeditor target OR From the CommandProcessor command line type PE [ENTER]

Load DDB Load Global variable definition file, DDB:L $Fn>D86>DDB [ENTER]

Read D86_CFG Read in the picture file, D86_CFGR $Fn>D86>D86_CFG [ENTER]

Verify andCompile

Verify picture:VER [ENTER]When the verification is complete Compile the picture:COM [ENTER]

CopyD86_CFG.DO tographics directory

From the Command Processor Display:COPY $Fn>D86_CFG.DO NET>pic_dir>= -D[ENTER]Where pic_dir is the picture source directory specified in theSchematic Search Path

Hi-Spec Solutions

ASTMD86 Temperature Calculation Configure Calculation Point

Revision 3.0 38

Configure Calculation Point

Configuration of the calculation point can be done either through the graphic D86_CFGor through direct entry to the CDS ports on the Point Detail display.Use of the configuration graphic is recommended.

• Graphic Configuration of ASTM D86 Calculation Point

• Non Graphic Configuration of ASTM D86 Calculation Point

• Linking CL Program.

Hi-Spec Solutions

ASTMD86 Temperature Calculation Point Configuration Using Graphic D86_CFG

Revision 3.0 39

Point Configuration Using Graphic D86_CFG

Each entry port on the flash configuration graphic, D86_CFG, is described below:

Graphic D86_CFG

Continued

Hi-Spec Solutions

ASTMD86 Temperature Calculation Point Configuration Using Graphic D86_CFG

Revision 3.0 40

Point Configuration Using Graphic D86_CFG (Continued)

Selection Port Parameter Description

Calculation Point -- Enter the ASTM D86 calculation point tagname.

Number of Streams ENGPAR(1) Enter the number of flow inputs (streams).

Product Location ENGPAR(4) Enter the array location of the product streamwithin the flow inputs.

Gain on EFV Value LAB_BIAS(1) Enter the value to be use as the EFV multiplicativebias. Default value is 1.0.

Gain Filter (min) FILTER(15) Enter the multiplicative bias filter time in minutes.

Additive Calc Bias LAB_BIAS(2) The additive bias is a dynamic value and anassociated lab package determines the additivebias.

Additive Filter (min) FILTER(16) Enter the additive bias filter time in minutes.

Gravity Units[API] [SPGR]

CONV_FAC(13) Select the input gravity unit.

Gravity Filter (min) FILTER(13) Enter the gravity filter time in minutes. The onegravity filter value is used for all gravity inputs.

Watson K Filter (min) FILTER(14) Enter the Watson K filter time in minutes. The oneWatson K filter value is used for all Watson Kinputs.

Desired Volume % ENGPAR(5) Select the ASTM D86 volume % point where thetemperature is to be determined.

Temperature Units[DEG F] [DEG C]

CONV_FAC(12) Select the input temperature units.

Temperature Pnt TEMP_PT Enter the tagname of the draw temperature.

Temperature Bias T_BIAS Enter the bias value to be added to the drawtemperature.

Continued

Hi-Spec Solutions

ASTMD86 Temperature Calculation Point Configuration Using Graphic D86_CFG

Revision 3.0 41

Point Configuration Using Graphic D86_CFG (Continued)

Selection Port Parameter Description

Temp Filter (min) FILTER(11) Enter the filter time, in minutes, for the drawtemperature.

Pressure Pnt PRESS_PT Enter the tagname of the pressure point used todetermine the pressure at the draw tray.

Pressure Bias P_BIAS Enter the bias value to be added to the pressureinput.

Pressure Filter (min) FILTER(12) Enter the filter time, in minutes, for the pressureinput.

Atmospheric Pressure ENGPAR(2) Enter the atmospheric pressure in input units or14.696 for psi units. The program will handleeither entry correctly.

Pressure Conv Factor CONV_FAC(11) Enter the conversion factor to convert inputpressure units to psi.

There are up to ten flow inputs or stream points that can be configured for the ASTMD86 calculation. The configuration zone for the flow inputs is located at the bottom ofthe configuration graphic. The page forward and back keys on the TDC 3000 keyboardsteps through the setup zones. The number setup zones used indexes off the Numberof Streams at the top left of the configuration graphic.

There are two variations of the flow point configuration zone. One configuration zoneis used when the stream molecular weight is to be calculated by the ASTM D86program. The other configuration zone is for when the stream molecular weight issupplied by the user. When the stream molecular weight is to be calculated, ports toenter the stream gravity point tagname and Watson K point tagname are supplied. If thestream molecular weight is supplied by the user, these ports are unavailable.

Continued

Hi-Spec Solutions

ASTMD86 Temperature Calculation Point Configuration Using Graphic D86_CFG

Revision 3.0 42

Point Configuration Using Graphic D86_CFG (Continued)

Graphic D86_CFG Flow Configuration Zone 1

Graphic D86_CFG Flow Configuration Zone 1

Continued

Hi-Spec Solutions

ASTMD86 Temperature Calculation Point Configuration Using Graphic D86_CFG

Revision 3.0 43

Point Configuration Using Graphic D86_CFG (Continued)

Selection Port Parameter7 Description

# Envelope Flow Pnt FLOW_PT(i) Enter flow input i tagname.

Flow Conv Factor CONV_FAC(i) Enter the conversion factor to convert the input unitsto mass units.

Flow Filter (min) FILTER(i) Enter the filter time, in minutes, for the flow input.

Molecular Weight[CALC] [USER]

ENGPAR(5+i) Specifies if the molecular weight of stream i is to becalculated on line or use a static value supplied byuser.

Stream in Numerator NUMER(i) Specifies if stream i is in the numerator of the molefraction. All streams are in the denominator. ( seestream in numerator discussion at the end of thisdocument.)

Stream Gravity Pnt GRAV_PT(i) Enter the tagname for stream i gravity input. Theinput port for this parameter is unavailable when themolecular weight is supplied by the USER.

Stream Watson K Pnt WATK_PT(i) Enter the tagname for stream i Watson K factorinput. The input port for this parameter isunavailable when the molecular weight is suppliedby the USER.

7 The (i) indicates the number of the flow input.

Hi-Spec Solutions

ASTM D86 Temperature Calculation Point Configuration through Direct CDS Entry

Revision 3.0 44

Point Configuration through Direct CDS Entry

If the configuration graphic is not used, then the configuration data must be entereddirectly onto the calculation point. The required calculation point information andassociated parameter are listed below.

Parameter8 Description Comments

CONV_FAC(1) Stream 1 (FLOW_PT(1))multiplicative flow conversionfactor

Convert input units to mass units.

CONV_FAC(2) Stream 2 (FLOW_PT(2))multiplicative flow conversionfactor

Convert input units to mass units.

CONV_FAC(3) Stream 3 (FLOW_PT(3))multiplicative flow conversionfactor

Convert input units to mass units.

CONV_FAC(4) Stream 4 (FLOW_PT(4))multiplicative flow conversionfactor

Convert input units to mass units.

CONV_FAC(5) Stream 5 (FLOW_PT(5))multiplicative flow conversionfactor

Convert input units to mass units.

CONV_FAC(6) Stream 6 (FLOW_PT(6))multiplicative flow conversionfactor

Convert input units to mass units.

CONV_FAC(7) Stream 7 (FLOW_PT(7))multiplicative flow conversionfactor

Convert input units to mass units.

CONV_FAC(8) Stream 8 (FLOW_PT(8))multiplicative flow conversionfactor

Convert input units to mass units.

CONV_FAC(9) Stream 9 (FLOW_PT(9))multiplicative flow conversionfactor

Convert input units to mass units.

CONV_FAC(10) Stream 10 (FLOW_PT(10))multiplicative flow conversionfactor

Convert input units to mass units.

CONV_FAC(11) Process pressure input(PRESS_PT) multiplicativeconversion factor

Convert input units to psi.

Continued

8 The (i) indicates the number of the flow input.

Hi-Spec Solutions

ASTM D86 Temperature Calculation Point Configuration through Direct CDS Entry

Revision 3.0 45

Point Configuration through Direct CDS Entry (Continued)

Parameter8 Description Comments

CONV_FAC(12) Input temperature unit flag Default is 0 (°F).0 => °F1 => °C

CONV_FAC(13) Input gravity type flag Default is 0 (API).0 => °API1 => Specific gravity

ENGPAR(1) Number of flow, stream, inputs Number of flow inputs must match thenumber of entries reflected inFLOW_PT(i).(2.0 < ENGPAR(1) <= 10.0)

ENGPAR(2) Local atmospheric pressure Same units as PRESS_PT. A value of14.696 will be used internally if a zerois entered.

ENGPAR(3) Flag to set calculation BAD This input allows the calculation to beset bad by an Engineering request.0 => Do not set BAD1 => Set calculation BAD

ENGPAR(4) Array location of product gravityand Watson K

ENGPAR(5) ASTM D86 temperature to becalculated

ASTM D86 volume %0 => EFV 1 => 0%2 => 10% 3 => 30%4 => 50% 5 => 70%6 => 90% 7 => 100%

ENGPAR(6) Flag for whether stream 1molecular weight is calculated ormanually entered

This input allows the molecular weightto be updated based on laboratoryresults.0 => Calculate1 => Manually entered

ENGPAR(7) Flag for whether stream 2molecular weight is calculated ormanually entered

This input allows the molecular weightto be updated based on laboratoryresults.0 => Calculate1 => Manually entered

Continued

8 The (i) indicates the number of the flow input.

Hi-Spec Solutions

ASTM D86 Temperature Calculation Point Configuration through Direct CDS Entry

Revision 3.0 46

Point Configuration through Direct CDS Entry (Continued)

Parameter8 Description Comments

ENGPAR(8) Flag for whether stream 3molecular weight is calculated ormanually entered

This input allows the molecular weightto be updated based on laboratoryresults.0 => Calculate1 => Manually entered

ENGPAR(9) Flag for whether stream 4molecular weight is calculated ormanually entered

This input allows the molecular weightto be updated based on laboratoryresults.0 => Calculate1 => Manually entered

ENGPAR(10) Flag for whether stream 5molecular weight is calculated ormanually entered

This input allows the molecular weightto be updated based on laboratoryresults.0 => Calculate1 => Manually entered

ENGPAR(11) Flag for whether stream 6molecular weight is calculated ormanually entered

This input allows the molecular weightto be updated based on laboratoryresults.0 => Calculate1 => Manually entered

ENGPAR(12) Flag for whether stream 7molecular weight is calculated ormanually entered

This input allows the molecular weightto be updated based on laboratoryresults.0 => Calculate1 => Manually entered

ENGPAR(13) Flag for whether stream 8molecular weight is calculated ormanually entered

This input allows the molecular weightto be updated based on laboratoryresults.0 => Calculate1 => Manually entered

ENGPAR(14) Flag for whether stream 9molecular weight is calculated ormanually entered

This input allows the molecular weightto be updated based on laboratoryresults.0 => Calculate1 => Manually entered

Continued

8 The (i) indicates the number of the flow input.

Hi-Spec Solutions

ASTM D86 Temperature Calculation Point Configuration through Direct CDS Entry

Revision 3.0 47

Point Configuration through Direct CDS Entry (Continued)

Parameter8 Description Comments

ENGPAR(15) Flag for whether stream 10molecular weight is calculated ormanually entered

This input allows the molecular weightto be updated based on laboratoryresults.0 => Calculate1 => Manually entered

FILTER(1) Stream 1 flow input,FLOW_PT(1), filter time

Minutes

FILTER(2) Stream 2 flow input,FLOW_PT(2), filter time

Minutes

FILTER(3) Stream 3 flow input,FLOW_PT(3), filter time

Minutes

FILTER(4) Stream 4 flow input,FLOW_PT(4), filter time

Minutes

FILTER(5) Stream 5 flow input,FLOW_PT(5), filter time

Minutes

FILTER(6) Stream 6 flow input,FLOW_PT(6), filter time

Minutes

FILTER(7) Stream 7 flow input,FLOW_PT(7), filter time

Minutes

FILTER(8) Stream 8 flow input,FLOW_PT(8), filter time

Minutes

FILTER(9) Stream 9 flow input,FLOW_PT(9), filter time

Minutes

FILTER(10) Stream 10 flow input,FLOW_PT(10), filter time

Minutes

FILTER(11) Draw temperature, TEMP_PT,filter time

Minutes

FILTER(12) Process pressure, PRESS_PT,filter time

Minutes

FILTER(13) Filter time for all gravity inputs,GRAV_PT(i)

Minutes

FILTER(14) Filter time for all Watson Kinputs, WATK_PT(i)

Minutes

FILTER(15) Multiplicative bias,LAB_BIAS(1), filter time

Minutes

FILTER(16) Additive bias, LAB_BIAS(2),filter time

Minutes

Continued

8 The (i) indicates the number of the flow input.

Hi-Spec Solutions

ASTM D86 Temperature Calculation Point Configuration through Direct CDS Entry

Revision 3.0 48

Point Configuration through Direct CDS Entry (Continued)

Parameter8 Description Comments

FLOW_PT(i) Stream i flow input tagname The minimum number of flow inputs is2.

GRAV_PT(i) Stream i gravity input tagname When the molecular weight iscalculated by the ASTM D86 routine agravity input MUST be supplied.

LAB_BIAS(1) Multiplicative laboratory bias tocalculated ASTM D86temperature

Used to proportionally bias the molefraction. Default value is 1.0.

LAB_BIAS(2) Additive laboratory bias tocalculated ASTM D86temperature

Same units as TEMP_PT. Defaultvalue is 0.0.

MOLWT(i) Entered stream i molecular weightwhen the molecular weight is to besupplied by the USER.

When the molecular weight iscalculated by ASTM D86 routine, noentry is required.

NUMER(i) Flag to indicate when stream i isin the numerator of the molefraction

Indicates if the stream i flow is to be inthe numerator of the mole fraction.0 =>Flow is NOT in numerator1 => Flow is in numerator

PRESS_PT Process pressure input tagname Use the pressure bias, P_BIAS, if thepressure indicator is not located on thedraw tray.

P_BIAS Process pressure additive bias Same units as PRESS_PT.

TEMP_PT Draw tray temperature tagname Use the temperature bias, T_BIAS, ifthe temperature indicator is not locatedon the draw tray.

T_BIAS Draw tray temperature additivebias

Same units as TEMP_PT.

WATK_PT(i) Stream i Watson K factor inputtagname

When the molecular weight iscalculated by the ASTM D86 routine aWatson K input MUST be supplied.

8 The (i) indicates the number of the flow input.

Hi-Spec Solutions

ASTM D86 Temperature Calculation Appendix A Engineer’s Detailed Description

Revision 3.0 A-49

Link CL Programs

Step Action

Link D86_EFV From the Command Processor Display:

LK $Fn>D86>D86_EFV point_name [ENTER]

Activate point Call up the point detail and activate the point, or activate from D86_CFGgraphic.

Verify Operation Verify that D86_EFV is running without any CL errors.

Hi-Spec Solutions

Honeywell Hi-Spec Solutions • 16404 N. Black Canyon Hwy. • Phoenix, AZ 85023

Advanced Control Package

Flash Point Calculation

CONTROLLED

May 1995Revision 3.0

Hi-Spec Solutions

Flash Point Calculation Revision History

Revision 3.0

Table of Contents

Overview.........................................................................................................................................1

Acronym List ..................................................................................................................................3

Hardware and Software Requirements ...........................................................................................4

Instrumentation (Process Inputs) ....................................................................................................5

Process Diagram .............................................................................................................................6

Detailed Description .......................................................................................................................7

Point Structure ..................................................................................................................8

Process Inputs ...................................................................................................................9

Configuration Inputs .......................................................................................................10

Configuration Inputs (Continued)...................................................................................11

Calculation Outputs ........................................................................................................12

Error Codes ...................................................................................................................................13

Diagnostic Error Codes...................................................................................................14

Molecular Weight Error Codes .......................................................................................15

EFV Temperature Error Codes .......................................................................................16

Configuration and Tuning.............................................................................................................17

Biases in the Flash Point Program ..................................................................................18

Tuning Parameters ..........................................................................................................19

Tuning Parameters (Continued)......................................................................................20

Algorithms ....................................................................................................................................21

Algorithms (Continued) ..................................................................................................22

Installation Procedure ...................................................................................................................23

Preparation for Installation .............................................................................................24

CDS and PL Installation .................................................................................................25

Building a Flash Calculation Point .................................................................................26

Configuration Graphics Installation................................................................................27

Configure Calculation Point .........................................................................................................28

Point Configuration Using Graphic FLSH_CFG............................................................29

Point Configuration Using Graphic FLSH_CFG (Continued) .......................................30

Point Configuration Using Graphic FLSH_CFG (Continued) .......................................31

Point Configuration Using Graphic FLSH_CFG (Continued) .......................................32

Hi-Spec Solutions

Flash Point Calculation Contents

Revision 3.0

Point Configuration Using Graphic FLSH_CFG (Continued) .......................................33

Point Configuration Using Graphic FLSH_CFG (Continued) .......................................34

Point Configuration through Direct CDS Entry..............................................................35

Point Configuration through Direct CDS Entry (Continued) .........................................36

Point Configuration through Direct CDS Entry (Continued) .........................................37

Point Configuration through Direct CDS Entry (Continued) .........................................38

Link CL Programs.........................................................................................................................39

Hi-Spec Solutions

Flash Point Calculation Overview

Revision 3.0 1

Overview

Definition. Flash point temperature is the temperature to which a product must beheated under prescribed conditions to release sufficient vapor to form a mixture with airthat can be readily ignited.

Application. The flash point of a hydrocarbon fraction is an important specification forjet fuel, LCO, and heavy FCC gasoline products, because the flash point generallyindicates the fire and explosion potential of the product.

Calculation. The Flash Point calculation program calculates the inferential flash pointof a hydrocarbon product based on:

• Processinputs :

Temperatures, pressures, and flows

• Characterizationinputs:

Watson K and specific gravity

• Calculatedvalues:

Molecular weight, equilibrium flash vaporizationtemperature, ASTM 10% point, and Flash Point.

Incentive. 1. To indicate how closely a hydrocarbon stream is meeting the flash pointspecification.

2. To eliminate dead time associated with laboratory analysis and on-lineanalyzers.

3. To provide a real-time input for use in advanced control applications.

Hi-Spec Solutions

Flash Point Calculation Overview

Revision 3.0 2

30252015105034

36

38

40

42

44

Pred Flash

Lab Flash

Predicted & Laboratory Flash Values

Number of Samples

InitialtuningNo lab Biasupdate

CrudeswitchNo lab Biasupdate

Figure 1

The lab results in Figure 1 are shown with error bars of + or - 1 °C. The ASTM D 93-85 Flash Point, by the Pensky-Martens Closed Tester method, states a reproducibility of+ or - 2 °C when the test is performed by the same technician.

Hi-Spec Solutions

Flash Point Calculation Acronym List

Revision 3.0 3

Acronym List

Term Acronym

light cycle oil LCO

Fluidized Catalytic Cracker FCC

Application Module AM

Local Control Network LCN

Universal Station US

control language CL

process variable PV

custom data segment CDS

Equalibrium Flash Vaporization EFV

pounds per square inch psi

Parameter List PL

CL object code file extension AO

Hi-Spec Solutions

Flash Point Calculation Hardware and Software Requirements

Revision 3.0 4

Hardware and Software Requirements

Requirement Description

Hardware Platform TDC 3000 AM

Special Boards None

Other Computing Systems None

LCN Release Release 300 or later

AM Load Modules None

US Load Modules None

Other Packages None

Other Control Applications None

Software Inputs Specific gravities and Watson K factors for the stripper feed andstripper product must exist as points on the LCN

Hi-Spec Solutions

Flash Point Calculation Instrumentation (Process Inputs)

Revision 3.0 5

Instrumentation (Process Inputs)

Process Input1 Required Recommended

Stripper feed temperature X

Stripper product temperature X2

Stripper product flow rate(s) X

Distillation column feed flow rate X

Stripper pressure X

Stripping steam temperature X

Stripping steam flow X

Stripper feed flow X3

1 Required inputs can sometimes be obtained by inference. However, calculations based upon inferred data can be less accurate than calculations based upon direct readings.2 Prediction accuracy is reduced if this variable is established.3 This is an optional input. If available this flow can be used to give direct calculation of vapor stripped instead of using the Nelson correlation.

Hi-Spec Solutions

Flash Point Calculation Process Diagram

Revision 3.0 6

Process Diagram

Hydrocarbonand Steam

Hydrocarbon

Steam

HydrocarbonStripped

MainFractionator

Stripper

Draw

Product

TI

TI

Hydrocarbon

Total Feed

TI

FC

FC

FC

PIRecommended

Required

FI

Hi-Spec Solutions

Flash Point Calculation Detailed Description

Revision 3.0 7

Detailed Description

The tables in this section describe the following Flash Point program architecture:

• Point Structure

• Process Inputs

• Configuration Inputs

• Calculation Outputs.

Hi-Spec Solutions

Flash Point Calculation Point Structure

Revision 3.0 8

Point Structure

Point Structure

Point Type Application Module Regulatory, CL

PV_Type CL

CTL_Type Any

Custom Data Segment FLSH_CDS.CL

Algorithm FLSH_PT.CL

Insertion Point PV_ALG

Slot 5

Output The calculated inferential flash point is displayed as the point’s PV

Hi-Spec Solutions

Flash Point Calculation Process Inputs

Revision 3.0 9

Process Inputs

Process Inputs

Critical4

Parameter Description Units Yes No

PRESS_PT Tagname of source for process pressure Any pressure units X

TEMP_PT(1) Tagname of source for stripper feedtemperature

°F or °C X

TEMP_PT(2) Tagname of source for stripper producttemperature

°F or °C X

TEMP_PT(3) Tagname of source for stripping steamtemperature

°F or °C X

FLOW_PT(1) Tagname of source for first product flowrate

Any flow units X

FLOW_PT(2) Tagname of source for second productflow rate

Any flow units X

FLOW_PT(3) Tagname of source for third product flowrate

Any flow units X

FLOW_PT(4) Tagname of source for stripping steamflow rate

Any flow units X

FLOW_PT(5) Tagname of source for DistillationColumn feed flow rate (main tower)

Any flow units X

FLOW_PT(6) Tagname of source for stripper feed. Any flow units X

GRAV_PT(1) Tagname of source for stripper feedgravity

°API or none (S.G.)

GRAV_PT(2) Tagname of source for stripper productgravity

°API or none (S.G.) X

WATK_PT(1) Tagname of source for stripper feedWatson K factor

None X

WATK_PT(2) Tagname of source for stripper productWatson K factor

None X

.

4 Critical indicates that a bad input causes the output of the calculation to be set BAD.

Hi-Spec Solutions

Flash Point Calculation Configuration Inputs

Revision 3.0 10

Configuration Inputs

Configuration Inputs

Parameter Description Units

T_BIAS(1) Additive bias to stripper feed temperature Same units asTEMP_PT(1)

T_BIAS(2) Additive bias to stripper product temperature Same units asTEMP_PT(2)

P_BIAS Additive bias to stripper pressure Same units asPRESS_PT

ENGPAR(1) Local atmospheric pressure (a value of 14.696 will be usedinternally if a zero is entered)

Same units asPRESS_PT

ENGPAR(2) Number of product flows (1.0 < ENGPAR(2) <= 3.0)

N/A

ENGPAR(3) Gain on product yield bias to EFV temperature °F/Volume %

ENGPAR(4) Ratio of steam heat capacity to stripped product heatcapacity

None

ENGPAR(5) Ratio of the latent heat of vaporization of stripped productto 100 times the heat capacity of stripped product

Units of (°F)-1

ENGPAR(6) Temperature drop across stripper due to ambient losses Same units asTEMP_PT(1)

ENGPAR(7) Flag to force calculation BAD( 0 => Do not set BAD; 1 => Set calculation BAD)

N/A

ENGPAR(8) Stripper feed flag( 0 => feed flow must be calculated, 1 => use is available feed flow )

None

ENGPAR(9) Stripping media molecular weight lb/lb-mole

LAB_BIAS(1) Multiplicative bias applied to the partial pressure N/A

LAB_BIAS(2) Additive laboratory bias to calculated flash point Same units asTEMP_PT(1)

CONV_FAC(1) Product 1 (FLOW_PT(1)) multiplicative flow conversionfactor

From input unitsto MBPD

CONV_FAC(2) Product 2 (FLOW_PT(2)) multiplicative flow conversionfactor

From input unitsto MBPD

CONV_FAC(3) Product 3 (FLOW_PT(3)) multiplicative flow conversionfactor

From input unitsto MBPD

CONV_FAC(4) Stripping steam (FLOW_PT(4)) multiplicative flowconversion factor

From input unitsto MPPH

CONV_FAC(5) Distillation column feed (FLOW_PT(5)) multiplicative flowconversion factor

From input unitsto MBPD

Continued

Hi-Spec Solutions

Flash Point Calculation Configuration Inputs

Revision 3.0 11

Configuration Inputs (Continued)

Configuration Inputs

Parameter Description Units

CONV_FAC(6) Stripper feed (FLOW_PT(6)) multiplicative flowconversion factor.

From input unitsto MBPD

CONV_FAC(7) Stripper pressure (PRESS_PT) multiplicative conversionfactor

From input unitsto psi

CONV_FAC(8) Input temperature unit flag; 0 => °F;1 => °C

N/A

CONV_FAC(9) Input gravity type flag:0 => API;1 => Specific gravity

N/A

FILTER(1) Filter time for product 1 flow input Minutes

FILTER(2) Filter time for product 2 flow input Minutes

FILTER(3) Filter time for product 3 flow input Minutes

FILTER(4) Filter time for stripping gas (steam) flow input Minutes

FILTER(5) Filter time for Distillation column feed flow input Minutes

FILTER(6) Filter time for stripper feed flow input Minutes

FILTER(7) Filter time for stripper feed temperature input Minutes

FILTER(8) Filter time for product temperature measurement Minutes

FILTER(9) Filter time for stripping steam temperature measurement Minutes

FILTER(10) Filter time for stripper pressure measurement input Minutes

FILTER(11) Filter time for stripper feed and product gravity Minutes

FILTER(12) Filter time for stripper feed and product Watson K factor Minutes

FILTER(13) Filter time for additive laboratory bias Minutes

FILTER(14) Filter time for calculated stripper delta temperature Minutes

FILTER(15) Filter time for calculated product yield Minutes

Hi-Spec Solutions

Flash Point Calculation Calculation Outputs

Revision 3.0 12

Calculation Outputs

Calculation Outputs

Parameter Description Units

PVCALC Calculated hydrocarbon product inferential flash point Temperatureinput units

CALC_VAL(1) Calculated hydrocarbon product inferential flash point Temperatureinput units

CALC_VAL(2) Calculated fraction of vaporized stripper feed N/A

CALC_VAL(3) Calculated equilibrium hydrocarbon mole fraction N/A

CALC_VAL(4) Calculated unbiased equilibrium flash vaporizationtemperature

Temperatureinput units

CALC_VAL(5) Calculated yield biased EFV temperature Temperatureinput units

CALC_VAL(6) Calculated volumetric product yield Volume %

CALC_VAL(7) ASTM D86 10% point Temperatureinput units

MOLWT(1) Calculated molecular weight of draw to stripper lb/lb-mol

MOLWT(2) Calculated molecular weight of stripper product lb/lb-mol

FILT_VAL(1) Filtered value of input product 1 flow rate Input units

FILT_VAL(2) Filtered value of input product 2 flow rate Input units

FILT_VAL(3) Filtered value of input product 3 flow rate Input units

FILT_VAL(4) Filtered value of input stripping steam flow rate Input units

FILT_VAL(5) Filtered value of input distillation column feed rate Input units

FILT_VAL(6) Filtered value of input stripper feed rate Input units

FILT_VAL(7) Filtered value of input stripper draw temperature Input units

FILT_VAL(8) Filtered value of input stripper product temperature Input units

FILT_VAL(9) Filtered value of input stripping steam temperature Input units

FILT_VAL10) Filtered value of input stripper pressure Input units

FILT_VAL(11) Filtered value of input stripper feed gravity Input units

FILT_VAL(12) Filtered value of input stripper product gravity Input units

FILT_VAL(13) Filtered value of input stripper feed Watson K None

FILT_VAL(14) Filtered value of input stripper product Watson K None

FILT_VAL(15) Filtered value of input additive laboratory bias Input units

FILT_VAL(16) Filtered value of input temperature drop across stripper Input temp units

FILT_VAL(17) Filtered value of calculated product yield Input units

STATUS(1) Diagnostic indication of location and possible causes ofprogram error

N/A

STATUS(2) Diagnostic indication of subroutine error N/A

REV_NO Program revision number N/A

Hi-Spec Solutions

Flash Point Calculation Error Codes

Revision 3.0 13

Error Codes

The tables in this section describe the following program error codes:

• Diagnostic error codes

• Molecular weight error codes

• EFV temperature error codes.

Hi-Spec Solutions

Flash Point Calculation Diagnostic Error Codes

Revision 3.0 14

Diagnostic Error Codes

Diagnostic Error Codes

Parameter Value Description

STATUS(1)5 0.0 No errors

1.0 Set calculation BAD flag on [ENGPAR(7)<>0]

2.0 Input number of product streams is outside the range 1 to 3[ENGPAR(2)]

3.0 Input product yield bias gain factor, ratio of steam to product heatcapacities or ratio of product latent heat of vaporization to 100times product heat capacity has a zero or negative value[ENGPAR(3..5) <= 0]

4.0 FLOW_PT(4) has a null point entered or has a bad PV

5.0 FLOW_PT(5) has a null point entered or has a bad PV

6.0 PRESS_PT has a null point entered or has a bad PV

7.0 TEMP_PT(1) has a null point entered or has a bad PV

8.0 TEMP_PT(2) has a null point entered or has a bad PV

9.0 TEMP_PT(3) has a null point entered or has a bad PV

10.0 LAB_BIAS(2) has a bad value

11.0 GRAV_PT(1) has a null point entered or has a bad PV

12.0 GRAV_PT(2) has a null point entered or has a bad PV

13.0 WATK_PT(1) has a null point entered or has a bad PV

14.0 WATK_PT(2) has a null point entered or has a bad PV

15.0 FLOW_PT(6) has a null point entered or has a bad PV

16.0 FLOW_PT(1) has a null point entered or has a bad PV

17.0 FLOW_PT(2) has a null point entered or has a bad PV

18.0 FLOW_PT(3) has a null point entered or has a bad PV

19.0 Error in calculating MOLWT(1) (see STATUS(2) in "MolecularWeight Error Codes")

20.0 Error in calculating MOLWT(2) (see STATUS(2) in "MolecularWeight Error Codes")

21.0 Calculated fraction of feed vaporized has a bad value or is greaterthan or equal to 1.0. or is less than 0.0 [CALC_VAL(2)]

23.0 Calculated hydrocarbon mole fraction in vapor is less than orequal to 0.0 or greater than 1.0 [CALC_VAL(3)]

23.0 Error in calculating EFV temperature (see STATUS(2) in "EFVTemperature Error Codes")

5 STATUS(1) indicates errors in the calculation.

Hi-Spec Solutions

Flash Point Calculation Molecular Weight Error Codes

Revision 3.0 15

Molecular Weight Error Codes

Molecular Weight Error Codes

Parameter Value Description

STATUS(2)6 0.0 No errors

1.0 Calculated molecular weight has a bad value

2.0 Input specific gravity has a bad value

3.0 Input Watson K has a bad value

-1.0 Input specific gravity or Watson K equal to or less than 0.0

6 STATUS(2) indicates errors returned by the molecular weight calculation subroutine.

Hi-Spec Solutions

Flash Point Calculation EFV Temperature Error Codes

Revision 3.0 16

EFV Temperature Error Codes

EFV Temperature Error Codes

Parameter Value Description

STATUS(2) 0.0 No errors

1.0 Calculated EFV temperature has a bad value

2.0 Input temperature has a bad value

3.0 Input effective vapor pressure has a bad value

4.0 Input Watson K has a bad value

-1.0 Input temperature, effective vapor pressure, or Watson K has azero or negative value

Hi-Spec Solutions

Flash Point Calculation Configuration and Tuning

Revision 3.0 17

Configuration and Tuning

This section describes the parameters and values used to configure and tune the packageto a specific application.

Biases

• Temperature Bias

• Pressure Bias

• Laboratory Bias.

Tuning

• EFV Yield Bias and Gain

• Nelson Number

• Stripping Coefficient

• Ambient Loss

• Multiplicative Bias.

Hi-Spec Solutions

Flash Point Calculation Biases in the Flash Point Program

Revision 3.0 18

Biases in the Flash Point Program

The Flash Point program is equipped with the following additive biases:

• Input stripper feed and product temperatures

• Input pressure

• Additive laboratory bias for the flash point.

Bias Parameters

Parameter Description

T_BIAS(1) Additive bias to input stripper draw temperature TEMP_PT(1)

T_BIAS(2) Additive bias to input stripped product temperature TEMP_PT(2)

P_BIAS Additive bias to input stripper pressure PRESS_PT

LAB_BIAS(2) Additive laboratory bias to calculated flash point

Pressure and Temperature Bias. The pressure bias (P_BIAS) and temperature biases(T_BIAS(1), T_BIAS(2)) are added to the input values before performance of the unitconversions and should be entered in the same units as the input pressure andtemperatures.

The T_BIAS parameters are used when there is a known error in either the draw orproduct temperature indication. The P_BIAS parameter is used when the actual stripperpressure is not available as an input to the calculation.

Example. If the column overhead pressure is used for PRESS_PT, then P_BIAS is setequal to the pressure change between the column overhead and the stripper bottom.

Additive Laboratory Biases. The calculated flash point is biased usingLAB_BIAS(2). Only the additive bias, LAB_BIAS(2), is used dynamically and isexpected to be updated manually or with a laboratory results interface package.

Both PVCALC and CALC_VAL(1) contain the biased calculated flash temperature.The unbiased flash is not reported. For unbiased calculated results set LAB_BIAS(2) =0.0

Hi-Spec Solutions

Flash Point Calculation Tuning Parameters

Revision 3.0 19

Tuning Parameters

If there is a sustained offset between the calculated and laboratory flash points evenwith the use of the biasing, the following parameters can be adjusted.

Parameter Suggested Adjustment

ENGPAR(3) Increasing the gain on the EFV yield bias decreases the calculated flashpoint

ENGPAR(4) Increasing the ratio of heat capacities of stripping steam to strippedproduct decreases the calculated flash point

ENGPAR(5) Increasing the ratio of the latent heat of the stripped product divided by100 times the heat capacity of the stripped product increases thecalculated flash point

ENGPAR(6) Increasing the ambient temperature loss across the stripper increases thecalculated flash point

LAB_BIAS(1) Multiplicative bias applied to effecive pressure

EFV Yield Bias and Gain [ENGPAR(3)]

A dynamic yield is calculated using the main Fractionator feed and stripper productflow rates. A gain is applied to this yield number to generate a correction bias used onthe calculated EFV temperature. The EFV temperature is used to calculate the ASTM10 % point. The ASTM 10 % point is used to calculate the flash temperature.

The relation is: efv_temp = efv_temp - (y_gain * f_yld)

Nelson Number [ENGPAR(4)]

A number based on the ratio of the feed to product heat capacities. It is used in thenumerator of the calculation of the fraction of feed stripped. This fraction is used toback calculate the feed to the stripper from the known product flow.

The relation is: frac_vap = f(nelson)*f(delta temp) / f(stripping coeff)

Stripping Coefficient [ENGPAR(5)]

A constant used in the denominator of the calculation for fraction of feed stripped.

The relation is: frac_vap = f(nelson)*f(delta temp) / f(stripping coeff)

Continued

Hi-Spec Solutions

Flash Point Calculation Tuning Parameters

Revision 3.0 20

Tuning Parameters (Continued)

Multiplicative Bias [LAB_BIAS(1)]

The multiplicative bias, LAB_BIAS(1), is used as a proportional bias. This bias isoptional and is manually entered when used. If this bias is not used it must be set to1.0.

Ambient Loss [ENGPAR(6)]

The temperature loss across the stripper due to Ambient conditions.

The relation is: delta temp = feed temp - product temp - Ambient loss

Used in the relation is: frac_vap = f(nelson)*f(delta temp) / f(stripping coeff)

The following samples show the direction and magnitude to be expected with anadjustment to the different tuning factors.

Increase Y_Gain to Decrease FlashPoint

Y_GAIN[ENGPAR(3)]

FLASH POINT°C

0.1 46.6

0.5 43.0

1.0 38.5

Increase Nelson to Decrease FlashPoint

Nelson number[ENGPAR(4)]

FLASH POINT°C

0.4 41.5

0.6 39.9

0.8 38.5

Increase Strip Coef to Increase FlashPoint

Strip Coef[ENGPAR(5)]

FLASH POINT°C

4.0 31

4.5 34

5.0 38.5

Increase Delta Temperature toIncrease Flash Point

Delta temp[ENGPAR(6)]

FLASH POINT°C

0 38.5

5 42.7

10 48.0

Hi-Spec Solutions

Flash Point Calculation Algorithms

Revision 3.0 21

Algorithms

Conversion of Engineering Units. The input process flows can have any units, but theconversion factors must be configured to yield thousands of barrels per day (MBPD), asshown in Equation 1:

flow(i) = FLOW_PT(i).PV * CONV_FAC(i)

Where:

flow(i) = Process flow i converted to MBPD for internal useFLOW_PT(i).PV = Input process flow i in any unitsCONV_FAC(i) = Conversion for flow i from input units to MBPD

Equation 1

The input process pressure can have any units. However, the conversion factor must beconfigured to yield pounds per square inch (psi), as shown in Equation 2:

press = ( (PRESS_PT.PV +P_BIAS) *CONV_FAC(7) ) + atm_pres

Where:

press = Process pressure converted to psia for internal usePRESS_PT.PV = Input process pressure in any gauge unitsP_BIAS = Bias to input pressure in input gauge unitsCONV_FAC(7) = Conversion factor for pressure from input units to psiatm_pres = Atmospheric pressure in psi

and When:ENG_PAR(1) <= 0 then atm_pres = 14.696

else atm_pres = ENG_PAR(1) * CONV_FAC(7)

Equation 2

Continued

Hi-Spec Solutions

Flash Point Calculation Algorithms

Revision 3.0 22

Algorithms (Continued)

Flash Point Calculation. The flash point is calculated from process inputs using theHoneywell flash point calculation, as shown in Equation 3:

flash_pnt = Function[draw_t, prod_t, delta_t, press, product, feed, steam, steam_t, draw_char, prod_char]

Where:

flash_pnt = Calculated flash pointdraw_t = Stripper draw temperatureprod_t = Stripper product temperaturepress = Stripper pressureproduct = Stripped product flow ratefeed = Unit feed ratesteam = Stripping steam flow ratesteam_t = Stripping steam temperaturedraw_char = Stripper draw characterization (gravity and

Watson K)prod_char = Stripper product characterization (gravity and

Watson K)

Equation 3

Biasing. Two bias factors are provided to reduce the offset between the inferentialflash point and a laboratory or on-line analysis-determined flash point. A multiplicativebias and an additive bias are used, as shown in Equation 4:

bias_flash = flash_pnt + LAB_BIAS(2)

Where:

bias_flash = Biased flash pointflash_pnt = Calculated flash pointLAB_BIAS(2) = Additive laboratory bias

Equation 4

Hi-Spec Solutions

Flash Point Calculation Installation Procedure

Revision 3.0 23

Installation Procedure

This document describes the installation procedure for FLSH_PNT on the TDC 3000System AM.

This section covers the following topics:

• Preparation for Installation

• CDS and PL Installation

• Building Flash Point Calculation Point

• Configuration Graphics Installation.

Hi-Spec Solutions

Flash Point Calculation Preparation for Installation

Revision 3.0 24

Preparation for Installation

Step Action

Gather media Gather the following items:

• Removable media containing the directory FLSH

• Commissioning Worksheet

Make media backup Make a backup copy of media/directory on a US with drives n and mconfigured as follows:

Media:

FCOPY $Fn $Fm

Directory only:

CD $Fm>vol_dir> FLSH

COPY $Fn>FLSH>*.* $Fm>FLSH>= -V -D

Where $Fn is the drive with the source media and $Fm is the drive withthe target media

Hi-Spec Solutions

Flash Point Calculation CDS and PL Installation

Revision 3.0 25

CDS and PL Installation

This procedure must be done once per LCN installation.

Step Action

Set volumepathnames

From Modify Volume Paths display:

CL CUSTOM GDF: NET>CDSG>

USER DEFLT PATH: $Fn>FLSH

CompileFLSH_CDS.CL

From the Command Processor display, compile the CDS file, FLSH_CDS:CL $Fn>CDS>FLSH_CDS.CL -UL

If it is necessary to change the CDS due to a software revision, refer to theApplication Module Data Control Language/Application Module Data Entry

Parameter list There is no parameter list for the standard flash calculation package

Hi-Spec Solutions

Flash Point Calculation Building a Flash Calculation Point

Revision 3.0 26

Building a Flash Calculation Point

A calculation point is required for each hydrocarbon flash point calculated

Step Action

Modify ExceptionBuild file,FLSH_PNT.EB

From the Command Processor display:

ED $Fn>EB>FLSH_PNT.EB [ENTER]

Edit template as follows:

&N point name

UNIT = unit number

PTDESC ="point descriptor text"

KEYWORD = "keyword"

PERIOD = as required

Load EB file. From the Builder Commands display:

Select the EXCEPTION BUILD target.

Fill in ports as:

REFERENCE PATH NAME: $Fn>EB

Load Entities (select target)

Pathname for SOURCE file: FLSH_PNT.EB

Pathname for IDF file: FLSH_PNT.DB

[ENTER]

Verify load When the load is complete, verify point loading by calling the point detailfrom the [DETAIL] button

Hi-Spec Solutions

Flash Point Calculation Configuration Graphics Installation

Revision 3.0 27

Configuration Graphics Installation

Graphics must be compiled and installed once per LCN.

Step Action

Go to Picture Editor Enter the Picture Editor, one of two ways:From the Engineering Main Menu select the PICTUREEDITOR target OR From the Command Processor command line typePE [ENTER]

Load DDB Load Global variable definition file, DDB:

L $Fn>PICS>DDB [ENTER]

Read FLSH_CFG Read in the picture file, FLSH_CFG

R $Fn>FLSH>FLSH_CFG [ENTER]

Verify and Compile Verify picture:

VER [ENTER]

When the verification is complete compile the picture:

COM [ENTER]

CopyFLSH_CFG.DO tographics directory

From the Command Processor display:

COPY $Fn>FLSH>FLSH_CFG.DO NET>pic_dir>= -D [ENTER]

Where pic_dir is the picture source directory specified in the SchematicSearch Path

Hi-Spec Solutions

Flash Point Calculation Configure Calculation Point

Revision 3.0 28

Configure Calculation Point

Configuration of the calculation point can be done either through the graphicFLSH_CFG or through direct entry to the CDS ports on the Point Detail display.Use of the configuration graphic is recommended.

Setup of the calcualtion point requires the following steps:

• Graphic or Non Graphic Configuration of Flash Calculation Point

• Linking CL Program.

Notes:

Configuration errors may occur if points are deleted. To correct this problem, the AOfiles must be unlinked and then relinked to reestablish dynamic indirection.

Link errors may occur, when an improper point type is configured in a CDS parameter.This is caused by a missing parameter. A null point containing all required parameterscan be used in the configuration for linking purposes only. After the CL is linked, thedesired point is then entered into the proper CDS location.

Hi-Spec Solutions

Flash Point Calculation Point Configuration Using Graphic FLSH_CFG

Revision 3.0 29

Point Configuration Using Graphic FLSH_CFG

Each entry port on the flash configuration graphic, FLSH_CFG, is described below:

Graphic FLSH_CFG

Continued

Hi-Spec Solutions

Flash Point Calculation Point Configuration Using Graphic FLSH_CFG

Revision 3.0 30

Point Configuration Using Graphic FLSH_CFG (Continued)

Selection Port Parameter Action

Calculation Point -- Enter the flash calculation point name.

# of Prod Flows ENGPAR(2) Enter the number on product flow streams.

Flash Mult Bias LAB_BIAS(1) Enter the number to use as the flash multiplicativebias. This is the proportional bias and should be setto 1.0 if not used. Partial pressure correction.

Flash Added Bias LAB_BIAS(2) Enter the additive bias point name. This value is adynamic value and an associated lab package writesthe calculated bias value to a numeric point.

Flash Bias Filter (min) FILTER(13) Enter the additive bias filter time in minuets.

Gain on EFV Yield ENGPAR(3) Enter the tuning value of the EFV gain value. Ifnone is known, use a starting value of 0.3.

Nelson’s Constant ENGPAR(4) Enter the tuning value of the Nelson’s constant. Ifnone is known, use a starting value of 0.65.

Stripping Coef ENGPAR(5) Enter the tuning value of the stripping coefficient. Ifnone is known, use a starting value of 4.5.

Ambient Loss (DT) ENGPAR(6) Enter the number for the contribution due to theambient temperature loss, usually 5 to 10 °F anduses the same units as TEMP_PT(1). This value canbe estimated by turning off stripping steam andmeasuring temperature difference across thestripper.

Ambient Loss Filter(min)

(Stripper deltatemperature)

FILTER(14) Enter the stripper differential temperature filter timein minuets.

Gravity Units[API] [SPGR]

CONV_FAC(9) Select the input gravity unit.

GravityPnt [Draw] GRAV_PT(1) Enter the stripper feed gravity point name.

GravityPnt [Prod] GRAV_PT(2) Enter the product gravity point name. The samegravity point is used for all products.

Watson K pnt [Draw] WATK_PT(1) Enter the stripper feed Watson K point name.

Watson K pnt [Prod] WATK_PT(2) Enter the product Watson K point name. The sameWatson K point is used for all products.

Gravity Filter (min) FILTER(11) Enter the number for the gravity filter in minuets.The same gravity filter point is used for both feedand product.

Watson K Filter (min) FILTER(12) Enter the number for the Watson K filter in minuets.The same Watson K filter point is used for both feedand product.

Continued

Hi-Spec Solutions

Flash Point Calculation Point Configuration Using Graphic FLSH_CFG

Revision 3.0 31

Point Configuration Using Graphic FLSH_CFG (Continued)

Selection Port Parameter Action

Temperature Units[DEG F] [DEG C]

CONV_FAC(8) Select the input temperature units.

Temperature Pnt[Draw]

TEMP_PT(1) Enter the name of the stripper feed temperaturepoint.

Temperature Pnt[Prod]

TEMP_PT2) Enter the name of the product temperature point.

TemperatureBias[Draw]

T_BIAS(1) Enter the number for the stripper feed temperaturebias.

TemperatureBias[Prod]

T_BIAS(2) Enter the number for the product temperature bias.

Temp Filter (min)[Draw]

FILTER(7) Enter the number for the stripper feed temperaturefilter.

Temp Filter (min)[Prod]

FILTER(8) Enter the number for the product temperature filter.

Stm Temperature TEMP_PT(3) Enter the stripping media (steam) temperature point.

Stm Filter (min) FILTER(9) Enter the number for the stripping mediatemperature filter.

Stripper Pressure Pnt PRESS_PT Enter the Stripper pressure point.

Stripper Pressure Bias P_BIAS Enter the number for the stripper pressure bias.

Pressure Filter (min) FILTER(10) Enter the number for the stripper pressure filter.

Atmospheric Pressure ENGPAR(1) Enter the atmospheric pressure in input units ORmeter 14.696 for psi units. The program will handleeither entry correctly.

Pressure Conv Factor CONV_FAC(7) Enter the conversion factor to convert input pressureunits to psi.

Prod Yield Filter(min)

FILTER(15) Enter the number to be used for the calculatedproduct yield filter.

Stripper Feed Flow [CALC] [SYS]

ENGPAR(8) Select if the program is to calculate the stripper feedor use an inputted feed flow.

There are six stream points that can be configured for the flash calculation. Theconfiguration zone for these flows is located at the bottom of the configuration graphic.The page forward and back keys on the TDC 3000 keyboard step through the six setupzones.

Continued

Hi-Spec Solutions

Flash Point Calculation Point Configuration Using Graphic FLSH_CFG

Revision 3.0 32

Point Configuration Using Graphic FLSH_CFG (Continued)

The first three zones that display are used for the three possible product streams. Thegraphic indexes off of the # of Prod Flows parameter at the top left of the configurationgraphic. The graphic displays only the number of product stream configurationsindicated by # of Prod Flows this will be from 1 to 3.

The next three zones are used for the steam point, distillation column (unit) feed, andthe stripper feed.

Selection Port Parameter Description

1 Product Pnt FLOW_PT(1) Enter the first product flow point.Flow Conv Factor CONV_FAC(1) Enter the conversion factor to convert the

input units to thousand barrels per day.Flow Filter (min) FILTER(1) Enter the first product flow filter.

Selection Port Parameter Description

2 Product Pnt FLOW_PT(2) Enter the second product flow point.Flow Conv Factor CONV_FAC(2) Enter the conversion factor to convert the

input units to thousand barrels per day.Flow Filter (min) FILTER(2) Enter the second product flow filter.

Continued

Hi-Spec Solutions

Flash Point Calculation Point Configuration Using Graphic FLSH_CFG

Revision 3.0 33

Point Configuration Using Graphic FLSH_CFG (Continued)

The Third product stream is not illustrated because it follows the same format as oneand two.

Selection Port Parameter Description

Steam Pnt FLOW_PT(4) Enter the stripping media (steam) flowpoint.

Flow Conv Factor CONV_FAC(4) Enter the conversion factor to convert theinput units to thousand pounds per hour.

Flow Filter (min) FILTER(4) Enter the stripping media (steam) flowfilter.

Selection Port Parameter Description

Unit Feed Pnt FLOW_PT(5) Enter the distillation column (unit) flowpoint.

Flow Conv Factor CONV_FAC(5) Enter the conversion factor to convert theinput units to thousand barrels per day.

Flow Filter (min) FILTER(5) Enter the distillation column feed flowfilter.

Continued

Hi-Spec Solutions

Flash Point Calculation Point Configuration Using Graphic FLSH_CFG

Revision 3.0 34

Point Configuration Using Graphic FLSH_CFG (Continued)

Selection Port Parameter Description

Strp Feed Pnt FLOW_PT(6) Enter the stripper feed flow point ifavailable.

Flow Conv Factor CONV_FAC(6) Enter the conversion factor to convert theinput units to thousand barrels per day.

Flow Filter (min) FILTER(6) Enter the stripper feed flow filter.

Hi-Spec Solutions

Flash Point Calculation Point Configuration through Direct CDS Entry

Revision 3.0 35

Point Configuration through Direct CDS Entry

If the configuration graphic is not used, then the configuration data must be entereddirectly onto the calculation point. The required calculation point information andassociated parameter are listed below.

Parameter Description Comments

PRESS_PT Tagname of source for processpressure

Use bias in P_BIAS if the pressure isnot located on the bottom of thestripper.

TEMP_PT(1) Tagname of source for stripperfeed temperature

Use bias in T_BIAS(1) if thetemperature is not located on the feedstream.

TEMP_PT(2) Tagname of source for stripperproduct temperature

Use bias in T_BIAS(2) if thetemperature is not located on thestripper product.

TEMP_PT(3) Tagname of source for strippingsteam temperature

If a steam temperature is not available,bring in an estimate through an AMnumeric point.

FLOW_PT(1) Tagname of source for firstproduct flow rate

Must have one product stream.

FLOW_PT(2) Tagname of source for secondproduct flow rate

Required only if more than 1 productstream exists.

FLOW_PT(3) Tagname of source for thirdproduct flow rate

Required only if more than 2 productstream exists.

FLOW_PT(4) Tagname of source for strippingsteam flow rate

--

FLOW_PT(5) Tagname of source for distillationcolumn feed flow rate

--

FLOW_PT(6) Tagname of source for stripperfeed flow rate

--

GRAV_PT(1) Tagname of source for stripperfeed gravity

If an on-line gravity is not available,bring in an estimate through an AMnumeric point. This is gravity atstandard conditions.

GRAV_PT(2) Tagname of source for stripperproduct gravity

If an on-line gravity is not available,bring in an estimate through an AMnumeric point. This is gravity atstandard conditions.

Continued

Hi-Spec Solutions

Flash Point Calculation Point Configuration through Direct CDS Entry

Revision 3.0 36

Point Configuration through Direct CDS Entry (Continued)

Parameter Description Comments

WATK_PT(1) Tagname of source for stripperfeed Watson K factor

Build an AM numeric point to hold amanually input value.

Or the Watson K can be calculatedusing the 10;50;90 points and gravity.This requires an AM REG_PV pointand the watk code block.

WATK_PT(2) Tagname of source for stripperproduct Watson K factor

Build an AM numeric point to hold amanually input value.

Or the Watson K can be calculatedusing the 10;50;90 points and gravity.This requires an AM REG_PV pointand the watk code block.

T_BIAS(1) Additive bias to stripper feedtemperature

Same units as TEMP_PT(1).

T_BIAS(2) Additive bias to stripper producttemperature

Same units as TEMP_PT(2).

P_BIAS Additive bias to stripper pressure Same units as PRESS_PT.

ENGPAR(1) Local atmospheric pressure (avalue of 14.696 will be usedinternally if a zero is entered)

Same units as PRESS_PT.

ENGPAR(2) Number of input product flowrates (0.0 < ENGPAR(2) <= 3.0)

Number of product flows must match #of entries reflected in FLOW_PT(1..3).

ENGPAR(3) Gain on product yield bias to EFVtemperature

Starting estimate: 0.3 °F/Volume %.

ENGPAR(4) Ratio of stripping steam heatcapacity to stripped product heatcapacity

Starting estimate:approx. 0.65.

ENGPAR(5) Ratio of the latent heat ofvaporization of stripped product to100 times the heat capacity ofstripped product

Must be in °F(if not known start with 4.5).

ENGPAR(6) Temperature drop across stripperdue to ambient losses

Usually 5 to 10 °F. Same units asTEMP_PT(1). Can be estimated byturning off stripping steam andmeasuring temperature differenceacross stripper.

ENGPAR(7) Flag to set calculation BAD: 0 =>Do not set BAD ;1 => Set calculation BAD

This input allows the calculation to beset bad by Engineering request.

Continued

Hi-Spec Solutions

Flash Point Calculation Point Configuration through Direct CDS Entry

Revision 3.0 37

Point Configuration through Direct CDS Entry (Continued)

Parameter Description Comments

ENGPAR(8) Flag for stripper feed:0 = stripper feed is be calculated;0 <> stripper feed is inputted

Set flag = to 0 to calculate the stripperfeed and set flag = to 1 to use a meteredfeed flow.

ENGPAR(9) Stripping media molecular weight. 18 for steam

28 for nitrogen.

LAB_BIAS(1) Multiplicative bias applied to thepartial pressure

Used to bias proportionally.

LAB_BIAS(2) Additive laboratory bias tocalculated flash point

Same units as TEMP_PT(1).

CONV_FAC(1) Product 1 (FLOW_PT(1))multiplicative flow conversionfactor

Convert input units to MBPD.

CONV_FAC(2) Product 2 (FLOW_PT(2))multiplicative flow conversionfactor

Convert input units to MBPD.

CONV_FAC(3) Product 3 (FLOW_PT(3))multiplicative flow conversionfactor

Convert input units to MBPD.

CONV_FAC(4) Stripping steam (FLOW_PT(4))multiplicative flow conversionfactor

Convert input units to MPPH.

CONV_FAC(5) Distillation column feed(FLOW_PT(5)) multiplicativeflow conversion factor

Convert input units to MBPD.

CONV_FAC(6) Stripper feed (FLOW_PT(6))multiplicative flow conversionfactor

Convert input units to MBPD.

CONV_FAC(7) Stripper pressure (PRESS_PT)multiplicative conversion factor

Convert input units to psi.

CONV_FAC(8) Input temperature unit flag: 0 =>°F ;1 => °C

Default is 0 (°F).

CONV_FAC(9) Input gravity type flag0 => API ;1 => Specific gravity

Default is 0 (API).

FILTER(1) Filter time for input first productflow rate

Minutes

FILTER(2) Filter time for input secondproduct flow rate

Minutes

Continued

Hi-Spec Solutions

Flash Point Calculation Point Configuration through Direct CDS Entry

Revision 3.0 38

Point Configuration through Direct CDS Entry (Continued)

Parameter Description Comments

FILTER(3) Filter time for input third productflow rate

Minutes

FILTER(4) Filter time for input strippingsteam flow rate

Minutes

FILTER(5) Filter time for input distillationcolumn feed flow rate

Minutes

FILTER(6) Filter time for input stripper feed Minutes

FILTER(7) Filter time for input stripper feedtemperature

Minutes

FILTER(8) Filter time for input producttemperature measurement

Minutes

FILTER(9) Filter time for input strippingsteam temperature measurement

Minutes

FILTER(10) Filter time for input pressuremeasurement

Minutes

FILTER(11) Filter time for input feed andproduct gravities

Minutes

FILTER(12) Filter time for input feed andproduct Watson K factor

Minutes

FILTER(13) Filter time for input additivelaboratory bias

Minutes

FILTER(14) Filter time for calculated stripperdelta temperature

Minutes

FILTER(15) Filter time for calculated productyield

Minutes

Hi-Spec Solutions

Flash Point Calculation Link CL Programs

Revision 3.0 39

Link CL Programs

Step Action

Link FLSH_PNT From the Command Processor Display:

LK $Fn>AO>FLSH_PNT point_name [ENTER]

Activate point Call up the point detail and activate the point, or activate from FLSH_CFGgraphic.

Verify Operation Verify that FLSH_PNT is running without any CL errors.

Hi-Spec Solutions

Flash Point Calculation Appendix A Engineere’s Detailed Description

Revision 3.0 40

Hi-Spec Solutions

Honeywell Hi-Spec Solutions • 16404 N. Black Canyon Hwy. • Phoenix, AZ 85023

Advanced Control Package

Flash Point Calculation(Reboiled)

CONTROLLED

May 1995Revision 2.0

Hi-Spec Solutions

Flash Point Calculation (Reboiled Stripper) Table of ContensRevision 2.0

Table of Contents

Overview.........................................................................................................................................1

Acronym List ..................................................................................................................................3

Hardware and Software Requirements ...........................................................................................4

Instrumentation (Process Inputs).....................................................................................................5

Process Diagram .............................................................................................................................6

Detailed Description .......................................................................................................................7

Point Structure ..................................................................................................................8

Process Inputs ...................................................................................................................9

Configuration Inputs .......................................................................................................10

Calculation Outputs ........................................................................................................12

Error Codes ...................................................................................................................................13

Diagnostic Error Codes...................................................................................................14

EFV Temperature Error Codes .......................................................................................15

Configuration and Tuning.............................................................................................................16

Biases in the Reboiled Flash Point Program...................................................................17

Tuning Parameters ..........................................................................................................18

Algorithms ....................................................................................................................................19

Installation Procedure ...................................................................................................................21

Preparation for Installation..............................................................................................22

Custom Data Segment (CDS) and Program Language (PL) Installation........................23

Building a Reboiled Flash Calculation Point..................................................................24

Configuration Graphics Installation................................................................................25

Configure Calculation Point .........................................................................................................26

Point Configuration through Direct CDS Entry..............................................................27

Link CL Programs...........................................................................................................29

Hi-Spec Solutions

Flash Point Calculation (Reboiled Stripper) Overview

Revision 2.0 1

Overview

Definition. The flash point temperature is the temperature to which a product must beheated under prescribed conditions to release sufficient vapor to form a mixture with airthat can be readily ignited.

Application. The flash point of a hydrocarbon fraction is an important specification forjet fuel, LCO, and heavy FCC gasoline products, because the flash point generallyindicates the fire and explosion potential of the product.

Calculation. The Flash Point calculation program calculates the inferential flash pointof a hydrocarbon product based on:

• Processinputs:

Temperatures, pressures, and flows

• Characterizationinputs:

Watson K and specific gravity

• Calculatedvalues:

Equilibrium flash vaporization temperature,ASTM 10% point, and Flash Point.

Incentive. 1. To indicate how closely a hydrocarbon stream is meeting the flash pointspecification.

2. To eliminate dead time associated with laboratory analysis and on-lineanalyzers.

3. To provide a real-time input for use in advanced control applications.

Hi-Spec Solutions

Flash Point Calculation (Reboiled Stripper) Overview

Revision 2.0 2

3530252015105 0 150

152

154

156

158

160

162

164

166

168

170

Calc FlashLab Flash

Un-Biased Reboiled Flash Data

Sample #

Figure 1

The lab results in Figure 1 are shown with error bars of + or - 1 F. The ASTM D 93-85Flash Point, by the Pensky-Martens Closed Tester method, states a reproducibility of +or - 4 F when the test is performed by the same technician.

Hi-Spec Solutions

Flash Point Calculation (Reboiled Stripper) Acronym List

Revision 2.0 3

Acronym List

Term AcronymApplication Module AM

Local Control Network LCN

Universal Station US

control language CL

process variable PV

custom data segment CDS

Equilibrium Flash Vaporization EFV

pounds per square inch psi

Parameter List PL

CL object code file extension AO

Hi-Spec Solutions

Flash Point Calculation (Reboiled Stripper) Hardware and Software Requirements

Revision 2.0 4

Hardware and Software Requirements

Requirement DescriptionHardware Platform TDC 3000 AM

Special Boards None

Other Computing Systems None

LCN Release Release 300 or later

AM Load Modules None

US Load Modules None

Other Packages None

Other Control Applications None

Software Inputs Specific gravities and Watson K factors for the stripper feed andstripper product must exist as points on the LCN

Hi-Spec Solutions

Flash Point Calculation (Reboiled Stripper) Instrumentation (Process Inputs)

Revision 2.0 5

Instrumentation (Process Inputs)

Process Input1 Required Recommended

Stripper product temperature XStripper pressure XProduct Physical Property Information X

1 Required inputs can sometimes be obtained by inference. However, calculations based upon inferred data can be less accurate than calculations based upon direct readings.

Hi-Spec Solutions

Flash Point Calculation (Reboiled Stripper) Process Diagram

Revision 2.0 6

Process Diagram

To be determined.

Hi-Spec Solutions

Flash Point Calculation (Reboiled Stripper) Detailed Description

Revision 2.0 7

Detailed Description

The tables in this section describe the following Flash Point program architecture:

• Point Structure

• Process Inputs

• Configuration Inputs

• Calculation Outputs.

Hi-Spec Solutions

Flash Point Calculation (Reboiled Stripper) Point Structure

Revision 2.0 8

Point Structure

Point StructurePoint Type AM Regulatory, CL

PV_Type CL

CTL_Type Any

Custom Data Segment FLSHRCDS.CL

Algorithm FLSH_RBL.CL

Insertion Point PV_ALG

Slot 5

Output The calculated inferential flash point is displayed as the point’s PV

Hi-Spec Solutions

Flash Point Calculation (Reboiled Stripper) Process Inputs

Revision 2.0 9

Process Inputs

Process Inputs

Critical2

Parameter Description Units Yes NoPRESS_PT Tagname of source for process pressure Any pressure units XTEMP_PT Tagname of source for stripper outlet

temperature°F or °C X

FLOW_PT(1) Tagname of source for first product flowrate.(Not used within routine - available forfuture development.)

Any flow units X

FLOW_PT(2) Tagname of source for second productflow rate(Not used within routine - available forfuture development.)

Any flow units X

FLOW_PT(3) Tagname of source for third product flowrate(Not used within routine - available forfuture development.)

Any flow units X

GRAV_PT Tagname of source for stripper productgravity

°API or none (S.G.) X

WATK_PT Tagname of source for stripper productWatson K factor

None X

.

2 Critical indicates that a bad input causes the output of the calculation to be set BAD.

Hi-Spec Solutions

Flash Point Calculation (Reboiled Stripper) Configuration Inputs

Revision 2.0 10

Configuration Inputs

Configuration InputsParameter Description Units

T_BIAS Additive bias to stripper outlet temperature Same units asTEMP_PT

P_BIAS Additive bias to stripper pressure Same units asPRESS_PT

ENGPAR(1) Local atmospheric pressure (a value of 14.696 will be usedinternally if a zero is entered)

Same units asPRESS_PT

ENGPAR(2) Number of stripper product streams (Set to 0.0) N/A

ENGPAR(3) Spare - Available for future development N/A

ENGPAR(4) Spare - Available for future development N/A

ENGPAR(5) Flag to force calculation BAD( 0 => Do not set BAD; 1 => Set calculation BAD)

N/A

LAB_BIAS(1) Multiplicative bias applied to the partial pressure N/A

LAB_BIAS(2) Additive laboratory bias to calculated flash point Same units asTEMP_PT(1)

CONV_FAC(1) Product 1 (FLOW_PT(1)) multiplicative flow conversionfactor (Set to 1.0)

From input unitsto MBPD

CONV_FAC(2) Product 2 (FLOW_PT(2)) multiplicative flow conversionfactor (Set to 1.0)

From input unitsto MBPD

CONV_FAC(3) Product 3 (FLOW_PT(3)) multiplicative flow conversionfactor (Set to 1.0)

From input unitsto MBPD

CONV_FAC(4) Stripper pressure (PRESS_PT) multiplicative conversionfactor

From input unitsto psi

CONV_FAC(5) Input temperature unit flag; 0 => °F; 1 => °C

N/A

CONV_FAC(6) Input gravity type flag:0 => API; 1 => Specific gravity

N/A

B1 Tuning parameter within the EFV to D86 Covertion routine. N/A

B2 Tuning parameter within the EFV to D86 Covertion routine. N/A

B3 Tuning parameter within the EFV to D86 Covertion routine. N/A

FILTER(1) Filter time for product 1 flow input (Set to 0.0) Minutes

FILTER(2) Filter time for product 2 flow input (Set to 0.0) Minutes

FILTER(3) Filter time for product 3 flow input (Set to 0.0) Minutes

FILTER(4) Filter time for product temperature measurement Minutes

Continued

Hi-Spec Solutions

Flash Point Calculation (Reboiled Stripper) Configuration Inputs

Revision 2.0 11

Configuration Inputs (Continued)

Configuration InputsParameter Description Units

FILTER(5) Filter time for pressure measurement at outlet Minutes

FILTER(6) Filter time for product gravity Minutes

FILTER(7) Filter time for product Watson K factor Minutes

FILTER(8) Filter time for additive laboratory bias Minutes

FILTER(9) Spare - Available for future development Minutes

FILTER(10) Spare - Available for future development Minutes

Hi-Spec Solutions

Flash Point Calculation (Reboiled Stripper) Calculation Outputs

Revision 2.0 12

Calculation Outputs

Calculation OutputsParameter Description Units

PVCALC Calculated hydrocarbon product inferential flash point Temperatureinput units

CALC_VAL(1) Calculated hydrocarbon product inferential flash point Temperatureinput units

CALC_VAL(2) Calculated unbiased equilibrium flash vaporizationtemperature

Temperatureinput units

CALC_VAL(3) ASTM D86 10% point Temperatureinput units

FILT_VAL(1) Filtered value of input product 1 flow rate Input units

FILT_VAL(2) Filtered value of input product 2 flow rate Input units

FILT_VAL(3) Filtered value of input product 3 flow rate Input units

FILT_VAL(4) Filtered value of product temperature Input units

FILT_VAL(5) Filtered value of product pressure Input units

FILT_VAL(6) Filtered value of product gravity Input units

FILT_VAL(7) Filtered value of product Watson K None

FILT_VAL(8) Filtered value of additive laboratory bias Input units

FILT_VAL(9) Spare - Available for future development N/A

FILT_VAL(10) Spare - Available for future development N/A

STATUS(1) Diagnostic indication of location and possible causes ofprogram error

N/A

STATUS(2) Diagnostic indication of subroutine error N/A

REV_NO Program revision number N/A

Hi-Spec Solutions

Flash Point Calculation (Reboiled Stripper) Error Codes

Revision 2.0 13

Error Codes

The tables in this section describe the following program error codes:

• Diagnostic error codes

• EFV temperature error codes.

Hi-Spec Solutions

Flash Point Calculation (Reboiled Stripper) Diagnostic Error Codes

Revision 2.0 14

Diagnostic Error Codes

Diagnostic Error CodesParameter Value Description

STATUS(1)3 0.0 No errors

1.0 Set calculation BAD flag on [ENGPAR(7)<>0]

2.0 Input number of product streams is outside the range 0 to 3[ENGPAR(2)]

3.0 TEMP_PT has a null point entered or has a bad PV

4.0 PRESS_PT has a null point entered or has a bad PV

5.0 GRAV_PT has a null point entered or has a bad PV

6.0 WATK_PT has a null point entered or has a bad PV

7.0 LAB_BIAS(2) has a bad value

8.0 FLOW_PT(1) has a null point entered or has a bad PV

9.0 FLOW_PT(2) has a null point entered or has a bad PV

10.0 FLOW_PT(3) has a null point entered or has a bad PV

11.0 Error in calculating EFV temperature (see STATUS(2) in "EFVTemperature Error Codes")

3 STATUS(1) indicates errors in the calculation.

Hi-Spec Solutions

Flash Point Calculation (Reboiled Stripper) EFV Temperature Error Codes

Revision 2.0 15

EFV Temperature Error Codes

EFV Temperature Error CodesParameter Value Description

STATUS(2) 0.0 No errors

1.0 Calculated EFV temperature has a bad value

2.0 Input temperature has a bad value

3.0 Input effective vapor pressure has a bad value

4.0 Input Watson K has a bad value

-1.0 Input temperature, effective vapor pressure, or Watson K has azero or negative value

Hi-Spec Solutions

Flash Point Calculation (Reboiled Stripper) Configuration and Tuning

Revision 2.0 16

Configuration and Tuning

This section describes the parameters and values used to configure and tune the packageto a specific application.

Biases

• Temperature Bias

• Pressure Bias

• Laboratory Bias.

Tuning

• Multiplicative Bias

• Scaler Bias.

Hi-Spec Solutions

Flash Point Calculation (Reboiled Stripper) Biases in the Flash Point Program

Revision 2.0 17

Biases in the Reboiled Flash Point Program

The Flash Point program is equipped with the following additive biases:

• Stripper product temperature

• Input pressure

• Additive laboratory bias for the flash point.

Bias ParametersParameter Description

T_BIAS Additive bias to input stripper draw temperature TEMP_PT

P_BIAS Additive bias to input stripper pressure PRESS_PT

LAB_BIAS(2) Additive laboratory bias to calculated flash point

Pressure and Temperature Bias. The pressure bias (P_BIAS) and temperature bias(T_BIAS) are added to the input values before performance of the unit conversions andshould be entered in the same units as the input pressure and temperatures.

The T_BIAS parameters are used when there is a known error in the producttemperature indication. The P_BIAS parameter is used when the actual stripper outletpressure is not available as an input to the calculation.

Example. If the column overhead pressure is used for PRESS_PT, then P_BIAS is setequal to the pressure change between the column overhead and the stripper bottom.

Additive Laboratory Biases. The reboiled flash point value can be biased usingLAB_BIAS(2). Only the additive bias, LAB_BIAS(2), is used dynamically and isexpected to be updated manually or with a laboratory results interface package.

Both PVCALC and CALC_VAL(1) contain the biased calculated flash temperature.The unbiased flash is not reported. For unbiased calculated results set LAB_BIAS(2) =0.0.

Hi-Spec Solutions

Flash Point Calculation (Reboiled Stripper) Tuning Parameters

Revision 2.0 18

Tuning Parameters

If there is a sustained offset between the calculated and laboratory flash points evenwith the use of the biasing, the following parameters can be adjusted.

Parameter Suggested AdjustmentLAB_BIAS(1) Multiplicative bias applied to effective pressure

B1 Scaler valued used to adjust the Coef (A) within the EFV to D86conversion routine.

B2 Scaler valued used to adjust the Coef (B) within the EFV to D86conversion routine.

B3 Scaler valued used to adjust the Coef (C) within the EFV to D86conversion routine.

Multiplicative Bias [LAB_BIAS(1)]

The multiplicative bias, LAB_BIAS(1), is used as a proportional bias. This bias isoptional and is manually entered when used. The value of this bias directly scales thepartial pressure used to determine the EFV temperature. If this bias is not used it mustbe set to 1.0.

Scaler Biases [B1, B2, and B3]

The routine which converts from the calculated EFV temperature to the D86 10% pointtemperature has three parameters. These three parameters can be individually scaled ortuned to provide a clear representation of the D86 value. The default values are all 1.0and should remain at this value unless calculation performance requires a change.

Note: The EFV to D86 equation is highly sensitive to changes in these parameters.Once altered from their default values re-tuning of the entire flash point calculation isrequired.

Hi-Spec Solutions

Flash Point Calculation (Reboiled Stripper) Algorithms

Revision 2.0 19

Algorithms

Conversion of Engineering Units. The input process flows can have any units, but theconversion factors must be configured to yield MBPD, as shown in Equation 1:

flow(i) = FLOW_PT(i).PV * CONV_FAC(i)

Where:

flow(i) = Process flow i converted to MBPD for internal useFLOW_PT(i).PV = Input process flow i in any unitsCONV_FAC(i) = Conversion for flow i from input units to MBPD

Equation 1

The input process pressure can have any units. However, the conversion factor must beconfigured to yield psi, as shown in Equation 2:

press = ( (PRESS_PT.PV +P_BIAS) *CONV_FAC(4) ) + atm_pres

Where:

press = Process pressure converted to psia for internal usePRESS_PT.PV = Input process pressure in any gauge unitsP_BIAS = Bias to input pressure in input gauge unitsCONV_FAC(4) = Conversion factor for pressure from input units to psiatm_pres = Atmospheric pressure in psi

and When:ENG_PAR(1) <= 0 then atm_pres = 14.696

else atm_pres = ENG_PAR(1) * CONV_FAC(4)

Equation 2

Continued

Hi-Spec Solutions

Flash Point Calculation (Reboiled Stripper) Algorithms

Revision 2.0 20

Algorithms (Continued)

Reboiled Flash Point Calculation. The reboiled flash point is calculated from processinputs using the Honeywell flash point calculation, as shown in Equation 3:

flash_rbl = Function[ prod_t, press, prod_char]

Where:

flash_rbl = Calculated flash pointprod_t = Stripper product temperaturepress = Stripper pressureprod_char = Stripper product characterization (gravity and

Watson K)

Equation 3

Biasing. One bias factor is provided to reduce the offset between the inferentialreboiled flash point and a laboratory or on-line analysis-determined flash point. Theadditive bias used, is shown in Equation 4:

bias_flash = flash_rbl+ LAB_BIAS(2)

Where:

bias_flash = Biased flash pointflash_rbl = Calculated flash pointLAB_BIAS(2) = Additive laboratory bias

Equation 4

Hi-Spec Solutions

Flash Point Calculation (Reboiled Stripper) Installation Procedure

Revision 2.0 21

Installation Procedure

This document describes the installation procedure for FLSH_RBL on the TDC 3000System AM.

This section covers the following topics:

• Preparation for Installation

• CDS and PL Installation

• Building Flash Point Calculation Point

• Configuration Graphics Installation.

Hi-Spec Solutions

Flash Point Calculation (Reboiled Stripper) Preparation for Installation

Revision 2.0 22

Preparation for Installation

Step ActionGather media Gather the following items:

• Removable media containing the directory FLSH• Commissioning Worksheet

Make media backup Make a backup copy of media/directory on a US with drives n and mconfigured as follows:

Media:FCOPY $Fn $FmDirectory only:CD $Fm>vol_dir> FLSHCOPY $Fn>FLSH>*.* $Fm>FLSH>= -V -DWhere $Fn is the drive with the source media and $Fm is the drive withthe target media

Hi-Spec Solutions

Flash Point Calculation (Reboiled Stripper) CDS and PL Installation

Revision 2.0 23

Custom Data Segment (CDS) and Program Language (PL) Installation

This procedure must be done once per LCN installation.

Step ActionSet volumepathnames

From Modify Volume Paths display:CL CUSTOM GDF: NET>CDSG>

USER DEFLT PATH: $Fn>FLSH

CompileFLSHRCDS.CL

From the Command Processor display, compile the CDS file, FLSHRCDS:CL $Fn>CDS>FLSHRCDS.CL -UL

If it is necessary to change the CDS due to a software revision, refer to theApplication Module Data Control Language/Application Module Data Entry

Parameter list There is no parameter list for the standard flash calculation package

Hi-Spec Solutions

Flash Point Calculation (Reboiled Stripper) Building a Reboiled Flash Calculation Point

Revision 2.0 24

Building a Reboiled Flash Calculation Point

A calculation point is required for each hydrocarbon flash point calculated.

Step ActionModify ExceptionBuild file,FLSH_RBL.EB

From the Command Processor display:ED $Fn>EB>FLSH_RBL.EB [ENTER]Edit template as follows:

&N point nameUNIT = unit numberPTDESC ="point descriptor text"KEYWORD = "keyword"PERIOD = as required

Load EB file. From the Builder Commands display:Select the EXCEPTION BUILD target.Fill in ports as:

REFERENCE PATH NAME: $Fn>EBLoad Entities (select target)Pathname for SOURCE file: FLSH_RBL.EBPathname for IDF file: FLSH_RBL.DB[ENTER]

Verify load When the load is complete, verify point loading by calling the point detailfrom the [DETAIL] button

Hi-Spec Solutions

Flash Point Calculation (Reboiled Stripper) Configuration Graphics Installation

Revision 2.0 25

Configuration Graphics Installation

There is no configuration display for this routine at this time.

Hi-Spec Solutions

Flash Point Calculation (Reboiled Stripper) Configure Calculation Point

Revision 2.0 26

Configure Calculation Point

Configuration of the calculation point can be done through direct entry to the CDS portson the Point Detail display.

Setup of the calculation point requires the following steps:

• Non Graphic Configuration of Flash Point Calculation Point

• Linking CL Program.

Notes:

Configuration errors may occur if points are deleted. To correct this problem, the AOfiles must be unlinked and then relinked to reestablish dynamic indirection.

Link errors may occur, when an improper point type is configured in a CDS parameter.This is caused by a missing parameter. A null point containing all required parameterscan be used in the configuration for linking purposes only. After the CL is linked, thedesired point is then entered into the proper CDS location.

Hi-Spec Solutions

Flash Point Calculation (Reboiled Stripper) Point Configuration through Direct CDS Entry

Revision 2.0 27

Point Configuration through Direct CDS Entry

Configuration data must be entered directly onto the flash calculation point. Therequired flash calculation point information and associated parameter are listed below.

Parameter Description CommentsPRESS_PT Tagname of source for process

pressureUse bias in P_BIAS if the pressure isnot located on the bottom of thestripper.

TEMP_PT Tagname of source for stripperoutlet temperature

Use bias in T_BIAS if the temperatureis not located at the stripper outlet.

FLOW_PT(1) Tagname of source for firstproduct flow rate

Enter nothing in this field.

FLOW_PT(2) Tagname of source for secondproduct flow rate

Enter nothing in this field.

FLOW_PT(3) Tagname of source for thirdproduct flow rate

Enter nothing in this field.

GRAV_PT Tagname of source for stripperproduct gravity

If an on-line gravity is not available,bring in an estimate through an AMnumeric point. This is gravity atstandard conditions.

WATK_PT Tagname of source for stripperproduct Watson K factor

Build an AM numeric point to hold amanually input value.Or the Watson K can be calculatedusing the 10;50;90 points and gravity.This requires an AM REG_PV pointand the watk code block.

T_BIAS Additive bias to stripper feedtemperature

Same units as TEMP_PT.

P_BIAS Additive bias to stripper pressure Same units as PRESS_PT.

ENGPAR(1) Local atmospheric pressure (avalue of 14.696 will be usedinternally if a zero is entered)

Same units as PRESS_PT.

ENGPAR(2) Number of input product flowrates (0.0 < ENGPAR(2) <= 3.0)

Number of product flows must match #of entries reflected in FLOW_PT(1..3).

ENGPAR(3) Spare - Available for futuredevelopment

Enter 0.0

ENGPAR(4) Spare - Available for futuredevelopment

Enter 0.0

ENGPAR(5) Flag to set calculation BAD:0 => Do not set BAD ;1 => Set calculation BAD

This input allows the calculation to beset bad by Engineering request.

LAB_BIAS(1) Multiplicative bias applied to thepartial pressure

Used to bias proportionally.

Continued

Hi-Spec Solutions

Flash Point Calculation (Reboiled Stripper) Point Configuration through Direct CDS Entry

Revision 2.0 28

Point Configuration through Direct CDS Entry (Continued)

Parameter Description CommentsLAB_BIAS(2) Additive laboratory bias to

calculated flash pointSame units as TEMP_PT.

CONV_FAC(1) Product 1 (FLOW_PT(1))multiplicative flow conversionfactor

Convert input units to MBPD.Set to 1.0

CONV_FAC(2) Product 2 (FLOW_PT(2))multiplicative flow conversionfactor

Convert input units to MBPD.Set to 1.0

CONV_FAC(3) Product 3 (FLOW_PT(3))multiplicative flow conversionfactor

Convert input units to MBPD.Set to 1.0

CONV_FAC(4) Stripper pressure (PRESS_PT)multiplicative conversion factor

Convert input units to psi.

CONV_FAC(5) Input temperature unit flag: 0 =>°F; 1 => °C

Default is 0 (°F).

CONV_FAC(6) Input gravity type flag0 => API; 1 => Specific gravity

Default is 0 (API).

FILTER(1) Filter time for input first productflow rate

Minutes

FILTER(2) Filter time for input secondproduct flow rate

Minutes

FILTER(3) Filter time for input third productflow rate

Minutes

FILTER(4) Filter time for product temperature Minutes

FILTER(5) Filter time for pressure Minutes

FILTER(6) Filter time for input gravity Minutes

FILTER(7) Filter time for input Watson K Minutes

FILTER(8) Filter time for input additive bias Minutes

B1 Scaler value applied within theEFV to D86 conversion

Use the Default value of 1.0 to beginwith.

B2 Scaler value applied within theEFV to D86 conversion

Use the Default value of 1.0 to beginwith.

B3 Scaler value applied within theEFV to D86 conversion

Use the Default value of 1.0 to beginwith.

Hi-Spec Solutions

Flash Point Calculation (Reboiled Stripper) Link CL Programs

Revision 2.0 29

Link CL Programs

Step ActionLink FLSH_RBL From the Command Processor Display:

LK $Fn>AO>FLSH_RBL point_name [ENTER]

Activate point Call up the point detail and activate the point.

Verify Operation Verify that FLSH_RBL is running without any CL errors.

Hi-Spec Solutions

Flash Point Calculation (Reboiled Stripper) Appendix A Engineer’s Detailed Description

Revision 2.0 30

Hi-Spec Solutions

Honeywell Hi-Spec Solutions • 16404 N. Black Canyon Hwy. • Phoenix, AZ 85023

Advanced Control Package

Freeze Point Calculation

CONTROLLED

May 1995Revision 3.0

Hi-Spec Solutions

Flash Point Calculation Table of ContentsRevision 3.0

Table of Contents

Overview.........................................................................................................................................1

Acronym List ..................................................................................................................................3

Hardware and Software Requirements ...........................................................................................4

Instrumentation (Process Inputs).....................................................................................................5

Process Diagram .............................................................................................................................6

Detailed Description .......................................................................................................................7

Point Structure ..................................................................................................................8

Process Inputs ...................................................................................................................9

Configuration Inputs .......................................................................................................11

Calculation Outputs ........................................................................................................15

Error Codes ...................................................................................................................................17

Diagnostic Error Codes...................................................................................................18

Diagnostic Error Codes (Continued)...............................................................................19

Molecular Weight Error Codes .......................................................................................20

EFV Temperature Error Codes .......................................................................................21

Configuration and Tuning.............................................................................................................22

Biases in the Freeze Point Program ................................................................................23

Tuning Parameters ..........................................................................................................24

Algorithms ....................................................................................................................................25

Algorithms (Continued) ..................................................................................................26

Installation Procedure ...................................................................................................................27

Preparation for Installation..............................................................................................28

CDS and PL Installation .................................................................................................29

Building Freeze Point Calculation Point.........................................................................30

Configuration Graphics Installation................................................................................31

Configure Calculation Point .........................................................................................................32

Point Configuration Using Graphic FREZ_CFG............................................................33

Point Configuration through Direct CDS Entry..............................................................37

Link CL Programs...........................................................................................................44

Hi-Spec Solutions

Flash Point Calculation ContentsRevision 3.0

Hi-Spec Solutions

Freeze Point Calculation Overview

Revision 3.0 1

Overview

Definition. The freeze point temperature is the temperature at which a the first crystalseparates from solution. The freeze point temperature is affected by the hydrocarbonsparaffinic content, symmetrical molecular structures, and aromatic content.

Application. The freeze point of a hydrocarbon fraction is an important specificationfor jet and kerosene fuels. The flow of fuel must remain constant under a wide range oftemperatures and pressures for proper jet turbine performance. Products produced witha elevated freeze point temperature may interrupt engine performance and producecatastrophic results.

Calculation. The Freeze Point calculation program calculates the inferential freezepoint of a hydrocarbon product based on:

• Processinputs:

Temperatures, pressures, and flows

• Characterizationinputs:

Watson K and specific gravity

• Calculatedvalues:

Molecular weight, equilibrium flash vaporizationtemperature, and the TBP 50% point.

Incentive. 1. To indicate how closely a hydrocarbon stream is meeting the freezepoint specification.

2. To eliminate dead time associated with laboratory analysis and on-lineanalyzers.

3. To provide a real-time input for use in advanced control applications.

Hi-Spec Solutions

Freeze Point Calculation Overview

Revision 3.0 2

5045403530252015105 0 -36

-35

-34

-33

-32

-31

-30

-29

-28

-27

-26

Calc Freeze Lab Freeze

Unbiased Freeze Point Predicions

Samples

Figure 1

The lab results in Figure 1 are shown with error bars of + or - 1 degree F. The ASTM D2386-84 Freeze Point, states a reproducibility of + or -2.0 degrees F when the test isperformed by the same technician.

Hi-Spec Solutions

Freeze Point Calculation Acronym List

Revision 3.0 3

Acronym List

Term AcronymApplication Module AM

Local Control Network LCN

Universal Station US

control language CL

process variable PV

custom data segment CDS

Equilibrium Flash Vaporization EFV

pounds per square inch psi

Parameter List PL

CL object code file extension AO

Hi-Spec Solutions

Freeze Point Calculation Hardware and Software Requirements

Revision 3.0 4

Hardware and Software Requirements

Requirement DescriptionHardware Platform TDC 3000 AM

Special Boards None

Other Computing Systems None

LCN Release Release 300 or later

AM Load Modules None

US Load Modules None

Other Packages None

Other Control Applications None

Software Inputs Specific gravities and Watson K factors for tower products and theinternal liquid, must exist as points on the LCN

Hi-Spec Solutions

Freeze Point Calculation Instrumentation (Process Inputs)

Revision 3.0 5

Instrumentation (Process Inputs)

Process Input1 Required RecommendedInput stream flow rates XDraw temperature XDraw pressure X

1 Required inputs can sometimes be obtained by inference. However, calculations based upon inferred data can be less accurate than calculations based upon direct readings.

Hi-Spec Solutions

Freeze Point Calculation Process Diagram

Revision 3.0 6

Process Diagram

To be determined.

Hi-Spec Solutions

Freeze Point Calculation Detailed Description

Revision 3.0 7

Detailed Description

The tables in this section describe the following Freeze Point program architecture:

• Point Structure

• Process Inputs

• Configuration Inputs

• Calculation Outputs.

Hi-Spec Solutions

Freeze Point Calculation Point Structure

Revision 3.0 8

Point Structure

Point StructurePoint Type AM Regulatory, CL

PV_Type CL

CTL_Type Any

Custom Data Segment FREZ_CDS.CL

Algorithm FREZ_PNT.CL

Insertion Point PV_ALG

Slot 5

Output The calculated inferential freeze point is displayed as the point’s PV

Hi-Spec Solutions

Freeze Point Calculation Process Inputs

Revision 3.0 9

Process Inputs

Process InputsCritical2

Parameter Description Units Yes NoPRESS_PT Tagname of source for draw pressure Any pressure units XTEMP_PT Tagname of source for draw temperature °F or °C XFLOW_PT(1) Tagname for stream 1 flow rate Any flow units XFLOW_PT(2) Tagname for stream 2 flow rate Any flow units XFLOW_PT(3) Tagname for stream 3 flow rate Any flow units XFLOW_PT(4) Tagname for stream 4 flow rate Any flow units XFLOW_PT(5) Tagname for stream 5 flow rate Any flow units XFLOW_PT(6) Tagname for stream 6 flow rate Any flow units XFLOW_PT(7) Tagname for stream 7 flow rate Any flow units XFLOW_PT(8) Tagname for stream 8 flow rate Any flow units XFLOW_PT(9) Tagname for stream 9 flow rate Any flow units XFLOW_PT(10) Tagname for stream 10 flow rate Any flow units XGRAV_PT(1) Tagname for stream 1 gravity input °API or none (S.G.)XGRAV_PT(2) Tagname for stream 2 gravity input °API or none (S.G.)XGRAV_PT(3) Tagname for stream 3 gravity input °API or none (S.G.)XGRAV_PT(4) Tagname for stream 4 gravity input °API or none (S.G.)XGRAV_PT(5) Tagname for stream 5 gravity input °API or none (S.G.)XGRAV_PT(6) Tagname for stream 6 gravity input °API or none (S.G.)XGRAV_PT(7) Tagname for stream 7 gravity input °API or none (S.G.)XGRAV_PT(8) Tagname for stream 8 gravity input °API or none (S.G.)XGRAV_PT(9) Tagname for stream 9 gravity input °API or none (S.G.)XGRAV_PT(10) Tagname for stream 10 gravity input °API or none (S.G.)XWATK_PT(1) Tagname for stream 1 Watson K factor None XWATK_PT(2) Tagname for stream 1 Watson K factor None X

Continued

2 Critical indicates that a bad input causes the output of the calculation to be set BAD.

Hi-Spec Solutions

Freeze Point Calculation Process Inputs

Revision 3.0 10

Process Inputs (Continued)

Process InputsCritical3

Parameter Description Units Yes NoWATK_PT(3) Tagname for stream 1 Watson K factor None XWATK_PT(4) Tagname for stream 1 Watson K factor None XWATK_PT(5) Tagname for stream 1 Watson K factor None XWATK_PT(6) Tagname for stream 1 Watson K factor None XWATK_PT(7) Tagname for stream 1 Watson K factor None XWATK_PT(8) Tagname for stream 1 Watson K factor None XWATK_PT(9) Tagname for stream 1 Watson K factor None XWATK_PT(10) Tagname for stream 1 Watson K factor None X

.

3 Critical indicates that a bad input causes the output of the calculation to be set BAD.

Hi-Spec Solutions

Freeze Point Calculation Configuration Inputs

Revision 3.0 11

Configuration Inputs

Configuration InputsParameter Description Units

T_BIAS Additive bias to draw temperature Same units asTEMP_PT

P_BIAS Additive bias to draw pressure Same units asPRESS_PT

ENGPAR(1) Number of configured streams (2.0 < ENGPAR(1) <= 10.0)

N/A

ENGPAR(2) Local atmospheric pressure (a value of 14.696 will be usedinternally if a zero is entered)

Same units asPRESS_PT

ENGPAR(3) Location of product stream within configured streams None

ENGPAR(4) Indicates if the mole weight for stream 1 is entered orcalculated. (0 = Calc, 1 = Entered)

None

ENGPAR(5) Indicates if the mole weight for stream 2 is entered orcalculated. (0 = Calc, 1 = Entered)

None

ENGPAR(6) Indicates if the mole weight for stream 3 is entered orcalculated. (0 = Calc, 1 = Entered)

None

ENGPAR(7) Indicates if the mole weight for stream 4 is entered orcalculated. (0 = Calc, 1 = Entered)

None

ENGPAR(8) Indicates if the mole weight for stream 5 is entered orcalculated. (0 = Calc, 1 = Entered)

None

ENGPAR(9) Indicates if the mole weight for stream 6 is entered orcalculated. (0 = Calc, 1 = Entered)

None

ENGPAR(10) Indicates if the mole weight for stream 7 is entered orcalculated. (0 = Calc, 1 = Entered)

None

ENGPAR(11) Indicates if the mole weight for stream 8 is entered orcalculated. (0 = Calc, 1 = Entered)

None

ENGPAR(12) Indicates if the mole weight for stream 9 is entered orcalculated. (0 = Calc, 1 = Entered)

None

ENGPAR(13) Indicates if the mole weight for stream 10 is entered orcalculated. (0 = Calc, 1 = Entered)

None

ENGPAR(14) Spare - Available for future development N/A

ENGPAR(15) Flag to force calculation BAD( 0 => Do not set BAD; 1 => Set calculation BAD)

N/A

LAB_BIAS(1) Multiplicative bias applied to the mole fraction N/A

LAB_BIAS(2) Additive laboratory bias to calculated freeze point Same units asTEMP_PT(1)

Continued

Hi-Spec Solutions

Freeze Point Calculation Configuration Inputs

Revision 3.0 12

Configuration Inputs (Continued)

Configuration InputsParameter Description Units

NUMER(1) Numerator indication for stream 1(0 = Not in Numer, 1 = In Numer)

None

NUMER(2) Numerator indication for stream 2(0 = Not in Numer, 1 = In Numer)

None

NUMER(3) Numerator indication for stream 3(0 = Not in Numer, 1 = In Numer)

None

NUMER(4) Numerator indication for stream 4(0 = Not in Numer, 1 = In Numer)

None

NUMER(5) Numerator indication for stream 5(0 = Not in Numer, 1 = In Numer)

None

NUMER(6) Numerator indication for stream 6(0 = Not in Numer, 1 = In Numer)

None

NUMER(7) Numerator indication for stream 7(0 = Not in Numer, 1 = In Numer)

None

NUMER(8) Numerator indication for stream 8(0 = Not in Numer, 1 = In Numer)

None

NUMER(9) Numerator indication for stream 9(0 = Not in Numer, 1 = In Numer)

None

NUMER(10) Numerator indication for stream 10(0 = Not in Numer, 1 = In Numer)

None

CONV_FAC(1) Conversion factor for stream 1 - (Input units => mass) From input unitsto Mass

CONV_FAC(2) Conversion factor for stream 2 - (Input units => mass) From input unitsto Mass

CONV_FAC(3) Conversion factor for stream 3 - (Input units => mass) From input unitsto Mass

CONV_FAC(4) Conversion factor for stream 4 - (Input units => mass) From input unitsto Mass

CONV_FAC(5) Conversion factor for stream 5 - (Input units => mass) From input unitsto Mass

CONV_FAC(6) Conversion factor for stream 6 - (Input units => mass) From input unitsto Mass

CONV_FAC(7) Conversion factor for stream 7 - (Input units => mass) From input unitsto Mass

CONV_FAC(8) Conversion factor for stream 8 - (Input units => mass) From input unitsto Mass

CONV_FAC(9) Conversion factor for stream 9 - (Input units => mass) From input unitsto Mass

Continued

Hi-Spec Solutions

Freeze Point Calculation Configuration Inputs

Revision 3.0 13

Configuration Inputs (Continued)

Configuration InputsParameter Description Units

CONV_FAC(10) Conversion factor for stream 10 - (Input units => mass) From input unitsto Mass

CONV_FAC(11) Stripper pressure (PRESS_PT) multiplicative conversionfactor

From input unitsto psi

CONV_FAC(12) Input temperature unit flag; ( 0 => °F, 1 => °C )

N/A

CONV_FAC(13) Input gravity type flag: ( 0 => API, 1 => Specific gravity )

N/A

CONV_FAC(14) Spare - Available for future development N/A

CONV_FAC(15) Spare - Available for future development N/A

FILTER(1) Filter time for FLOW_PT(1) Minutes

FILTER(2) Filter time for FLOW_PT(2) Minutes

FILTER(3) Filter time for FLOW_PT(3) Minutes

FILTER(4) Filter time for FLOW_PT(4) Minutes

FILTER(5) Filter time for FLOW_PT(5) Minutes

FILTER(6) Filter time for FLOW_PT(6) Minutes

FILTER(7) Filter time for FLOW_PT(7) Minutes

FILTER(8) Filter time for FLOW_PT(8) Minutes

FILTER(9) Filter time for FLOW_PT(9) Minutes

FILTER(10) Filter time for FLOW_PT(10) Minutes

FILTER(11) Filter time for input gravities - GRAV_PT Minutes

FILTER(12) Filter time for input Watson K factors - WATK_PT Minutes

FILTER(13) Filter time for the input temperature - TEMP_PT Minutes

FILTER(14) Filter time for the input pressure - PRESS_PT Minutes

FILTER(15) Filter time for multiplicative bias - LAB_BIAS(1) Minutes

FILTER(16) Filter time for additive laboratory bias - LAB_BIAS(2) Minutes

FILTER(17) Filter time for the calculated mole fraction Minutes

FILTER(18) Spare - Available for future development Minutes

FILTER(19) Spare - Available for future development Minutes

FILTER(20) Spare - Available for future development Minutes

MOLWT(1) Molecular weight for stream 1 - ( Calc or Entered ) lb / (lb-mol)

MOLWT(2) Molecular weight for stream 2 - ( Calc or Entered ) lb / (lb-mol)

MOLWT(3) Molecular weight for stream 3 - ( Calc or Entered ) lb / (lb-mol)

MOLWT(4) Molecular weight for stream 4 - ( Calc or Entered ) lb / (lb-mol)

MOLWT(5) Molecular weight for stream 5 - ( Calc or Entered ) lb / (lb-mol)

MOLWT(6) Molecular weight for stream 6 - ( Calc or Entered ) lb / (lb-mol)

MOLWT(7) Molecular weight for stream 7 - ( Calc or Entered ) lb / (lb-mol)

Continued

Hi-Spec Solutions

Freeze Point Calculation Configuration Inputs

Revision 3.0 14

Configuration Inputs (Continued)

Configuration InputsParameter Description Units

MOLWT(8) Molecular weight for stream 8 - ( Calc or Entered ) lb / (lb-mol)

MOLWT(9) Molecular weight for stream 9 - ( Calc or Entered ) lb / (lb-mol)

MOLWT(10) Molecular weight for stream 10 - ( Calc or Entered ) lb / (lb-mol)

Hi-Spec Solutions

Freeze Point Calculation Calculation Outputs

Revision 3.0 15

Calculation Outputs

Calculation OutputsParameter Description Units

PVCALC Calculated hydrocarbon product inferential freeze point Temperatureinput units

CALC_VAL(1) Calculated hydrocarbon product inferential freeze point Temperatureinput units

CALC_VAL(2) Calculated moles in the numerator Moles

CALC_VAL(3) Calculated moles in the denominator Moles

CALC_VAL(4) Calculated mole fraction. None

CALC_VAL(5) Calculated effective pressure psi

CALC_VAL(6) Calculated EFV temperature Temperatureinput units

CALC_VAL(7) ASTM D86 50% point temperature Temperatureinput units

CALC_VAL(8) Calculated TBP 50% point temperature Temperatureinput units

CALC_VAL(9) Calculated low freeze search limit N/A

CALC_VAL(10) Calculated high freeze search limit N/A

CALC_VAL(11) Calculated freeze point limit ratio N/A

CALC_VAL(12) Calculated freeze point delta value N/A

CALC_VAL(13) Calculated moles input from stream 1 Moles

CALC_VAL(14) Calculated moles input from stream 2 Moles

CALC_VAL(15) Calculated moles input from stream 3 Moles

CALC_VAL(16) Calculated moles input from stream 4 Moles

CALC_VAL(17) Calculated moles input from stream 5 Moles

CALC_VAL(18) Calculated moles input from stream 6 Moles

CALC_VAL(19) Calculated moles input from stream 7 Moles

CALC_VAL(20) Calculated moles input from stream 8 Moles

CALC_VAL(21) Calculated moles input from stream 9 Moles

CALC_VAL(22) Calculated moles input from stream 10 Moles

CALC_VAL(23) Spare - Available for future development N/A

CALC_VAL(24) Spare - Available for future development N/A

CALC_VAL(25) Spare - Available for future development N/A

STATUS(1) Diagnostic indication of location and possible causes ofprogram error

N/A

STATUS(2) Diagnostic indication of subroutine error N/A

REV_NO Program revision number N/A

Continued

Hi-Spec Solutions

Freeze Point Calculation Calculation Outputs

Revision 3.0 16

Calculation Outputs (Continued)

Calculation OutputsParameter Description Units

FILT_VAL(1) Filtered value of input stream 1 flow rate Input units

FILT_VAL(2) Filtered value of input stream 2 flow rate Input units

FILT_VAL(3) Filtered value of input stream 3 flow rate Input units

FILT_VAL(4) Filtered value of input stream 4 flow rate Input units

FILT_VAL(5) Filtered value of input stream 5 flow rate Input units

FILT_VAL(6) Filtered value of input stream 6 flow rate Input units

FILT_VAL(7) Filtered value of input stream 7 flow rate Input units

FILT_VAL(8) Filtered value of input stream 8 flow rate Input units

FILT_VAL(9) Filtered value of input stream 9 flow rate Input units

FILT_VAL(10) Filtered value of input stream 10 flow rate Input units

FILT_VAL(11) Stream 1 filtered gravity input, GRAV_PT(1) Input units

FILT_VAL(12) Stream 2 filtered gravity input, GRAV_PT(2) Input units

FILT_VAL(13) Stream 3 filtered gravity input, GRAV_PT(3) Input units

FILT_VAL(14) Stream 4 filtered gravity input, GRAV_PT(4) Input units

FILT_VAL(15) Stream 5 filtered gravity input, GRAV_PT(5) Input units

FILT_VAL(16) Stream 6 filtered gravity input, GRAV_PT(6) Input units

FILT_VAL(17) Stream 7 filtered gravity input, GRAV_PT(7) Input units

FILT_VAL(18) Stream 8 filtered gravity input, GRAV_PT(8) Input units

FILT_VAL(19) Stream 9 filtered gravity input, GRAV_PT(9) Input units

FILT_VAL(20) Stream 10 filtered gravity input, GRAV_PT(10) Input units

FILT_VAL(21) Stream 1 filtered Watson K input, WATK_PT(1) Input units

FILT_VAL(22) Stream 2 filtered Watson K input, WATK_PT(2) Input units

FILT_VAL(23) Stream 3 filtered Watson K input, WATK_PT(3) Input units

FILT_VAL(24) Stream 4 filtered Watson K input, WATK_PT(4) Input units

FILT_VAL(25) Stream 5 filtered Watson K input, WATK_PT(5) Input units

FILT_VAL(26) Stream 6 filtered Watson K input, WATK_PT(6) Input units

FILT_VAL(27) Stream 7 filtered Watson K input, WATK_PT(7) Input units

FILT_VAL(28) Stream 8 filtered Watson K input, WATK_PT(8) Input units

FILT_VAL(29) Stream 9 filtered Watson K input, WATK_PT(9) Input units

FILT_VAL(30) Stream 10 filtered Watson K input, WATK_PT(10) Input units

FILT_VAL(31) Filtered value of input temperature, TEMP_PT Input units

FILT_VAL(32) Filtered value of input pressure, PRESS_PT Input units

FILT_VAL(33) Filtered value of input multiplicative bias, LAB_BAIS(1) N/A

FILT_VAL(34) Filtered value of input additive bias, LAB_BAIS(2) N/A

FILT_VAL(35) Filtered value of calculated mole fraction None

Hi-Spec Solutions

Freeze Point Calculation Error Codes

Revision 3.0 17

Error Codes

The tables in this section describe the following program error codes:

• Diagnostic error codes

• Molecular weight error codes

• EFV temperature error codes.

Hi-Spec Solutions

Freeze Point Calculation Diagnostic Error Codes

Revision 3.0 18

Diagnostic Error Codes

Diagnostic Error CodesParameter Value Description

STATUS(1) 0.0 No errors

1.0 Set calculation BAD flag on [ENGPAR(15)<>0]

2.0 Input number of streams is outside the range 1 to 10 [2 <= ENGPAR(1) <= 10]

3.0 Location of the product stream within the configured streaminformation is out of range. [2 <= ENGPAR(2) <= 10]

4.0 FLOW_PT(1) has a null point entered or has a bad PV

5.0 FLOW_PT(2) has a null point entered or has a bad PV

6.0 FLOW_PT(3) has a null point entered or has a bad PV

7.0 FLOW_PT(4) has a null point entered or has a bad PV

8.0 FLOW_PT(5) has a null point entered or has a bad PV

9.0 FLOW_PT(6) has a null point entered or has a bad PV

10.0 FLOW_PT(7) has a null point entered or has a bad PV

11.0 FLOW_PT(8) has a null point entered or has a bad PV

12.0 FLOW_PT(9) has a null point entered or has a bad PV

13.0 FLOW_PT(10) has a null point entered or has a bad PV

14.0 GRAV_PT(1) has a null point entered or has a bad PV

15.0 GRAV_PT(2) has a null point entered or has a bad PV

16.0 GRAV_PT(3) has a null point entered or has a bad PV

17.0 GRAV_PT(4) has a null point entered or has a bad PV

18.0 GRAV_PT(5) has a null point entered or has a bad PV

19.0 GRAV_PT(6) has a null point entered or has a bad PV

20.0 GRAV_PT(7) has a null point entered or has a bad PV

21.0 GRAV_PT(8) has a null point entered or has a bad PV

22.0 GRAV_PT(9) has a null point entered or has a bad PV

23.0 GRAV_PT(10) has a null point entered or has a bad PV

24.0 WATK_PT(1) has a null point entered or has a bad PV

25.0 WATK_PT(2) has a null point entered or has a bad PV

26.0 WATK_PT(3) has a null point entered or has a bad PV

27.0 WATK_PT(4) has a null point entered or has a bad PV

28.0 WATK_PT(5) has a null point entered or has a bad PV

29.0 WATK_PT(6) has a null point entered or has a bad PV

30.0 WATK_PT(7) has a null point entered or has a bad PV

31.0 WATK_PT(8) has a null point entered or has a bad PV

32.0 WATK_PT(9) has a null point entered or has a bad PV

Continued

Hi-Spec Solutions

Freeze Point Calculation Diagnostic Error Codes

Revision 3.0 19

Diagnostic Error Codes (Continued)

Diagnostic Error CodesParameter Value Description

STATUS(1) 33.0 WATK_PT(10) has a null point entered or has a bad PV

34.0 Error in user defined MOLWT(1) - ( Badvalue or value <= 0.0 )

35.0 Error in user defined MOLWT(2) - ( Badvalue or value <= 0.0 )

36.0 Error in user defined MOLWT(3) - ( Badvalue or value <= 0.0 )

37.0 Error in user defined MOLWT(4) - ( Badvalue or value <= 0.0 )

38.0 Error in user defined MOLWT(5) - ( Badvalue or value <= 0.0 )

39.0 Error in user defined MOLWT(6) - ( Badvalue or value <= 0.0 )

40.0 Error in user defined MOLWT(7) - ( Badvalue or value <= 0.0 )

41.0 Error in user defined MOLWT(8) - ( Badvalue or value <= 0.0 )

42.0 Error in user defined MOLWT(9) - ( Badvalue or value <= 0.0 )

43.0 Error in user defined MOLWT(10) - ( Badvalue or value <= 0.0 )

44.0 Error in calculating MOLWT(1) - see STATUS(2)

45.0 Error in calculating MOLWT(2) - see STATUS(2)

46.0 Error in calculating MOLWT(3) - see STATUS(2)

47.0 Error in calculating MOLWT(4) - see STATUS(2)

48.0 Error in calculating MOLWT(5) - see STATUS(2)

49.0 Error in calculating MOLWT(6) - see STATUS(2)

50.0 Error in calculating MOLWT(7) - see STATUS(2)

51.0 Error in calculating MOLWT(8) - see STATUS(2)

52.0 Error in calculating MOLWT(9) - see STATUS(2)

53.0 Error in calculating MOLWT(10) - see STATUS(2)

54.0 TEMP_PT has a null point entered, bad PV, or filter error

55.0 PRESS_PT has a null point entered, bad PV, or filter error

56.0 LAB_BIAS(1) has a bad value or filter error

57.0 LAB_BIAS(2) has a bad value or filter error

58.0 Calculated mole fraction has a bad value or filter error

59.0 Calculated partial pressure has a bad value or filter error

60.0 Calculated EFV temperature has a bad value

61.0 Freeze point calculation return an error

Hi-Spec Solutions

Freeze Point Calculation Molecular Weight Error Codes

Revision 3.0 20

Molecular Weight Error Codes

Molecular Weight Error CodesParameter Value Description

STATUS(2)1 0.0 No errors

1.0 Calculated molecular weight has a bad value

2.0 Input specific gravity has a bad value

3.0 Input Watson K has a bad value

-1.0 Input specific gravity or Watson K equal to or less than 0.0

Hi-Spec Solutions

Freeze Point Calculation EFV Temperature Error Codes

Revision 3.0 21

EFV Temperature Error Codes

EFV Temperature Error CodesParameter Value Description

STATUS(2)2 0.0 No errors

1.0 Calculated EFV temperature has a bad value

2.0 Input temperature has a bad value

3.0 Input effective vapor pressure has a bad value

4.0 Input Watson K has a bad value

-1.0 Input temperature, effective vapor pressure, or Watson K has azero or negative value

Hi-Spec Solutions

Freeze Point Calculation Configuration and Tuning

Revision 3.0 22

Configuration and Tuning

This section describes the parameters and values used to configure and tune the packageto a specific application.

Biases

• Temperature Bias

• Pressure Bias

• Laboratory Additive Bias.

Tuning

• Multiplicative Bias.

Hi-Spec Solutions

Freeze Point Calculation Biases in the Freeze Point Program

Revision 3.0 23

Biases in the Freeze Point Program

The Freeze Point program is equipped with the following additive biases:

• Input draw temperature

• Input draw pressure

• Laboratory bias for the freeze point.

Bias ParametersParameter Description

T_BIAS Additive bias to input draw temperature TEMP_PT

P_BIAS Additive bias to input draw pressure PRESS_PT

LAB_BIAS(2) Additive laboratory bias to calculated freeze point

Pressure and Temperature Bias. The pressure bias (P_BIAS) and temperature bias(T_BIAS) are added to the input values before performance of the unit conversions andshould be entered in the same units as the input pressure and temperatures.

The T_BIAS parameter is used when there is a known error in either the draw orproduct temperature indication. The P_BIAS parameter is used when the actual drawpressure is not available as an input to the calculation.

Example. If the column overhead pressure is used for PRESS_PT, then P_BIAS is setequal to the pressure change between the column overhead and the draw location.

Additive Laboratory Bias. The freeze point program biases the calculated freezepoint temperature using the parameters LAB_BIAS(2) for additive biasing. Only theadditive bias, LAB_BIAS(2), is used dynamically and is expected to be updatedmanually or with a laboratory results interface package.

Both PVCALC and CALC_VAL(1) contain the biased calculated freeze pointtemperatures. The unbiased freeze is not reported. For unbiased calculated results setLAB_BIAS(2) = 0.0

Hi-Spec Solutions

Freeze Point Calculation Tuning Parameters

Revision 3.0 24

Tuning Parameters

If there is a sustained offset between the calculated and laboratory freeze points evenwith the use of the biasing, the following parameters can be adjusted.

Parameter Suggested AdjustmentT_BIAS Increasing the temperature additive bias increase the calculated freeze

point value.

LAB_BIAS(1) Increasing the multiplicative bias decreases the calculated freeze pointvalue. (This bias is applied to the calculated mole fraction)

Temperature Bias [T_BIAS]

If the vapor temperature at the draw tray is not directly measured, then the inputtemperature may be biased to give the approximate vapor temperature. The vaportemperature is corrected for pressure to determine the EFV temperature. The EFVtemperature is then converted to the TBP (True Boiling Point) temperature.

Multiplicative Bias [LAB_BAIS(1)]

The mole fraction of hydrocarbon vapor which is in equilibrium with the hydrocarbonproduct is calculated using the internal reflux, all product coming off the column abovethe draw tray and above (to the column overhead), and inert material. Themultiplicative bias is applied to the mole fraction. The mole fraction is used todetermine the partial pressure of the hydrocarbon vapor which is used to determine theEFV temperature. The EFV temperature is then converted to the desired TBPtemperature.

Hi-Spec Solutions

Freeze Point Calculation Algorithms

Revision 3.0 25

Algorithms

Conversion of Engineering Units. The input process flows can have any units, but theconversion factors must be configured to yield consistent MASS flow units, as shown inEquation 1:

flow(i) = FLOW_PT(i).PV * CONV_FAC(i)

Where:

flow(i) = Process flow i converted to MASS for internal useFLOW_PT(i).PV = Input process flow i in any unitsCONV_FAC(i) = Conversion for flow i from input units to MASS units

Equation 1

The input process pressure can have any units. However, the conversion factor must beconfigured to yield psi, as shown in Equation 2:

press = ( (PRESS_PT.PV +P_BIAS) *CONV_FAC(11) ) + atm_pres

Where:

press = Process pressure converted to psia for internal usePRESS_PT.PV = Input process pressure in any gauge unitsP_BIAS = Bias to input pressure in input gauge unitsCONV_FAC(11) = Conversion factor for pressure from input units to psiatm_pres = Atmospheric pressure in psi

and When:ENG_PAR(2) <= 0 then (atm_pres = 14.696 )

else ( atm_pres = ENG_PAR(2) * CONV_FAC(11) )

Equation 2

Continued

Hi-Spec Solutions

Freeze Point Calculation Algorithms

Revision 3.0 26

Algorithms (Continued)

Freeze Point Calculation. The freeze point is calculated from process inputs using theHoneywell freeze point calculation, as shown in Equation 3:

frez_pnt = Function[draw_t, press, prod_char]

Where:

frez_pnt = Calculated freeze pointpress = Draw pressuredraw_t = Draw temperatureprod_char = Material characterization (gravity and Watson K)

Equation 3

Biasing. One bias factor is provided to reduce the offset between the inferential freezepoint and a laboratory or on-line analysis-determined freeze point. The additive bias isused, as shown in Equation 4:

bias_freeze = frez_pnt + LAB_BIAS(2)

Where:

bias_freeze = Biased freeze pointfrez_pnt = Calculated freeze pointLAB_BIAS(2) = Additive laboratory bias

Equation 4

Hi-Spec Solutions

Freeze Point Calculation Installation Procedure

Revision 3.0 27

Installation Procedure

This document describes the installation procedure for FREZ_PNT on the TDC 3000System AM.

This section covers the following topics:

• Preparation for Installation

• CDS and PL Installation

• Building Freeze Point Calculation Point

• Configuration Graphics Installation.

Hi-Spec Solutions

Freeze Point Calculation Preparation for Installation

Revision 3.0 28

Preparation for Installation

Step ActionGather media Gather the following items:

• Removable media containing the directory FREZ• Commissioning Worksheet

Make media backup Make a backup copy of media/directory on a US with drives n and mconfigured as follows:

Media:FCOPY $Fn $FmDirectory only:CD $Fm>vol_dir> FREZCOPY $Fn>FREZ>*.* $Fm>FREZ>= -V -DWhere $Fn is the drive with the source media and $Fm is the drive withthe target media

Hi-Spec Solutions

Freeze Point Calculation CDS and PL Installation

Revision 3.0 29

CDS and PL Installation

This procedure must be done once per LCN installation.

Step ActionSet volumepathnames

From Modify Volume Paths display:CL CUSTOM GDF: NET>CDSG>

USER DEFLT PATH: $Fn>FREZ

CompileFREZ_CDS.CL

From the Command Processor display, compile the CDS file, FREZ_CDS:CL $Fn>CDS>FREZ_CDS.CL -UL

If it is necessary to change the CDS due to a software revision, refer to theApplication Module Data Control Language/Application Module Data Entry

Parameter list There is no parameter list for the standard freeze calculation package

Hi-Spec Solutions

Freeze Point Calculation Building Freeze Point Calculation Point

Revision 3.0 30

Building Freeze Point Calculation Point

A calculation point is required for each hydrocarbon freeze point calculated.

Step ActionModify ExceptionBuild file,FREZ_PNT.EB

From the Command Processor display:ED $Fn>EB>FREZ_PNT.EB [ENTER]Edit template as follows:

&N point nameUNIT = unit numberPTDESC ="point descriptor text"KEYWORD = "keyword"PERIOD = as required

Load EB file. From the Builder Commands display:Select the EXCEPTION BUILD target.Fill in ports as:

REFERENCE PATH NAME: $Fn>EBLoad Entities (select target)Pathname for SOURCE file: FREZ_PNT.EBPathname for IDF file: FREZ_PNT.DB[ENTER]

Verify load When the load is complete, verify point loading by calling the point detailfrom the [DETAIL] button

Hi-Spec Solutions

Freeze Point Calculation Configuration Graphics Installation

Revision 3.0 31

Configuration Graphics Installation

Graphics must be compiled and installed once per LCN.

Step ActionGo to Picture Editor Enter the Picture Editor, one of two ways:

From the Engineering Main Menu select the PICTUREEDITOR target OR From the Command Processor command line typePE [ENTER]

Load DDB Load Global variable definition file, DDB:L $Fn>PICS>DDB [ENTER]

Read FREZ_CFG Read in the picture file, FREZ_CFGR $Fn>FREZ>FREZ_CFG [ENTER]

Verify and Compile Verify picture:VER [ENTER]When the verification is complete compile the picture:COM [ENTER]

CopyFREZ_CFG.DO tographics directory

From the Command Processor display:COPY $Fn>FREZ>FREZ_CFG.DO NET>pic_dir>= -D [ENTER]Where pic_dir is the picture source directory specified in the SchematicSearch Path

Hi-Spec Solutions

Freeze Point Calculation Configure Calculation Point

Revision 3.0 32

Configure Calculation Point

Configuration of the calculation point can be done either through the graphicFREZ_CFG or through direct entry to the CDS ports on the Point Detail display.Use of the configuration graphic is recommended.

Setup of the calculation point requires the following steps:

• Graphic or Non Graphic Configuration of Freeze Point Calculation Point

• Linking CL Program.

Notes:

Configuration errors may occur if associated points are deleted. To correct thisproblem, the AO files must be unlinked and then relinked to reestablish dynamicindirection.

Link errors may occur, when an improper point type is configured in a CDS parameter.This is caused by a missing parameter. A null point containing all required parameterscan be used in the configuration for linking purposes only. After the CL is linked, thedesired point is then entered into the proper CDS location.

Hi-Spec Solutions

Freeze Point Calculation Point Configuration Using Graphic FREZ_CFG

Revision 3.0 33

Point Configuration Using Graphic FREZ_CFG

Each entry port on the freeze configuration graphic, FREZ_CFG, is described below:

Graphic FREZ_CFG

Continued

Hi-Spec Solutions

Freeze Point Calculation Point Configuration Using Graphic FREZ_CFG

Revision 3.0 34

Point Configuration Using Graphic FREZ_CFG (Continued)

Selection Port Parameter ActionCalculation Point -- Enter the freeze calculation point name.

Number of Streams ENGPAR(1) Enter the number of tower streams desired.

Product Location ENGPAR(3) Enter the array location of the product stream withinthe listing of unit streams.

Gain on EFV Value LAB_BIAS(1) Enter the number to use as the freeze multiplicativebias. This bias and should be set to 1.0 if not used.Mole fraction correction.

Gain Filter (min) FILTER(15) Enter the multiplicative bias filter time in minuets.

Additive Calc Bias LAB_BIAS(2) Enter the additive bias value. This value is used toeliminate offset between the calculation and thelaboratory results.

Additive Filter (min) FILTER(16) Enter the additive bias filter time in minutes.

Mole Frac Filter FILTER(17) Enter a filter time to be applied to the calculatedmole fraction in minutes.

Gravity Units[API] [SPGR]

CONV_FAC(13) Select the input gravity units.

Gravity Pnt Filter FILTER(11) Enter a filter time which is applied to each gravityinput in minutes.

Watson K Pnt Filter FILTER(12) Enter a filter time which is applied to each WatsonK factor input in minutes.

Temperature Units[DEG F] [DEG C]

CONV_FAC(12) Select the input temperature units.

Temperature Pnt TEMP_PT Enter the name of the draw temperature point.

Temperature Bias T_BIAS Enter the number for the material draw temperaturebias.

Temp Filter FILTER(13) Enter the number for the material draw temperaturefilter.

Pressure Pnt PRESS_PT Enter the name for the draw pressure point.

Pressure Bias P_BIAS Enter the number for the material draw pressurebias.

Pressure Filter FILTER(14) Enter the number for the material draw pressurefilter.

Atmospheric Press ENGPAR(2) Enter the atmospheric pressure in input units OR 0.0for 14.696 for psi units. The program will handleeither entry correctly.

Press Conv Factor CONV_FAC(11) Enter the conversion factor to convert input pressureunits to psi.

Continued

Hi-Spec Solutions

Freeze Point Calculation Point Configuration Using Graphic FREZ_CFG

Revision 3.0 35

Point Configuration Using Graphic FREZ_CFG (Continued)

There can be a maximum of ten stream points configured for the freeze calculation.The configuration zone for these flows is located at the bottom of the configurationgraphic. The page forward and back keys on the TDC 3000 keyboard step through thesetup zones.

The stream configuration zones are indexes off of the # of Prod Flows parameter at thetop left of the configuration graphic. The graphic displays only the number of productstream configurations indicated by # of Prod Flows, this will be from 1 to 10.

Depending on the selected configuration the zone will alter to guide the user to therequired input information. If the user would like the calculation to determine thestreams molecular weight, then the following change zone is presented.

Selection Port Parameter DescriptionEnvelope Flow Pnt FLOW_PT(i) Enter the desired stream input point.Flow Conv Factor CONV_FAC(i) Enter the conversion factor to convert the

input units to consistent mass units.Flow Filter (min) FILTER(i) Enter the stream filter in minutes.Molecular Weight[CALC] [USER]

ENGPAR(3+i) Select the desired method for determiningthe stream molecular weight.

Strm in Numerator[YES] [NO]

NUMER(i) Select whether the configured stream is tobe used in the numerator and denominatoror within the denominator only.

Stream Gravity Pnt GRAV_PT(i) Enter the name of the gravity point whichcorresponds to the configured stream.

Stream Watson K Pnt WATK_PT(i) Enter the name of the Watson K pointwhich corresponds to the configuredstream.

Continued

Hi-Spec Solutions

Freeze Point Calculation Point Configuration Using Graphic FREZ_CFG

Revision 3.0 36

Point Configuration Using Graphic FREZ_CFG (Continued)

If the user provides the molecular weight for the current stream the configuration zonewill alter to provide the new entry port.

Selection Port Parameter DescriptionEnvelope Flow Pnt FLOW_PT(i) Enter the desired stream input point.Flow Conv Factor CONV_FAC(i) Enter the conversion factor to convert the

input units to consistent volume/mass units.Flow Filter (min) FILTER(i) Enter the stream filter in minutes.Molecular Weight[CALC] [USER]

ENGPAR(3+i) Select the desired method for determiningthe stream molecular weight.

Strm in Numerator[YES] [NO]

NUMER(i) Select whether the configured stream is tobe used in the numerator and denominatoror within the denominator only.

MOLWT(i) Enter the molecular weight for theconfigured stream.

Continued

Hi-Spec Solutions

Freeze Point Calculation Point Configuration through Direct CDS Entry

Revision 3.0 37

Point Configuration through Direct CDS Entry

If the configuration graphic is not used, then the configuration data must be entereddirectly onto the calculation point. The required calculation point information andassociated parameter are listed below.

Parameter Description CommentsPRESS_PT Tagname of source for process

pressureUse bias in P_BIAS if the pressure isnot located at the draw tray.

TEMP_PT Tagname of source for stripperfeed temperature

Use bias in T_BIAS if the temperatureis not located on the draw tray.

FLOW_PT(1) Tagname of source for 1 streamflow rate

Must have 1 internal liquid stream.

FLOW_PT(2) Tagname of source for 2 streamflow rate

Must have 1 internal vapor stream oruse the overhead unit streams.

FLOW_PT(3) Tagname of source for 3 streamflow rate

Required only if more than 2 productstream exists.

FLOW_PT(4) Tagname of source for 4 streamflow rate

Required only if more than 3 productstream exists.

FLOW_PT(5) Tagname of source for 5 streamflow rate

Required only if more than 4 productstream exists.

FLOW_PT(6) Tagname of source for 6 streamflow rate

Required only if more than 5 productstream exists.

FLOW_PT(7) Tagname of source for 7 streamflow rate

Required only if more than 6 productstream exists.

FLOW_PT(8) Tagname of source for 8 streamflow rate

Required only if more than 7 productstream exists.

FLOW_PT(9) Tagname of source for 9 streamflow rate

Required only if more than 8 productstream exists.

FLOW_PT(10) Tagname of source for 10 streamflow rate

Required only if more than 9 productstream exists.

GRAV_PT(1) Tagname of input gravity 1 whichcorresponds to stream 1

If an on-line gravity is not available,bring in an estimate through an AMnumeric point. This is gravity atstandard conditions.

GRAV_PT(2) Tagname of input gravity 2 whichcorresponds to stream 2

If an on-line gravity is not available,bring in an estimate through an AMnumeric point. This is gravity atstandard conditions.

GRAV_PT(3) Tagname of input gravity 3 whichcorresponds to stream 3

If an on-line gravity is not available,bring in an estimate through an AMnumeric point. This is gravity atstandard conditions.

Continued

Hi-Spec Solutions

Freeze Point Calculation Point Configuration through Direct CDS Entry

Revision 3.0 38

Point Configuration through Direct CDS Entry (Continued)

Parameter Description CommentsGRAV_PT(4) Tagname of input gravity 4 which

corresponds to stream 4If an on-line gravity is not available,bring in an estimate through an AMnumeric point. This is gravity atstandard conditions.

GRAV_PT(5) Tagname of input gravity 5 whichcorresponds to stream 5

If an on-line gravity is not available,bring in an estimate through an AMnumeric point. This is gravity atstandard conditions.

GRAV_PT(6) Tagname of input gravity 6 whichcorresponds to stream 6

If an on-line gravity is not available,bring in an estimate through an AMnumeric point. This is gravity atstandard conditions.

GRAV_PT(7) Tagname of input gravity 7 whichcorresponds to stream 7

If an on-line gravity is not available,bring in an estimate through an AMnumeric point. This is gravity atstandard conditions.

GRAV_PT(8) Tagname of input gravity 8 whichcorresponds to stream 8

If an on-line gravity is not available,bring in an estimate through an AMnumeric point. This is gravity atstandard conditions.

GRAV_PT(9) Tagname of input gravity 9 whichcorresponds to stream 9

If an on-line gravity is not available,bring in an estimate through an AMnumeric point. This is gravity atstandard conditions.

GRAV_PT(10) Tagname of input gravity 10which corresponds to stream 10

If an on-line gravity is not available,bring in an estimate through an AMnumeric point. This is gravity atstandard conditions.

WATK_PT(1) Tagname of input Watson K 1which corresponds to stream 1

Build an AM numeric point to hold amanually input value.Or the Watson K can be calculatedusing the 10;50;90 points and gravity.This requires an AM REG_PV pointand the WatK code block.

WATK_PT(2) Tagname of input Watson K 2which corresponds to stream 2

Build an AM numeric point to hold amanually input value.Or the Watson K can be calculatedusing the 10;50;90 points and gravity.This requires an AM REG_PV pointand the WatK code block.

Continued

Hi-Spec Solutions

Freeze Point Calculation Point Configuration through Direct CDS Entry

Revision 3.0 39

Point Configuration through Direct CDS Entry (Continued)

Parameter Description CommentsWATK_PT(3) Tagname of input Watson K 3

which corresponds to stream 3Build an AM numeric point to hold amanually input value.Or the Watson K can be calculatedusing the 10;50;90 points and gravity.This requires an AM REG_PV pointand the WatK code block.

WATK_PT(4) Tagname of input Watson K 4which corresponds to stream 4

Build an AM numeric point to hold amanually input value.Or the Watson K can be calculatedusing the 10;50;90 points and gravity.This requires an AM REG_PV pointand the WatK code block.

WATK_PT(5) Tagname of input Watson K 5which corresponds to stream 5

Build an AM numeric point to hold amanually input value.Or the Watson K can be calculatedusing the 10;50;90 points and gravity.This requires an AM REG_PV pointand the WatK code block.

WATK_PT(6) Tagname of input Watson K 6which corresponds to stream 6

Build an AM numeric point to hold amanually input value.Or the Watson K can be calculatedusing the 10;50;90 points and gravity.This requires an AM REG_PV pointand the WatK code block.

WATK_PT(7) Tagname of input Watson K 7which corresponds to stream 7

Build an AM numeric point to hold amanually input value.Or the Watson K can be calculatedusing the 10;50;90 points and gravity.This requires an AM REG_PV pointand the WatK code block.

WATK_PT(8) Tagname of input Watson K 8which corresponds to stream 8

Build an AM numeric point to hold amanually input value.Or the Watson K can be calculatedusing the 10;50;90 points and gravity.This requires an AM REG_PV pointand the WatK code block.

WATK_PT(9) Tagname of input Watson K 9which corresponds to stream 9

Build an AM numeric point to hold amanually input value.Or the Watson K can be calculatedusing the 10;50;90 points and gravity.This requires an AM REG_PV pointand the WatK code block.

Continued

Hi-Spec Solutions

Freeze Point Calculation Point Configuration through Direct CDS Entry

Revision 3.0 40

Point Configuration through Direct CDS Entry (Continued)

Parameter Description CommentsWATK_PT(10) Tagname of input Watson K 10

which corresponds to stream 10Build an AM numeric point to hold amanually input value.Or the Watson K can be calculatedusing the 10;50;90 points and gravity.This requires an AM REG_PV pointand the WatK code block.

T_BIAS Additive bias to the drawtemperature

Same units as TEMP_PT.

P_BIAS Additive bias to draw pressure Same units as PRESS_PT.

ENGPAR(1) Number of input stream flow rates(2.0 < ENGPAR(2) <= 10.0)

Number of stream flows must match #of entries reflected inFLOW_PT(1..10).

ENGPAR(2) Local atmospheric pressure (avalue of 14.696 will be usedinternally if a zero is entered)

Same units as PRESS_PT.

ENGPAR(3) Location of product stream withinthe configured streams

The number must be within theconfigured number of streams.

ENGPAR(4) Indicates if the molecular weightfor stream 1 is calculated orsupplied

0 => Calculated1 => User supplied

ENGPAR(5) Indicates if the molecular weightfor stream 2 is calculated orsupplied

0 => Calculated1 => User supplied

ENGPAR(6) Indicates if the molecular weightfor stream 3 is calculated orsupplied

0 => Calculated1 => User supplied

ENGPAR(7) Indicates if the molecular weightfor stream 4 is calculated orsupplied

0 => Calculated1 => User supplied

ENGPAR(8) Indicates if the molecular weightfor stream 5 is calculated orsupplied

0 => Calculated1 => User supplied

ENGPAR(9) Indicates if the molecular weightfor stream 6 is calculated orsupplied

0 => Calculated1 => User supplied

ENGPAR(10) Indicates if the molecular weightfor stream 7 is calculated orsupplied

0 => Calculated1 => User supplied

ENGPAR(11) Indicates if the molecular weightfor stream 8 is calculated orsupplied

0 => Calculated1 => User supplied

Continued

Hi-Spec Solutions

Freeze Point Calculation Point Configuration through Direct CDS Entry

Revision 3.0 41

Point Configuration through Direct CDS Entry (Continued)

Parameter Description CommentsENGPAR(12) Indicates if the molecular weight

for stream 9 is calculated orsupplied

0 => Calculated1 => User supplied

ENGPAR(13) Indicates if the molecular weightfor stream 10 is calculated orsupplied

0 => Calculated1 => User supplied

ENGPAR(15) Flag to set calculation BAD: 0 =>Do not set BAD ;1 => Set calculation BAD

This input allows the calculation to beset bad by Engineering request.

FILTER(1) Filter time for input stream 1 flowrate.

Minutes

FILTER(2) Filter time for input stream 2 flowrate.

Minutes

FILTER(3) Filter time for input stream 3 flowrate.

Minutes

FILTER(4) Filter time for input stream 4 flowrate.

Minutes

FILTER(5) Filter time for input stream 5 flowrate.

Minutes

FILTER(6) Filter time for input stream 6 flowrate.

Minutes

FILTER(7) Filter time for input stream 7 flowrate.

Minutes

FILTER(8) Filter time for input stream 8 flowrate.

Minutes

FILTER(9) Filter time for input stream 9 flowrate.

Minutes

FILTER(10) Filter time for input stream 10flow rate.

Minutes

FILTER(11) Filter time for the gravity inputs. Minutes

FILTER(12) Filter time for the Watson Kinputs.

Minutes

FILTER(13) Filter time for the inputtemperature.

Minutes

FILTER(14) Filter time for the input pressure. Minutes

FILTER(15) Filter time for the multiplicativebias value.

Minutes

FILTER(16) Filter time for the additive biasvalue.

Minutes

FILTER(17) Filter time for the calculated molefraction.

Minutes

Continued

Hi-Spec Solutions

Freeze Point Calculation Point Configuration through Direct CDS Entry

Revision 3.0 42

Point Configuration through Direct CDS Entry (Continued)

Parameter Description CommentsLAB_BIAS(1) Multiplicative bias applied to the

mole fraction.Used to bias proportionally.

LAB_BIAS(2) Additive laboratory bias tocalculated freeze point

Same units as TEMP_PT.

NUMER(1) Indicates if stream 1 is used in thenumerator of the mole fractionequation.

0 => Not in Numerator1 => In Numerator

NUMER(2) Indicates if stream 2 is used in thenumerator of the mole fractionequation.

0 => Not in Numerator1 => In Numerator

NUMER(3) Indicates if stream 3 is used in thenumerator of the mole fractionequation.

0 => Not in Numerator1 => In Numerator

NUMER(4) Indicates if stream 4 is used in thenumerator of the mole fractionequation.

0 => Not in Numerator1 => In Numerator

NUMER(5) Indicates if stream 5 is used in thenumerator of the mole fractionequation.

0 => Not in Numerator1 => In Numerator

NUMER(6) Indicates if stream 6 is used in thenumerator of the mole fractionequation.

0 => Not in Numerator1 => In Numerator

NUMER(7) Indicates if stream 7 is used in thenumerator of the mole fractionequation.

0 => Not in Numerator1 => In Numerator

NUMER(8) Indicates if stream 8 is used in thenumerator of the mole fractionequation.

0 => Not in Numerator1 => In Numerator

NUMER(9) Indicates if stream 9 is used in thenumerator of the mole fractionequation.

0 => Not in Numerator1 => In Numerator

NUMER(10) Indicates if stream 10 is used inthe numerator of the mole fractionequation.

0 => Not in Numerator1 => In Numerator

CONV_FAC(1) Stream 1 (FLOW_PT(1))multiplicative flow conversionfactor

Convert input units to consistent massunits.

CONV_FAC(2) Stream 2 (FLOW_PT(2))multiplicative flow conversionfactor

Convert input units to consistent massunits.

Continued

Hi-Spec Solutions

Freeze Point Calculation Point Configuration through Direct CDS Entry

Revision 3.0 43

Point Configuration through Direct CDS Entry (Continued)

Parameter Description CommentsCONV_FAC(3) Stream 3 (FLOW_PT(3))

multiplicative flow conversionfactor

Convert input units to consistent massunits.

CONV_FAC(4) Stream 4 (FLOW_PT(4))multiplicative flow conversionfactor

Convert input units to consistent massunits.

CONV_FAC(5) Stream 5 (FLOW_PT(5))multiplicative flow conversionfactor

Convert input units to consistent massunits.

CONV_FAC(6) Stream 6 (FLOW_PT(6))multiplicative flow conversionfactor

Convert input units to consistent massunits.

CONV_FAC(7) Stream 7 (FLOW_PT(7))multiplicative flow conversionfactor

Convert input units to consistent massunits.

CONV_FAC(8) Stream 8 (FLOW_PT(8))multiplicative flow conversionfactor

Convert input units to consistent massunits.

CONV_FAC(9) Stream 9 (FLOW_PT(9))multiplicative flow conversionfactor

Convert input units to consistent massunits.

CONV_FAC(10) Stream 10 (FLOW_PT(10))multiplicative flow conversionfactor

Convert input units to consistent massunits.

Hi-Spec Solutions

Freeze Point Calculation Link CL Programs

Revision 2.0 44

Link CL Programs

Step ActionLink FREZ_PNT From the Command Processor Display:

LK $Fn>AO>FREZ_PNT point_name [ENTER]

Activate point Call up the point detail and activate the point, or activate from FREZ_CFGgraphic.

Verify Operation Verify that FREZ_PNT is running without any CL errors.

Hi-Spec Solutions

Freeze Point Calculation Appendix A Engineer’s Detailed Description

Revision 2.0 45

Hi-Spec Solutions

Freeze Point Calculation Appendix A Engineer’s Detailed Description

Revision 2.0 46

Hi-Spec Solutions

Honeywell Hi-Spec Solutions • 16404 N. Black Canyon Hwy. • Phoenix, AZ 85023

Advanced Control Package

Internal Liquid and Vapor Calculation

Controlled

May, 1995Revision 3.0

Hi-Spec Solutions

Internal Liquid and Vapor Calculation Revision History

Revision 3.0

Hi-Spec Solutions

Internal Liquid and Vapor Calculation Contents

Revision 3.0

Table of ContentsOverview.........................................................................................................................................1

Acronym List ..................................................................................................................................3

Hardware and Software Requirements ...........................................................................................4

Instrumentation (Process Inputs) ....................................................................................................5

Process Diagram .............................................................................................................................6

Detailed Description .......................................................................................................................7

Point Structure ..................................................................................................................8

Process Inputs ...................................................................................................................9

Configuration Inputs .......................................................................................................13

Calculation Outputs ........................................................................................................23

Error Codes ...................................................................................................................................28

Diagnostic Location Error Codes....................................................................................29

Diagnostic Error Codes...................................................................................................30

Diagnostic Error Codes (Continued) ..............................................................................33

Configuration and Tuning.............................................................................................................34

Biases in the Internal Liquid and Vapor Calculation......................................................35

Tuning Parameters ..........................................................................................................37

Algorithms ....................................................................................................................................38

Algorithms ......................................................................................................................39

Installation Procedure ...................................................................................................................41

Preparation for Installation ...........................................................................................................42

Custom Data Segment (CDS) and Parameter List (PL) Installation.............................................43

Building Liquid/Vapor Calculation Point.....................................................................................44

Configuration Graphics Installation..............................................................................................45

Configure Calculation Point .........................................................................................................46

Point Configuration Using Graphic LANDVCFG .........................................................47

Point Configuration through Direct CDS Entry..............................................................57

Link CL Programs.........................................................................................................................A1

Hi-Spec Solutions

??

Internal Liquid and Vapor Calculation Overview

Revision 3.0 1

Overview

Definition. Internal liquid and vapor flow rates are the estimated internal mass flowrates of liquid and vapor leaving a tray in a distillation column.

Application. The internal liquid and vapor flow rates are important inputs necessary tocalculate the inferential physical properties (such as, cut point/freeze/pour point) of adistillation column’s product stream and also can be used to estimate floodingconditions.

Calculation. The liquid/vapor calculation program calculates the internal liquid/vaporflows based on:

• Processinputs:

Temperatures, pressures, and flows

• Characterizationinputs:

Watson K and gravity

• Calculatedvalues:

Hydrocarbon stream enthalpies, internal vaporheat, internal net accumulated heat, internalhydrocarbon vapor mass flow, and internal liquidhydrocarbon mass flow.

A heat balance is used to determine the internal liquid flow which allows a materialbalance to be used to determine the internal vapor flow.

Incentive. 1. To provide inputs for inferential property calculations of hydrocarbonproducts.

2. To provide inputs for distillation column flooding calculations.

3. To provide a real-time input for use in advanced control applications.

Hi-Spec Solutions

??

Internal Liquid and Vapor Calculation Overview

Revision 3.0 2

A quick method for estimating the range of the internal liquid flow is to use the closestpumparound or reflux flow above the point in the tower where the internal liquid flow isto be calculated. The range for the internal vapor flow can be estimated by summing upthe overhead product flow, all side product flows and pumparound flows above the traybeing analyzed, and added in the estimated internal liquid flow.

Note: The results of this method are only an approximation of the internal flows andshould evaluated using good engineering judgment and previous experience.

Hi-Spec Solutions

Internal Liquid and Vapor Calculation Acronym List

Revision 3.0 3

Acronym List

Term Acronym

Application Module AM

Local Control Network LCN

Universal Station US

control language CL

process variable PV

custom data segment CDS

pounds per square inch psi

Parameter List PL

CL object code file extension AO

Universal Control Network UCN

thousands of pounds per hour MPPH

pounds per square inch gauge psig

Hi-Spec Solutions

Internal Liquid and Vapor Calculation Hardware and Software Requirements

Revision 3.0 4

Hardware and Software Requirements

Requirement Description

Hardware Platform TDC 3000 AM

Special Boards None

Other Computing Systems None

LCN Release Release 300 or later

AM Load Modules None

US Load Modules None

Other Packages None

Other Control Applications None

Software Inputs Gravities and Watson K factors inputs must exist as points on theLCN

Hi-Spec Solutions

Internal Liquid and Vapor Calculation Instrumentation (Process Inputs)

Revision 3.0 5

Instrumentation (Process Inputs)

Process Input1 Required Recommended

All input stream flow rates X

All input stream temperatures X

Hydrocarbon input stream pressures X

Stripping steam pressure X

1 Required inputs can sometimes be obtained by inference. However, calculations based upon inferred data can be less accurate than calculations based upon direct readings.

Hi-Spec Solutions

Internal Liquid and Vapor Calculation Process Diagram

Revision 3.0 6

Process Diagram

P23

T32

FC3 T52

T4 FC1

FUEL GAS

FC2

T31

FC4

STEAM

KEROSENE

FC5

GAS OIL

FC9

T29 FC8

STEAM

F10

T30

FC7

FC6

STEAM

DIESEL

TOWER

NAPHTHA

F21

T11

STEAM

F11

F22

Envelope 1

RESID.

FEED

F1

T1

Envelope 2

Hi-Spec Solutions

Internal Liquid and Vapor Calculation Detailed Description

Revision 3.0 7

Detailed Description

The tables in this section describe the following liquid/vapor calculation programarchitecture:

• Point Structure

• Process Inputs

• Configuration Inputs

• Calculation Outputs.

Hi-Spec Solutions

Internal Liquid and Vapor Calculation Point Structure

Revision 3.0 8

Point Structure

Point Structure

Point Type AM Regulatory

PV_Type CL

CTL_Type NONE

Custom Data Segment LANDVCDS.CL

Algorithm LANDVGEN.CL

Insertion Point PV_ALG

Slot 5

Output The calculated internal liquid mass flow is displayed as the point’s PV.

Hi-Spec Solutions

Internal Liquid and Vapor Calculation Process Inputs

Revision 3.0 9

Process Inputs

Process Inputs

Critical2

Parameter Description Units Yes No

CALC_PT(1) Tagname for QNET input from anotherenvelope calculation

Mass units *MBTU/Lb

X

CALC_PT(2) Tagname for QNET input from anotherenvelope calculation

Mass units *MBTU/Lb

X

FLOW_PT(1) Tagname for stream 1 flow input Any flow unitsX

FLOW_PT(2) Tagname for stream 2 flow input Any flow unitsX

FLOW_PT(3) Tagname for stream 3 flow input Any flow unitsX

FLOW_PT(4) Tagname for stream 4 flow input Any flow unitsX

FLOW_PT(5) Tagname for stream 5 flow input Any flow unitsX

FLOW_PT(6) Tagname for stream 6 flow input Any flow unitsX

FLOW_PT(7) Tagname for stream 7 flow input Any flow unitsX

FLOW_PT(8) Tagname for stream 8 flow input Any flow unitsX

FLOW_PT(9) Tagname for stream 9 flow input Any flow unitsX

FLOW_PT(10) Tagname for stream 10 flow input Any flow unitsX

FLOW_PT(11) Tagname for stream 11 flow input Any flow unitsX

FLOW_PT(12) Tagname for stream 12 flow input Any flow unitsX

FLOW_PT(13) Tagname for stream 13 flow input Any flow unitsX

FLOW_PT(14) Tagname for stream 14 flow input Any flow unitsX

FLOW_PT(15) Tagname for stream 15 flow input Any flow unitsX

GRAV_PT(1) Tagname for stream 1 gravity °API or S.G.X

GRAV_PT(2) Tagname for stream 2 gravity °API or S.G.X

GRAV_PT(3) Tagname for stream 3 gravity °API or S.G.X

GRAV_PT(4) Tagname for stream 4 gravity °API or S.G.X

GRAV_PT(5) Tagname for stream 5 gravity °API or S.G.X

Continued

2 Critical indicates that a bad input causes the output of the calculation to be set BAD.

Hi-Spec Solutions

Internal Liquid and Vapor Calculation Process Inputs

Revision 3.0 10

Process Inputs (Continued)

Process Inputs

Critical3

Parameter Description Units Yes No

GRAV_PT(6) Tagname for stream 6 gravity °API or S.G.X

GRAV_PT(7) Tagname for stream 7 gravity °API or S.G.X

GRAV_PT(8) Tagname for stream 8 gravity °API or S.G.X

GRAV_PT(9) Tagname for stream 9 gravity °API or S.G.X

GRAV_PT(10) Tagname for stream 10 gravity °API or S.G.X

GRAV_PT(11) Tagname for stream 11 gravity °API or S.G.X

GRAV_PT(12) Tagname for stream 12 gravity °API or S.G.X

GRAV_PT(13) Tagname for stream 13 gravity °API or S.G.X

GRAV_PT(14) Tagname for stream 14 gravity °API or S.G.X

GRAV_PT(15) Tagname for stream 15 gravity °API or S.G.X

GRAV_PT(16) Tagname for internal liquid gravity °API or S.G.X

PRESS_PT(1) Tagname for stream 1 pressure input Any pressure unitsX

PRESS_PT(2) Tagname for stream 2 pressure input Any pressure unitsX

PRESS_PT(3) Tagname for stream 3 pressure input Any pressure unitsX

PRESS_PT(4) Tagname for stream 4 pressure input Any pressure unitsX

PRESS_PT(5) Tagname for stream 5 pressure input Any pressure unitsX

PRESS_PT(6) Tagname for stream 6 pressure input Any pressure unitsX

PRESS_PT(7) Tagname for stream 7 pressure input Any pressure unitsX

PRESS_PT(8) Tagname for stream 8 pressure input Any pressure unitsX

PRESS_PT(9) Tagname for stream 9 pressure input Any pressure unitsX

PRESS_PT(10) Tagname for stream 10 pressure input Any pressure unitsX

PRESS_PT(11) Tagname for stream 11 pressure input Any pressure unitsX

PRESS_PT(12) Tagname for stream 12 pressure input Any pressure unitsX

Continued

3 Critical indicates that a bad input causes the output of the calculation to be set BAD.

Hi-Spec Solutions

Internal Liquid and Vapor Calculation Process Inputs

Revision 3.0 11

Process Inputs (Continued)

Process Inputs

Critical4

Parameter Description Units Yes No

PRESS_PT(13) Tagname for stream 13 pressure input Any pressure unitsX

PRESS_PT(14) Tagname for stream 14 pressure input Any pressure unitsX

PRESS_PT(15) Tagname for stream 15 pressure input Any pressure unitsX

PRESS_PT(16) Tagname of pressure input for internalvapor

Any pressure unitsX

TEMP_PT(1) Tagname for stream 1 temperature input °F or °CX

TEMP_PT(2) Tagname for stream 2 temperature input °F or °CX

TEMP_PT(3) Tagname for stream 3 temperature input °F or °CX

TEMP_PT(4) Tagname for stream 4 temperature input °F or °CX

TEMP_PT(5) Tagname for stream 5 temperature input °F or °CX

TEMP_PT(6) Tagname for stream 6 temperature input °F or °CX

TEMP_PT(7) Tagname for stream 7 temperature input °F or °CX

TEMP_PT(8) Tagname for stream 8 temperature input °F or °CX

TEMP_PT(9) Tagname for stream 9 temperature input °F or °CX

TEMP_PT(10) Tagname for stream 10 temperature input °F or °CX

TEMP_PT(11) Tagname for stream 11 temperature input °F or °CX

TEMP_PT(12) Tagname for stream 12 temperature input °F or °CX

TEMP_PT(13) Tagname for stream 13 temperature input °F or °CX

TEMP_PT(14) Tagname for stream 14 temperature input °F or °CX

TEMP_PT(15) Tagname for stream 15 temperature input °F or °CX

TEMP_PT(16) Tagname for temperature of internal liquidat envelope conditions

°F or °CX

TEMP_PT(17) Tagname for temperature of internal vaporat envelope conditions

°F or °CX

Continued

4 Critical indicates that a bad input causes the output of the calculation to be set BAD.

Hi-Spec Solutions

Internal Liquid and Vapor Calculation Process Inputs

Revision 3.0 12

Process Inputs (Continued)

Process Inputs

Critical5

Parameter Description Units Yes No

WATK_PT(1) Tagname for stream 1 Watson K factor NoneX

WATK_PT(2) Tagname for stream 2 Watson K factor NoneX

WATK_PT(3) Tagname for stream 3 Watson K factor NoneX

WATK_PT(4) Tagname for stream 4 Watson K factor NoneX

WATK_PT(5) Tagname for stream 5 Watson K factor NoneX

WATK_PT(6) Tagname for stream 6 Watson K factor NoneX

WATK_PT(7) Tagname for stream 7 Watson K factor NoneX

WATK_PT(8) Tagname for stream 8 Watson K factor NoneX

WATK_PT(9) Tagname for stream 9 Watson K factor NoneX

WATK_PT(10) Tagname for stream 10 Watson K factor NoneX

WATK_PT(11) Tagname for stream 11 Watson K factor NoneX

WATK_PT(12) Tagname for stream 12 Watson K factor NoneX

WATK_PT(13) Tagname for stream 13 Watson K factor NoneX

WATK_PT(14) Tagname for stream 14 Watson K factor NoneX

WATK_PT(15) Tagname for stream 15 Watson K factor NoneX

WATK_PT(16) Tagname for internal liquid Watson Kfactor

NoneX

.

5 Critical indicates that a bad input causes the output of the calculation to be set BAD.

Hi-Spec Solutions

Internal Liquid and Vapor Calculation Configuration Inputs

Revision 3.0 13

Configuration Inputs

Configuration Inputs

Parameter Description Units

B1(1) Stream 1 gas enthalpy coefficient A N/A

B1(2) Stream 2 gas enthalpy coefficient A N/A

B1(3) Stream 3 gas enthalpy coefficient A N/A

B1(4) Stream 4 gas enthalpy coefficient A N/A

B1(5) Stream 5 gas enthalpy coefficient A N/A

B2(1) Stream 1 gas enthalpy coefficient B N/A

B2(2) Stream 2 gas enthalpy coefficient B N/A

B2(3) Stream 3 gas enthalpy coefficient B N/A

B2(4) Stream 4 gas enthalpy coefficient B N/A

B2(5) Stream 5 gas enthalpy coefficient B N/A

B3(1) Stream 1 gas enthalpy coefficient C N/A

B3(2) Stream 2 gas enthalpy coefficient C N/A

B3(3) Stream 3 gas enthalpy coefficient C N/A

B3(4) Stream 4 gas enthalpy coefficient C N/A

B3(5) Stream 5 gas enthalpy coefficient C N/A

B4(1) Stream 1 gas enthalpy coefficient D N/A

B4(2) Stream 2 gas enthalpy coefficient D N/A

B4(3) Stream 3 gas enthalpy coefficient D N/A

B4(4) Stream 4 gas enthalpy coefficient D N/A

B4(5) Stream 5 gas enthalpy coefficient D N/A

B5(1) Stream 1 gas enthalpy coefficient E N/A

B5(2) Stream 2 gas enthalpy coefficient E N/A

B5(3) Stream 3 gas enthalpy coefficient E N/A

B5(4) Stream 4 gas enthalpy coefficient E N/A

B5(5) Stream 5 gas enthalpy coefficient E N/A

B6(1) Stream 1 gas enthalpy coefficient F N/A

B6(2) Stream 2 gas enthalpy coefficient F N/A

B6(3) Stream 3 gas enthalpy coefficient F N/A

B6(4) Stream 4 gas enthalpy coefficient F N/A

B6(5) Stream 5 gas enthalpy coefficient F N/A

CALC_DIR(1) Indicates if stream 1 is entering or leaving the envelope(-1.0 => entering envelope; 1.0 => leaving envelope)

N/A

CALC_DIR(2) Indicates if stream 2 is entering or leaving the envelope(-1.0 => entering envelope; 1.0 => leaving envelope)

N/A

Continued

Hi-Spec Solutions

Internal Liquid and Vapor Calculation Configuration Inputs

Revision 3.0 14

Configuration Inputs (Continued)

Configuration Inputs

Parameter Description Units

CALC_DIR(3) Indicates if stream 3 is entering or leaving the envelope(-1.0 => entering envelope; 1.0 => leaving envelope)

N/A

CALC_DIR(4) Indicates if stream 4 is entering or leaving the envelope(-1.0 => entering envelope; 1.0 => leaving envelope)

N/A

CALC_DIR(5) Indicates if stream 5 is entering or leaving the envelope(-1.0 => entering envelope; 1.0 => leaving envelope)

N/A

CALC_DIR(6) Indicates if stream 6 is entering or leaving the envelope(-1.0 => entering envelope; 1.0 => leaving envelope)

N/A

CALC_DIR(7) Indicates if stream 7 is entering or leaving the envelope(-1.0 => entering envelope; 1.0 => leaving envelope)

N/A

CALC_DIR(8) Indicates if stream 8 is entering or leaving the envelope(-1.0 => entering envelope; 1.0 => leaving envelope)

N/A

CALC_DIR(9) Indicates if stream 9 is entering or leaving the envelope(-1.0 => entering envelope; 1.0 => leaving envelope)

N/A

CALC_DIR(10) Indicates if stream 10 is entering or leaving the envelope (-1.0 => entering envelope; 1.0 => leaving envelope)

N/A

CALC_DIR(11) Indicates if stream 11 is entering or leaving the envelope (-1.0 => entering envelope; 1.0 => leaving envelope)

N/A

CALC_DIR(12) Indicates if stream 12 is entering or leaving the envelope (-1.0 => entering envelope; 1.0 => leaving envelope)

N/A

CALC_DIR(13) Indicates if stream 13 is entering or leaving the envelope (-1.0 => entering envelope; 1.0 => leaving envelope)

N/A

CALC_DIR(14) Indicates if stream 14 is entering or leaving the envelope (-1.0 => entering envelope; 1.0 => leaving envelope)

N/A

CALC_DIR(15) Indicates if stream 15 is entering or leaving the envelope (-1.0 => entering envelope; 1.0 => leaving envelope)

N/A

CALC_DIR(16) Indicates if calculated internal liquid is entering or leavingthe envelope (-1.0 => entering envelope; 1.0 => leavingenvelope)

N/A

CALC_DIR(17) Indicates calculation direction (-1.0 => from bottom up;1.0 => from top down)

N/A

CONV_FAC(1) Stream 1 multiplicative flow conversion factor From input unitsto MPPH

CONV_FAC(2) Stream 2 multiplicative flow conversion factor From input unitsto MPPH

CONV_FAC(3) Stream 3 multiplicative flow conversion factor From input unitsto MPPH

CONV_FAC(4) Stream 4 multiplicative flow conversion factor From input unitsto MPPH

Continued

Hi-Spec Solutions

Internal Liquid and Vapor Calculation Configuration Inputs

Revision 3.0 15

Configuration Inputs (Continued)

Configuration Inputs

Parameter Description Units

CONV_FAC(5) Stream 5 multiplicative flow conversion factor From input unitsto MPPH

CONV_FAC(6) Stream 6 multiplicative flow conversion factor From input unitsto MPPH

CONV_FAC(7) Stream 7 multiplicative flow conversion factor From input unitsto MPPH

CONV_FAC(8) Stream 8 multiplicative flow conversion factor From input unitsto MPPH

CONV_FAC(9) Stream 9 multiplicative flow conversion factor From input unitsto MPPH

CONV_FAC(10) Stream 10 multiplicative flow conversion factor From input unitsto MPPH

CONV_FAC(11) Stream 11 multiplicative flow conversion factor From input unitsto MPPH

CONV_FAC(12) Stream 12 multiplicative flow conversion factor From input unitsto MPPH

CONV_FAC(13) Stream 13 multiplicative flow conversion factor From input unitsto MPPH

CONV_FAC(14) Stream 14 multiplicative flow conversion factor From input unitsto MPPH

CONV_FAC(15) Stream 15 multiplicative flow conversion factor From input unitsto MPPH

CONV_FAC(16) Input temperature unit flag; 0 => °F; 1 => °C

N/A

CONV_FAC(17) Pressure multiplicative conversion factor From input unitsto psig

CONV_FAC(18) Input gravity type flag :0 => API; 1 => Specific gravity

N/A

CONV_FAC(19) Conversion factor for calculated internal liquid mass flow From MPPH todesired units

ENGPAR(1) Number of input flow streams (0.0 < ENGPAR(1) <=15.0)

N/A

ENGPAR(2) Local atmospheric pressure (a value of 14.696 will be usedinternally if a zero is entered)

Same units asPRESS_PT

ENGPAR(3) Envelope heat loss MBTU/Lb *Mass Units

Continued

Hi-Spec Solutions

Internal Liquid and Vapor Calculation Configuration Inputs

Revision 3.0 16

Configuration Inputs (Continued)

Configuration Inputs

Parameter Description Units

ENGPAR(4) Flag to force calculation BAD(0 => Do not set BAD; 1 => Set calculation BAD)

N/A

ENGPAR(5) Not used N/A

ENGPAR(6) Not used N/A

ENGPAR(7) Not used N/A

ENGPAR(8) Not used N/A

ENGPAR(9) Not used N/A

ENGPAR(10) Not used N/A

FILTER(1) Stream 1 flow input filter time Minutes

FILTER(2) Stream 2 flow input filter time Minutes

FILTER(3) Stream 3 flow input filter time Minutes

FILTER(4) Stream 4 flow input filter time Minutes

FILTER(5) Stream 5 flow input filter time Minutes

FILTER(6) Stream 6 flow input filter time Minutes

FILTER(7) Stream 7 flow input filter time Minutes

FILTER(8) Stream 8 flow input filter time Minutes

FILTER(9) Stream 9 flow input filter time Minutes

FILTER(10) Stream 10 flow input filter time Minutes

FILTER(11) Stream 11 flow input filter time Minutes

FILTER(12) Stream 12 flow input filter time Minutes

FILTER(13) Stream 13 flow input filter time Minutes

FILTER(14) Stream 14 flow input filter time Minutes

FILTER(15) Stream 15 flow input filter time Minutes

FILTER(16) Stream 1 temperature input filter time Minutes

FILTER(17) Stream 2 temperature input filter time Minutes

FILTER(18) Stream 3 temperature input filter time Minutes

FILTER(19) Stream 4 temperature input filter time Minutes

FILTER(20) Stream 5 temperature input filter time Minutes

FILTER(21) Stream 6 temperature input filter time Minutes

FILTER(22) Stream 7 temperature input filter time Minutes

FILTER(23) Stream 8 temperature input filter time Minutes

FILTER(24) Stream 9 temperature input filter time Minutes

FILTER(25) Stream 10 temperature input filter time Minutes

FILTER(26) Stream 11 temperature input filter time Minutes

Continued

Hi-Spec Solutions

Internal Liquid and Vapor Calculation Configuration Inputs

Revision 3.0 17

Configuration Inputs (Continued)

Configuration Inputs

Parameter Description Units

FILTER(27) Stream 12 temperature input filter time Minutes

FILTER(28) Stream 13 temperature input filter time Minutes

FILTER(29) Stream 14 temperature input filter time Minutes

FILTER(30) Stream 15 temperature input filter time Minutes

FILTER(31) Internal liquid temperature input filter time Minutes

FILTER(32) Internal vapor temperature input filter time Minutes

FILTER(33) Stream 1 pressure input filter time Minutes

FILTER(34) Stream 2 pressure input filter time Minutes

FILTER(35) Stream 3 pressure input filter time Minutes

FILTER(36) Stream 4 pressure input filter time Minutes

FILTER(37) Stream 5 pressure input filter time Minutes

FILTER(38) Stream 6 pressure input filter time Minutes

FILTER(39) Stream 7 pressure input filter time Minutes

FILTER(40) Stream 8 pressure input filter time Minutes

FILTER(41) Stream 9 pressure input filter time Minutes

FILTER(42) Stream 10 pressure input filter time Minutes

FILTER(43) Stream 11 pressure input filter time Minutes

FILTER(44) Stream 12 pressure input filter time Minutes

FILTER(45) Stream 13 pressure input filter time Minutes

FILTER(46) Stream 14 pressure input filter time Minutes

FILTER(47) Stream 15 pressure input filter time Minutes

FILTER(48) Internal vapor pressure input filter time Minutes

FILTER(49) Stream 1 gravity input filter time Minutes

FILTER(50) Stream 2 gravity input filter time Minutes

FILTER(51) Stream 3 gravity input filter time Minutes

FILTER(52) Stream 4 gravity input filter time Minutes

FILTER(53) Stream 5 gravity input filter time Minutes

FILTER(54) Stream 6 gravity input filter time Minutes

FILTER(55) Stream 7 gravity input filter time Minutes

FILTER(56) Stream 8 gravity input filter time Minutes

FILTER(57) Stream 9 gravity input filter time Minutes

FILTER(58) Stream 10 gravity input filter time Minutes

FILTER(59) Stream 11 gravity input filter time Minutes

FILTER(60) Stream 12 gravity input filter time Minutes

FILTER(61) Stream 13 gravity input filter time Minutes

Continued

Hi-Spec Solutions

Internal Liquid and Vapor Calculation Configuration Inputs

Revision 3.0 18

Configuration Inputs (Continued)

Configuration Inputs

Parameter Description Units

FILTER(62) Stream 14 gravity input filter time Minutes

FILTER(63) Stream 15 gravity input filter time Minutes

FILTER(64) Internal liquid gravity input filter time Minutes

FILTER(65) Stream 1 Watson K input filter time Minutes

FILTER(66) Stream 2 Watson K input filter time Minutes

FILTER(67) Stream 3 Watson K input filter time Minutes

FILTER(68) Stream 4 Watson K input filter time Minutes

FILTER(69) Stream 5 Watson K input filter time Minutes

FILTER(70) Stream 6 Watson K input filter time Minutes

FILTER(71) Stream 7 Watson K input filter time Minutes

FILTER(72) Stream 8 Watson K input filter time Minutes

FILTER(73) Stream 9 Watson K input filter time Minutes

FILTER(74) Stream 10 Watson K input filter time Minutes

FILTER(75) Stream 11 Watson K input filter time Minutes

FILTER(76) Stream 12 Watson K input filter time Minutes

FILTER(77) Stream 13 Watson K input filter time Minutes

FILTER(78) Stream 14 Watson K input filter time Minutes

FILTER(79) Stream 15 Watson K input filter time Minutes

FILTER(80) Internal liquid Watson K input filter time Minutes

FILTER(81) Filter time for QNET input from another envelopecalculation

Minutes

FILTER(82) Stream 1 calculated dynamic heat effect filter time Minutes

FILTER(83) Stream 2 calculated dynamic heat effect filter time Minutes

FILTER(84) Stream 3 calculated dynamic heat effect filter time Minutes

FILTER(85) Stream 4 calculated dynamic heat effect filter time Minutes

FILTER(86) Stream 5 calculated dynamic heat effect filter time Minutes

FILTER(87) Stream 6 calculated dynamic heat effect filter time Minutes

FILTER(88) Stream 7 calculated dynamic heat effect filter time Minutes

FILTER(89) Stream 8 calculated dynamic heat effect filter time Minutes

FILTER(90) Stream 9 calculated dynamic heat effect filter time Minutes

FILTER(91) Stream 10 calculated dynamic heat effect filter time Minutes

FILTER(92) Stream 11 calculated dynamic heat effect filter time Minutes

FILTER(93) Stream 12 calculated dynamic heat effect filter time Minutes

FILTER(94) Stream 13 calculated dynamic heat effect filter time Minutes

Continued

Hi-Spec Solutions

Internal Liquid and Vapor Calculation Configuration Inputs

Revision 3.0 19

Configuration Inputs (Continued)

Configuration Inputs

Parameter Description Units

FILTER(95) Stream 14 calculated dynamic heat effect filter time Minutes

FILTER(96) Stream 15 calculated dynamic heat effect filter time Minutes

P_BIAS(1) Stream 1 pressure input additive bias Same asPRESS_PT(1)

P_BIAS(2) Stream 2 pressure input additive bias Same asPRESS_PT(2)

P_BIAS(3) Stream 3 pressure input additive bias Same asPRESS_PT(3)

P_BIAS(4) Stream 4 pressure input additive bias Same asPRESS_PT(4)

P_BIAS(5) Stream 5 pressure input additive bias Same asPRESS_PT(5)

P_BIAS(6) Stream 6 pressure input additive bias Same asPRESS_PT(6)

P_BIAS(7) Stream 7 pressure input additive bias Same asPRESS_PT(7)

P_BIAS(8) Stream 8 pressure input additive bias Same asPRESS_PT(8)

P_BIAS(9) Stream 9 pressure input additive bias Same asPRESS_PT(9)

P_BIAS(10) Stream 10 pressure input additive bias Same asPRESS_PT(10)

P_BIAS(11) Stream 11 pressure input additive bias Same asPRESS_PT(11)

P_BIAS(12) Stream 12 pressure input additive bias Same asPRESS_PT(12)

P_BIAS(13) Stream 13 pressure input additive bias Same asPRESS_PT(13)

P_BIAS(14) Stream 14 pressure input additive bias Same asPRESS_PT(14)

P_BIAS(15) Stream 15 pressure input additive bias Same asPRESS_PT(15)

P_BIAS(16) Internal vapor pressure input additive bias Same asPRESS_PT(16)

QTYPE(1) Stream 1 type for QNET calculation (0 => None;1 => Gas; 2 => Vapor; 3 => Liquid; 4 => Steam)

N/A

QTYPE(2) Stream 2 type for QNET calculation (0 => None;1 => Gas; 2 => Vapor; 3 => Liquid; 4 => Steam)

N/A

Continued

Hi-Spec Solutions

Internal Liquid and Vapor Calculation Configuration Inputs

Revision 3.0 20

Configuration Inputs (Continued)

Configuration Inputs

Parameter Description Units

QTYPE(3) Stream 3 type for QNET calculation (0 => None;1 => Gas; 2 => Vapor; 3 => Liquid; 4 => Steam)

N/A

QTYPE(4) Stream 4 type for QNET calculation (0 => None;1 => Gas; 2 => Vapor; 3 => Liquid; 4 => Steam)

N/A

QTYPE(5) Stream 5 type for QNET calculation (0 => None;1 => Gas; 2 => Vapor; 3 => Liquid; 4 => Steam)

N/A

QTYPE(6) Stream 6 type for QNET calculation (0 => None;1 => Gas; 2 => Vapor; 3 => Liquid; 4 => Steam)

N/A

QTYPE(7) Stream 7 type for QNET calculation (0 => None;1 => Gas; 2 => Vapor; 3 => Liquid; 4 => Steam)

N/A

QTYPE(8) Stream 8 type for QNET calculation (0 => None;1 => Gas; 2 => Vapor; 3 => Liquid; 4 => Steam)

N/A

QTYPE(9) Stream 9 type for QNET calculation (0 => None;1 => Gas; 2 => Vapor; 3 => Liquid; 4 => Steam)

N/A

QTYPE(10) Stream 10 type for QNET calculation (0 => None;1 => Gas; 2 => Vapor; 3 => Liquid; 4 => Steam)

N/A

QTYPE(11) Stream 11 type for QNET calculation (0 => None;1 => Gas; 2 => Vapor; 3 => Liquid; 4 => Steam)

N/A

QTYPE(12) Stream 12 type for QNET calculation (0 => None;1 => Gas; 2 => Vapor; 3 => Liquid; 4 => Steam)

N/A

QTYPE(13) Stream 13 type for QNET calculation (0 => None;1 => Gas; 2 => Vapor; 3 => Liquid; 4 => Steam)

N/A

QTYPE(14) Stream 14 type for QNET calculation (0 => None;1 => Gas; 2 => Vapor; 3 => Liquid; 4 => Steam)

N/A

QTYPE(15) Stream 15 type for QNET calculation (0 => None;1 => Gas; 2 => Vapor; 3 => Liquid; 4 => Steam)

N/A

QTYPE(16) Internal liquid type for QNET calculation (0 => None;1 => Gas; 2 => Vapor; 3 => Liquid; 4 => Steam)

N/A

T_BIAS(1) Stream 1 temperature input additive bias Same asTEMP_PT(1)

T_BIAS(2) Stream 2 temperature input additive bias Same asTEMP_PT(2)

T_BIAS(3) Stream 3 temperature input additive bias Same asTEMP_PT(3)

T_BIAS(4) Stream 4 temperature input additive bias Same asTEMP_PT(4)

T_BIAS(5) Stream 5 temperature input additive bias Same asTEMP_PT(5)

Continued

Hi-Spec Solutions

Internal Liquid and Vapor Calculation Configuration Inputs

Revision 3.0 21

Configuration Inputs (Continued)

Configuration Inputs

Parameter Description Units

T_BIAS(6) Stream 6 temperature input additive bias Same asTEMP_PT(6)

T_BIAS(7) Stream 7 temperature input additive bias Same asTEMP_PT(7)

T_BIAS(8) Stream 8 temperature input additive bias Same asTEMP_PT(8)

T_BIAS(9) Stream 9 temperature input additive bias Same asTEMP_PT(9)

T_BIAS(10) Stream 10 temperature input additive bias Same asTEMP_PT(10)

T_BIAS(11) Stream 11 temperature input additive bias Same asTEMP_PT(11)

T_BIAS(12) Stream 12 temperature input additive bias Same asTEMP_PT(12)

T_BIAS(13) Stream 13 temperature input additive bias Same asTEMP_PT(13)

T_BIAS(14) Stream 14 temperature input additive bias Same asTEMP_PT(14)

T_BIAS(15) Stream 15 temperature input additive bias Same asTEMP_PT(15)

T_BIAS(16) Internal liquid temperature additive bias Same asTEMP_PT(16)

T_BIAS(17) Internal vapor temperature additive bias Same asTEMP_PT(17)

VTYPE(1) Stream 1 type for QVAP calculation (0 => None;1 => Gas; 2 => Vapor; 3 => Liquid; 4 => Steam)

N/A

VTYPE(2) Stream 2 type for QVAP calculation (0 => None;1 => Gas; 2 => Vapor; 3 => Liquid; 4 => Steam)

N/A

VTYPE(3) Stream 3 type for QVAP calculation (0 => None;1 => Gas; 2 => Vapor; 3 => Liquid; 4 => Steam)

N/A

VTYPE(4) Stream 4 type for QVAP calculation (0 => None;1 => Gas; 2 => Vapor; 3 => Liquid; 4 => Steam)

N/A

VTYPE(5) Stream 5 type for QVAP calculation (0 => None;1 => Gas; 2 => Vapor; 3 => Liquid; 4 => Steam)

N/A

VTYPE(6) Stream 6 type for QVAP calculation (0 => None;1 => Gas; 2 => Vapor; 3 => Liquid; 4 => Steam)

N/A

VTYPE(7) Stream 7 type for QVAP calculation (0 => None;1 => Gas; 2 => Vapor; 3 => Liquid; 4 => Steam)

N/A

Continued

Hi-Spec Solutions

Internal Liquid and Vapor Calculation Configuration Inputs

Revision 3.0 22

Configuration Inputs (Continued)

Configuration Inputs

Parameter Description Units

VTYPE(8) Stream 8 type for QVAP calculation (0 => None;1 => Gas; 2 => Vapor; 3 => Liquid; 4 => Steam)

N/A

VTYPE(9) Stream 9 type for QVAP calculation (0 => None;1 => Gas; 2 => Vapor; 3 => Liquid; 4 => Steam)

N/A

VTYPE(10) Stream 10 type for QVAP calculation (0 => None;1 => Gas; 2 => Vapor; 3 => Liquid; 4 => Steam)

N/A

VTYPE(11) Stream 11 type for QVAP calculation (0 => None;1 => Gas; 2 => Vapor; 3 => Liquid; 4 => Steam)

N/A

VTYPE(12) Stream 12 type for QVAP calculation (0 => None;1 => Gas; 2 => Vapor; 3 => Liquid; 4 => Steam)

N/A

VTYPE(13) Stream 13 type for QVAP calculation (0 => None;1 => Gas; 2 => Vapor; 3 => Liquid; 4 => Steam)

N/A

VTYPE(14) Stream 14 type for QVAP calculation (0 => None;1 => Gas; 2 => Vapor; 3 => Liquid; 4 => Steam)

N/A

VTYPE(15) Stream 15 type for QVAP calculation (0 => None;1 => Gas; 2 => Vapor; 3 => Liquid; 4 => Steam)

N/A

VTYPE(16) Internal liquid type for QVAP calculation (0 => None;1 => Gas; 2 => Vapor; 3 => Liquid; 4 => Steam)

N/A

Hi-Spec Solutions

Internal Liquid and Vapor Calculation Calculation Outputs

Revision 3.0 23

Calculation Outputs

Calculation Outputs

Parameter Description Units

CALC_VAL(1) Calculated internal liquid flow rate Mass units

CALC_VAL(2) Calculated internal vapor flow rate Mass units

CALC_VAL(3) Difference between the internal vapor flow and the internalliquid flow

Mass units

CALC_VAL(4) Calculated QNET value MBTU/Lb * Massunits

CALC_VAL(5) Calculated QVAP value MBTU/Lb * Massunits

FILT_VAL(1) Stream 1 flow input filtered value Input units

FILT_VAL(2) Stream 2 flow input filtered value Input units

FILT_VAL(3) Stream 3 flow input filtered value Input units

FILT_VAL(4) Stream 4 flow input filtered value Input units

FILT_VAL(5) Stream 5 flow input filtered value Input units

FILT_VAL(6) Stream 6 flow input filtered value Input units

FILT_VAL(7) Stream 7 flow input filtered value Input units

FILT_VAL(8) Stream 8 flow input filtered value Input units

FILT_VAL(9) Stream 9 flow input filtered value Input units

FILT_VAL(10) Stream 10 flow input filtered value Input units

FILT_VAL(11) Stream 11 flow input filtered value Input units

FILT_VAL(12) Stream 12 flow input filtered value Input units

FILT_VAL(13) Stream 13 flow input filtered value None

FILT_VAL(14) Stream 14 flow input filtered value None

FILT_VAL(15) Stream 15 flow input filtered value Input units

FILT_VAL(16) Stream 1 temperature input filtered value Input units

FILT_VAL(17) Stream 2 temperature input filtered value Input units

FILT_VAL(18) Stream 3 temperature input filtered value Input units

FILT_VAL(19) Stream 4 temperature input filtered value Input units

FILT_VAL(20) Stream 5 temperature input filtered value Input units

FILT_VAL(21) Stream 6 temperature input filtered value Input units

FILT_VAL(22) Stream 7 temperature input filtered value Input units

FILT_VAL(23) Stream 8 temperature input filtered value Input units

FILT_VAL(24) Stream 9 temperature input filtered value Input units

FILT_VAL(25) Stream 10 temperature input filtered value Input units

FILT_VAL(26) Stream 11 temperature input filtered value Input units

FILT_VAL(27) Stream 12 temperature input filtered value Input units

Continued

Hi-Spec Solutions

Internal Liquid and Vapor Calculation Calculation Outputs

Revision 3.0 24

Calculation Outputs (Continued)

Calculation Outputs

Parameter Description Units

FILT_VAL(28) Stream 13 temperature input filtered value Input units

FILT_VAL(29) Stream 14 temperature input filtered value Input units

FILT_VAL(30) Stream 15 temperature input filtered value Input units

FILT_VAL(31) Internal liquid temperature input filtered value Input units

FILT_VAL(32) Internal vapor temperature input filtered value Input units

FILT_VAL(33) Stream 1 pressure input filtered value Input units

FILT_VAL(34) Stream 2 pressure input filtered value Input units

FILT_VAL(35) Stream 3 pressure input filtered value Input units

FILT_VAL(36) Stream 4 pressure input filtered value Input units

FILT_VAL(37) Stream 5 pressure input filtered value Input units

FILT_VAL(38) Stream 6 pressure input filtered value Input units

FILT_VAL(39) Stream 7 pressure input filtered value Input units

FILT_VAL(40) Stream 8 pressure input filtered value Input units

FILT_VAL(41) Stream 9 pressure input filtered value Input units

FILT_VAL(42) Stream 10 pressure input filtered value Input units

FILT_VAL(43) Stream 11 pressure input filtered value Input units

FILT_VAL(44) Stream 12 pressure input filtered value Input units

FILT_VAL(45) Stream 13 pressure input filtered value Input units

FILT_VAL(46) Stream 14 pressure input filtered value Input units

FILT_VAL(47) Stream 15 pressure input filtered value Input units

FILT_VAL(48) Internal vapor pressure input filtered value Input units

FILT_VAL(49) Stream 1 gravity input filtered value Input units

FILT_VAL(50) Stream 2 gravity input filtered value Input units

FILT_VAL(51) Stream 3 gravity input filtered value Input units

FILT_VAL(52) Stream 4 gravity input filtered value Input units

FILT_VAL(53) Stream 5 gravity input filtered value Input units

FILT_VAL(54) Stream 6 gravity input filtered value Input units

FILT_VAL(55) Stream 7 gravity input filtered value Input units

FILT_VAL(56) Stream 8 gravity input filtered value Input units

FILT_VAL(57) Stream 9 gravity input filtered value Input units

FILT_VAL(58) Stream 10 gravity input filtered value Input units

FILT_VAL(59) Stream 11 gravity input filtered value Input units

FILT_VAL(60) Stream 12 gravity input filtered value Input units

FILT_VAL(61) Stream 13 gravity input filtered value Input units

FILT_VAL(62) Stream 14 gravity input filtered value Input units

Continued

Hi-Spec Solutions

Internal Liquid and Vapor Calculation Calculation Outputs

Revision 3.0 25

Calculation Outputs (Continued)

Calculation Outputs

Parameter Description Units

FILT_VAL(63) Stream 15 gravity input filtered value Input units

FILT_VAL(64) Internal liquid gravity input filtered value Input units

FILT_VAL(65) Stream 1 Watson K input filtered value N/A

FILT_VAL(66) Stream 2 Watson K input filtered value N/A

FILT_VAL(67) Stream 3 Watson K input filtered value N/A

FILT_VAL(68) Stream 4 Watson K input filtered value N/A

FILT_VAL(69) Stream 5 Watson K input filtered value N/A

FILT_VAL(70) Stream 6 Watson K input filtered value N/A

FILT_VAL(71) Stream 7 Watson K input filtered value N/A

FILT_VAL(72) Stream 8 Watson K input filtered value N/A

FILT_VAL(73) Stream 9 Watson K input filtered value N/A

FILT_VAL(74) Stream 10 Watson K input filtered value N/A

FILT_VAL(75) Stream 11 Watson K input filtered value N/A

FILT_VAL(76) Stream 12 Watson K input filtered value N/A

FILT_VAL(77) Stream 13 Watson K input filtered value N/A

FILT_VAL(78) Stream 14 Watson K input filtered value N/A

FILT_VAL(79) Stream 15 Watson K input filtered value N/A

FILT_VAL(80) Internal liquid Watson K input filtered value N/A

FILT_VAL(81) QNET input from another envelope calculation filteredvalue

MBTU/Lb * Massunits

FILT_VAL(82) Stream 1 calculated dynamic heat effect filtered value MBTU/Lb * Massunits

FILT_VAL(83) Stream 2 calculated dynamic heat effect filtered value MBTU/Lb * Massunits

FILT_VAL(84) Stream 3 calculated dynamic heat effect filtered value MBTU/Lb * Massunits

FILT_VAL(85) Stream 4 calculated dynamic heat effect filtered value MBTU/Lb * Massunits

FILT_VAL(86) Stream 5 calculated dynamic heat effect filtered value MBTU/Lb * Massunits

FILT_VAL(87) Stream 6 calculated dynamic heat effect filtered value MBTU/Lb * Massunits

FILT_VAL(88) Stream 7 calculated dynamic heat effect filtered value MBTU/Lb * Massunits

FILT_VAL(89) Stream 8 calculated dynamic heat effect filtered value MBTU/Lb * Massunits

Continued

Hi-Spec Solutions

Internal Liquid and Vapor Calculation Calculation Outputs

Revision 3.0 26

Calculation Outputs (Continued)

Calculation Outputs

Parameter Description Units

FILT_VAL(90) Stream 9 calculated dynamic heat effect filtered value MBTU/Lb * Massunits

FILT_VAL(91) Stream 10 calculated dynamic heat effect filtered value MBTU/Lb * Massunits

FILT_VAL(92) Stream 11 calculated dynamic heat effect filtered value MBTU/Lb * Massunits

FILT_VAL(93) Stream 12 calculated dynamic heat effect filtered value MBTU/Lb * Massunits

FILT_VAL(94) Stream 13 calculated dynamic heat effect filtered value MBTU/Lb * Massunits

FILT_VAL(95) Stream 14 calculated dynamic heat effect filtered value MBTU/Lb * Massunits

FILT_VAL(96) Stream 15 calculated dynamic heat effect filtered value MBTU/Lb * Massunits

PVCALC Calculated internal liquid flow rate User Defined

QNETENTH(1) Stream 1 calculated enthalpy for QNET MBTU/Lb

QNETENTH(2) Stream 2 calculated enthalpy for QNET MBTU/Lb

QNETENTH(3) Stream 3 calculated enthalpy for QNET MBTU/Lb

QNETENTH(4) Stream 4 calculated enthalpy for QNET MBTU/Lb

QNETENTH(5) Stream 5 calculated enthalpy for QNET MBTU/Lb

QNETENTH(6) Stream 6 calculated enthalpy for QNET MBTU/Lb

QNETENTH(7) Stream 7 calculated enthalpy for QNET MBTU/Lb

QNETENTH(8) Stream 8 calculated enthalpy for QNET MBTU/Lb

QNETENTH(9) Stream 9 calculated enthalpy for QNET MBTU/Lb

QNETENTH(10) Stream 10 calculated enthalpy for QNET MBTU/Lb

QNETENTH(11) Stream 11 calculated enthalpy for QNET MBTU/Lb

QNETENTH(12) Stream 12 calculated enthalpy for QNET MBTU/Lb

QNETENTH(13) Stream 13 calculated enthalpy for QNET MBTU/Lb

QNETENTH(14) Stream 14 calculated enthalpy for QNET MBTU/Lb

QNETENTH(15) Stream 15 calculated enthalpy for QNET MBTU/Lb

QNETENTH(16) Internal liquid calculated enthalpy for QNET MBTU/Lb

QVAPENTH(1) Stream 1 calculated enthalpy for QVAP MBTU/Lb

QVAPENTH(2) Stream 2 calculated enthalpy for QVAP MBTU/Lb

QVAPENTH(3) Stream 3 calculated enthalpy for QVAP MBTU/Lb

QVAPENTH(4) Stream 4 calculated enthalpy for QVAP MBTU/Lb

QVAPENTH(5) Stream 5 calculated enthalpy for QVAP MBTU/Lb

Continued

Hi-Spec Solutions

Internal Liquid and Vapor Calculation Calculation Outputs

Revision 3.0 27

Calculation Outputs (Continued)

Calculation Outputs

Parameter Description Units

QVAPENTH(6) Stream 6 calculated enthalpy for QVAP MBTU/Lb

QVAPENTH(7) Stream 7 calculated enthalpy for QVAP MBTU/Lb

QVAPENTH(8) Stream 8 calculated enthalpy for QVAP MBTU/Lb

QVAPENTH(9) Stream 9 calculated enthalpy for QVAP MBTU/Lb

QVAPENTH(10) Stream 10 calculated enthalpy for QVAP MBTU/Lb

QVAPENTH(11) Stream 11 calculated enthalpy for QVAP MBTU/Lb

QVAPENTH(12) Stream 12 calculated enthalpy for QVAP MBTU/Lb

QVAPENTH(13) Stream 13 calculated enthalpy for QVAP MBTU/Lb

QVAPENTH(14) Stream 14 calculated enthalpy for QVAP MBTU/Lb

QVAPENTH(15) Stream 15 calculated enthalpy for QVAP MBTU/Lb

QVAPENTH(16) Internal liquid calculated enthalpy for QVAP MBTU/Lb

REV_NO Program revision number N/A

STATUS(1) Diagnostic indication of location and possible causes ofprogram error

N/A

STATUS(2) Diagnostic indication of subroutine error N/A

Hi-Spec Solutions

Internal Liquid and Vapor Calculation Error Codes

Revision 3.0 28

Error Codes

The tables in this section describe the following program error codes:

• Diagnostic location error codes

• Diagnostic error codes.

Hi-Spec Solutions

Internal Liquid and Vapor Calculation Diagnostic Location Error Codes

Revision 2.01 29

Diagnostic Location Error Codes

Diagnostic Location Error Codes

Parameter Value Meaning

STATUS(1)6 0.0 No errors

1.0 Stream 1 has an error (see STATUS(2) "Diagnostic Error Codes")

2.0 Stream 2 has an error (see STATUS(2) "Diagnostic Error Codes")

3.0 Stream 3 has an error (see STATUS(2) "Diagnostic Error Codes")

4.0 Stream 4 has an error (see STATUS(2) "Diagnostic Error Codes")

5.0 Stream 5 has an error (see STATUS(2) "Diagnostic Error Codes")

6.0 Stream 6 has an error (see STATUS(2) "Diagnostic Error Codes")

7.0 Stream 7 has an error (see STATUS(2) "Diagnostic Error Codes")

8.0 Stream 8 has an error (see STATUS(2) "Diagnostic Error Codes")

9.0 Stream 9 has an error (see STATUS(2) "Diagnostic Error Codes")

10.0 Stream 10 has an error (see STATUS(2) "Diagnostic ErrorCodes")

11.0 Stream 11 has an error (see STATUS(2) "Diagnostic ErrorCodes")

12.0 Stream 12 has an error (see STATUS(2) "Diagnostic ErrorCodes")

13.0 Stream 13 has an error (see STATUS(2) "Diagnostic ErrorCodes")

14.0 Stream 14 has an error (see STATUS(2) "Diagnostic ErrorCodes")

STATUS(1)3 15.0 Stream 15 has an error (see STATUS(2) "Diagnostic ErrorCodes")

16.0 Internal vapor pressure input or an internal liquid input has anerror (see STATUS(2) "Diagnostic Error Codes")

17.0 Internal vapor temperature input has an error (see STATUS(2)"Diagnostic Error Codes")

6 STATUS(1) indicates the location of any errors in the calculation.3 STATUS(1) indicates the location of any errors in the calculation.

Hi-Spec Solutions

Internal Liquid and Vapor Calculation Diagnostic Error Codes

Revision 3.0 30

Diagnostic Error Codes

Diagnostic Error Codes

Parameter Value Meaning

STATUS(2)7 -2.0 The steam input temperature is below the steam saturationtemperature

0.0 No errors

1.0 Set calculation BAD flag is on

2.0 Input number of streams is greater than 15.0

3.0 Externally QNET input has a bad PV

4.0 A flow input (FLOW_PT(i)) has a null point entered or has a badPV

5.0 A temperature input (TEMP_PT(i)) has a null point entered or hasa bad PV

6.0 A pressure input (PRESS_PT(i)) has a null point entered or has abad PV

7.0 A gravity input (GRAV_PT(i)) has a null point entered or has abad PV

8.0 A Watson K factor input (WATK_PT(i)) has a null point enteredor has a bad PV

9.0 A QNET input does not have a configured type (steam, gas,vapor, liquid)

10.0 A QVAP input does not have a configured type (steam, gas,vapor, liquid)

11.0 A configured type gas in not one of the first 5 inputs

STATUS(2)4 101 Stream is of type gas for QNET calculation and the calculatedenthalpy has a bad value

102 Stream is of type gas for QNET calculation and the temperatureinput has a bad value

103 Stream is of type gas for QNET calculation and the enthalpycoefficient A input has a bad value

104 Stream is of type gas for QNET calculation and the enthalpycoefficient B input has a bad value

105 Stream is of type gas for QNET calculation and the enthalpycoefficient C input has a bad value

106 Stream is of type gas for QNET calculation and the enthalpycoefficient D input has a bad value

107 Stream is of type gas for QNET calculation and the enthalpycoefficient E input has a bad value

7 STATUS(2) indicates errors in the calculation.4 STATUS(2) indicates errors in the calculation.

Hi-Spec Solutions

Internal Liquid and Vapor Calculation Diagnostic Error Codes

Revision 3.0 31

Diagnostic Error Codes (Continued)

Diagnostic Error Codes

Parameter Value Meaning

STATUS(2)4 108 Stream is of type gas for QNET calculation and the enthalpycoefficient F input has a bad value

109 Stream is of type gas for QNET calculation and the temperatureinput is zero or negative

201 Stream is of type vapor for QNET calculation and the calculatedenthalpy has a bad value

202 Stream is of type vapor for QNET calculation and the temperatureinput has a bad value

203 Stream is of type vapor for QNET calculation and the pressureinput has a bad value

204 Stream is of type vapor for QNET calculation and the Watson Kfactor input has a bad value

205 Stream is of type vapor for QNET calculation and the specificgravity input to hydrocarbon enthalpy subroutine has a bad value

206 Stream is of type vapor for QNET calculation and the type sent tothe hydrocarbon enthalpy subroutine has a bad value

207 Stream is of type vapor for QNET calculation and the atmosphericpressure sent to the hydrocarbon enthalpy subroutine has a badvalue

208 Stream is of type vapor for QNET calculation and the temperatureinput is out of range

301 Stream is of type liquid for QNET calculation and the calculatedenthalpy has a bad value

302 Stream is of type liquid for QNET calculation and the temperatureinput has a bad value

303 Stream is of type liquid for QNET calculation and the pressureinput has a bad value

304 Stream is of type liquid for QNET calculation and the Watson Kfactor input has a bad value

305 Stream is of type liquid for QNET calculation and the specificgravity input to hydrocarbon enthalpy subroutine has a bad value

306 Stream is of type liquid for QNET calculation and the type sent tothe hydrocarbon enthalpy subroutine has a bad value

307 Stream is of type liquid for QNET calculation and theatmospheric pressure sent to the hydrocarbon enthalpy subroutinehas a bad value

308 Stream is of type liquid for QNET calculation and the temperatureinput is out of range

4 STATUS(2) indicates errors in the calculation.

Hi-Spec Solutions

Internal Liquid and Vapor Calculation Diagnostic Error Codes

Revision 3.0 32

Diagnostic Error Codes (Continued)

Diagnostic Error Codes

Parameter Value Meaning

STATUS(2)4 401 Stream is of type steam for QNET calculation and the calculatedsuperheated steam enthalpy has a bad value

402 Stream is of type steam for QNET calculation and the temperatureinput has a bad value

403 Stream is of type steam for QNET calculation and the pressureinput has a bad value

404 Stream is of type steam for QNET calculation and the temperatureinput or pressure input is out of range

405 Stream is of type steam for QNET calculation and the calculatedsaturated steam enthalpy has a bad value

1101 Stream is of type gas for QVAP calculation and the calculatedenthalpy has a bad value

1102 Stream is of type gas for QVAP calculation and the temperatureinput has a bad value

1103 Stream is of type gas for QVAP calculation and the enthalpycoefficient A input has a bad value

1104 Stream is of type gas for QVAP calculation and the enthalpycoefficient B input has a bad value

1105 Stream is of type gas for QVAP calculation and the enthalpycoefficient C input has a bad value

1106 Stream is of type gas for QVAP calculation and the enthalpycoefficient D input has a bad value

1107 Stream is of type gas for QVAP calculation and the enthalpycoefficient E input has a bad value

1108 Stream is of type gas for QVAP calculation and the enthalpycoefficient F input has a bad value

1109 Stream is of type gas for QVAP calculation and the temperatureinput is zero or negative

1201 Stream is of type vapor for QVAP calculation and the calculatedenthalpy has a bad value

1202 Stream is of type vapor for QVAP calculation and the temperatureinput has a bad value

1203 Stream is of type vapor for QVAP calculation and the pressureinput has a bad value

1204 Stream is of type vapor for QVAP calculation and the Watson Kfactor input has a bad value

1205 Stream is of type vapor for QVAP calculation and the specificgravity input to hydrocarbon enthalpy subroutine has a bad value

4 STATUS(2) indicates errors in the calculation.

Hi-Spec Solutions

Internal Liquid and Vapor Calculation Diagnostic Error Codes

Revision 3.0 33

Diagnostic Error Codes (Continued)

Diagnostic Error Codes

Parameter Value Meaning

1206 Stream is of type vapor for QVAP calculation and the type sent tothe hydrocarbon enthalpy subroutine has a bad value

1207 Stream is of type vapor for QVAP calculation and theatmospheric pressure sent to the hydrocarbon enthalpy subroutinehas a bad value

1208 Stream is of type vapor for QVAP calculation and the temperatureinput is out of range

1301 Stream is of type liquid for QVAP calculation and the calculatedenthalpy has a bad value

1302 Stream is of type liquid for QVAP calculation and the temperatureinput has a bad value

1303 Stream is of type liquid for QVAP calculation and the pressureinput has a bad value

1304 Stream is of type liquid for QVAP calculation and the Watson Kfactor input has a bad value

1305 Stream is of type liquid for QVAP calculation and the specificgravity input to hydrocarbon enthalpy subroutine has a bad value

1306 Stream is of type liquid for QVAP calculation and the type sent tothe hydrocarbon enthalpy subroutine has a bad value

1307 Stream is of type liquid for QVAP calculation and theatmospheric pressure sent to the hydrocarbon enthalpy subroutinehas a bad value

1308 Stream is of type liquid for QVAP calculation and the temperatureinput is out of range

1401 Stream is of type steam for QVAP calculation and the calculatedsuperheated steam enthalpy has a bad value

1402 Stream is of type steam for QVAP calculation and the temperatureinput has a bad value

1403 Stream is of type steam for QVAP calculation and the pressureinput has a bad value

1404 Stream is of type steam for QVAP calculation and the temperatureinput or pressure input is out of range

1405 Stream is of type steam for QVAP calculation and the calculatedsaturated steam enthalpy has a bad value

Hi-Spec Solutions

Internal Liquid and Vapor Calculation Configuration and Tuning

Revision 3.0 34

Configuration and Tuning

This section describes the parameters and values used to configure and tune the packageto a specific application.

Biases

• Temperature Bias

• Pressure Bias.

Tuning

• Envelope Heat Loss.

Hi-Spec Solutions

Internal Liquid and Vapor Calculation Biases in the Internal Liquid and Vapor Calculation

Revision 3.0 35

Biases in the Internal Liquid and Vapor Calculation

The internal liquid/vapor calculation is equipped with the following additive biases:

• Input temperatures

• Input pressures.

Bias Parameters

Parameter Description

T_BIAS(1) Stream 1 temperature input additive bias

T_BIAS(2) Stream 2 temperature input additive bias

T_BIAS(3) Stream 3 temperature input additive bias

T_BIAS(4) Stream 4 temperature input additive bias

T_BIAS(5) Stream 5 temperature input additive bias

T_BIAS(6) Stream 6 temperature input additive bias

T_BIAS(7) Stream 7 temperature input additive bias

T_BIAS(8) Stream 8 temperature input additive bias

T_BIAS(9) Stream 9 temperature input additive bias

T_BIAS(10) Stream 10 temperature input additive bias

T_BIAS(11) Stream 11 temperature input additive bias

T_BIAS(12) Stream 12 temperature input additive bias

T_BIAS(13) Stream 13 temperature input additive bias

T_BIAS(14) Stream 14 temperature input additive bias

T_BIAS(15) Stream 15 temperature input additive bias

T_BIAS(16) Internal liquid temperature additive bias

T_BIAS(17) Internal vapor temperature additive bias

P_BIAS(1) Stream 1 pressure input additive bias

P_BIAS(2) Stream 2 pressure input additive bias

P_BIAS(3) Stream 3 pressure input additive bias

P_BIAS(4) Stream 4 pressure input additive bias

P_BIAS(5) Stream 5 pressure input additive bias

P_BIAS(6) Stream 6 pressure input additive bias

P_BIAS(7) Stream 7 pressure input additive bias

P_BIAS(8) Stream 8 pressure input additive bias

P_BIAS(9) Stream 9 pressure input additive bias

P_BIAS(10) Stream 10 pressure input additive bias

P_BIAS(11) Stream 11 pressure input additive bias

P_BIAS(12) Stream 12 pressure input additive bias

P_BIAS(13) Stream 13 pressure input additive bias

P_BIAS(14) Stream 14 pressure input additive bias

P_BIAS(15) Stream 15 pressure input additive bias

P_BIAS(16) Internal vapor pressure input additive bias

Hi-Spec Solutions

Internal Liquid and Vapor Calculation Biases in the Internal Liquid and Vapor Calculation

Revision 3.0 36

Biases in the Internal Liquid and Vapor Calculation (Continued)

Pressure and Temperature Bias. The pressure biases (P_BIAS) and temperaturebiases (T_BIAS) are added to the input values before doing any unit conversions andshould be entered in the same units as the input pressures and temperatures.

The T_BIAS parameters are used when there is a known error in the temperatureindicator(s) or when a vapor temperature is required and only the liquid temperature isavailable. The P_BIAS parameter is used when the actual stream pressure is notavailable as an input to the calculation.

Example. In the case where the pressure in needed on the top product draw tray andthe only pressure available is the column overhead pressure the P_BIAS is set equal tothe estimated pressure drop from the top product draw tray to the top of the column.

Hi-Spec Solutions

Internal Liquid and Vapor Calculation Tuning Parameters

Revision 3.0 37

Tuning Parameters

If the internal liquid flow does not decrease or the internal vapor flow does not increasefrom the top of the column to the flash zone, then the envelope heat loss (QLOSS) canbe adjusted to bring the internal liquid and vapor flows in align with each other.

Note: The liquid-to-vapor ratio should also decrease from the top of the column down.

Envelope Heat Loss [ENGPAR(3)]

An envelope is drawn around the section of the tower or column where the internalliquid and vapor flows are desired. A heat balance is done to determine the internalliquid flow. A material balance, including the internal liquid flow, is used to determinethe internal vapor flow. The envelope heat loss (QLOSS) is used to adjust the heatbalance and, therefore, the internal liquid flow.

The relation is: internal_liq = f(heat_bal + envelope heat loss)

QLOSS is not carried with the previous envelopes Qnet. Therefore QLOSS shouldalways increase as you move down the tower.

Note: The heat loss only affects the internal liquid and vapor flows from the envelope towhich it is applied.

Hi-Spec Solutions

Internal Liquid and Vapor Calculation Algorithms

Revision 3.0 38

Algorithms

Conversion of Engineering Units. The input process flows can have any units, but theconversion factors should be configured to yield MPPH, as shown in Equation 1:

flow(i) = FLOW_PT(i).PV * CONV_FAC(i)

Where:

flow(i) = Process flow i converted to MPPH for internal useFLOW_PT(i).PV = Input process flow i in any unitsCONV_FAC(i) = Conversion for flow i from input units to MPPH

Equation 1

The input process temperature can be in Fahrenheit or Centigrade. However,temperatures in °C are converted to °F for internal use as shown in Equation 2:

temp(i) = (TEMP_PT(i).PV + T_BIAS(i)) * 1.8 + 32

Where:

temp(i) = Process temperature i converted to °F for internal useT_BIAS = Temperature input bias in °CTEMP_PT(i).PV = Input process temperature i in °C

Equation 2

Continued

Hi-Spec Solutions

Internal Liquid and Vapor Calculation Algorithms

Revision 3.0 39

Algorithms (Continued)

The input process pressure can have any units. However, the pressure conversion factormust be configured to yield psig, as shown in Equation 3.

Note: If an atmospheric pressure other than zero is configured, the conversion factor isalso applied to the configured atmospheric pressure to get units of psi.

press = (PRESS_PT(i).PV + P_BIAS(i)) * CONV_FAC(17)

Where:

press = Process pressure converted to psig for internal usePRESS_PT(i).PV = Input process pressure in any gauge unitsP_BIAS = Input pressure bias in any gauge unitsCONV_FAC(17) = Conversion factor for pressure from input units to psig

and When:ENG_PAR(2) <= 0 then atm_pres = 14.696

else atm_pres = ENG_PAR(2) * CONV_FAC(17)

Equation 3

The gravity input can be in °API or specific gravity. However, °API inputs areconverted to specific gravity for internal use as shown in Equation 4:

lgrav(i) = 141.5 / (GRAV_PT(i).PV + 131.5)

Where:

lgrav(i) = Gravity i converted to specific gravity for internal useGRAV_PT(i).PV = Input gravity i in °API

Equation 4

Continued

Hi-Spec Solutions

Internal Liquid and Vapor Calculation Algorithms

Revision 3.0 40

Algorithms (Continued)

Internal Liquid Flow Calculation. The internal liquid flow is calculated from processinputs using a energy balance calculation, as shown in Equation 5:

liq_flow = Function[QNET, Q_stream(i), Q_stream(i+1), ...,Q_stream(n), H_liq_vap, H_liq]

Where:

liq_flow = Calculated internal liquid flowQNET = Envelope net heat inputQ_stream(i) = Affect of stream i on the heat balanceQ_stream(i+1) = Affect of stream i+1 on the heat balanceQ_stream(n) = Affect of stream n on the heat balanceH_liq_vap = Enthalpy of the internal liquid at internal vapor conditionsH_liq = Enthalpy of the internal liquid at internal liquid conditions

Equation 5

Internal Vapor Flow Calculation. The internal vapor flow is calculated from processinputs using a material balance calculation, as shown in Equation 6:

vap_flow = Function[liq_flow, Stream(i), Stream(i+1), ...,Stream(n)]

Where:

vap_flow = Calculated internal vapor flowliq_flow = Calculated internal liquid flowStream(i) = Stream i mass flowStream(i+1) = Stream i+1 mass flowStream(n) = Stream n mass flow

Equation 6

Hi-Spec Solutions

Internal Liquid and Vapor Calculation Installation Procedure

Revision 3.0 41

Installation Procedure

This section describes the installation procedure for LANDVGEN on the TDC 3000System AM.

This section covers the following topics:

• Preparation for Installation

• Custom Data Segment (CDS) and Parameter List (PL) Installation

• Building the Calculation Point

• Configuration Graphics Installation.

Hi-Spec Solutions

Internal Liquid and Vapor Calculation Preparation for Installation

Revision 3.0 42

Preparation for Installation

Step Action

Gather media Gather the following items:

• Removable media containing the directory CALC.

Make mediabackup

Make a backup copy of media/directory on a US with drives nand m configured as follows:

Media:FCOPY $Fn $Fm

Directory only:COPY $Fn>LVGN>*.* $Fm> LVGN>= -V -D

Where $Fn is the drive with the source media and $Fm isthe drive with the target media.

Hi-Spec Solutions

Internal Liquid and Vapor Calculation CDS and PL Installation

Revision 3.0 43

Custom Data Segment (CDS) and Parameter List (PL) Installation

This procedure must be done once per LCN installation.

Step Action

Set volumepathnames

[ typical net pathsmay be different fromsite to site ]

From Modify Volume Paths display:

CL CUSTOM GDF: NET>CDSG>

CL SOURCE/OBJ: NET>CL>

CL PARAM LIST: NET>CL>

USER DEFLT PATH: $Fn> LVGNCompileLANDVCDS.CL

From the Command Processor display, compile the CDS file, LANDVCDS:CL $Fn>CDS>LANDVCDS.CL -UL

If it is necessary to change the CDS due to a software revision, refer to theApplication Module Data Control Language/Application Module Data Entry

CompileLANDV_PL.CL

From the Command Processor display, compile the parameter list,LANDV_PL:

CL $Fn>PL>LANDV_PL.CL -UL

If it is necessary to change the CDS due to a software revision, refer to theApplication Module Data Control Language/Application Module Data Entry

Hi-Spec Solutions

Internal Liquid and Vapor Calculation Building Liquid/Vapor Calculation Point

Revision 3.0 44

Building Liquid/Vapor Calculation Point

A calculation point is required for each internal liquid/vapor flow calculated.

Step Action

Modify ExceptionBuild file,LANDV_PT.EB

From the Command Processor display:

ED $Fn>EB>LANDV_PT.EB [ENTER]

Edit template as follows:

&N point name

UNIT = unit number

PTDESC ="point descriptor text"

KEYWORD = "keyword"

PERIOD = as required

Verify load When the load is complete, verify point loading by calling the point detailfrom the [DETAIL] button.

Hi-Spec Solutions

Internal Liquid asnd Vapor Calculation Configuration Graphics Installation

Revision 3.0 45

Configuration Graphics Installation

Graphics must be compiled and installed once per LCN.

Step Action

Go to Picture Editor Enter the Picture Editor, one of two ways:From the Engineering Main Menu select the Pictureeditor target OR From the Command Processorcommand line type PE [ENTER]

Load DDB Load Global variable definition file, DDB:

L $Fn>PICS>DDB [ENTER]

Read LANDVCFG Read in the picture file, LANDVCFG

R $Fn>LANDV>LANDVCFG [ENTER]

Verify and Compile Verify picture:

VER [ENTER]

When the verification is complete Compile the picture:

COM [ENTER]

CopyLANDVCFG.DO tographics directory

From the Command Processor Display:

COPY $Fn> LVGN>LANDVCFG.DO NET>pic_dir>= -D [ENTER]

Where pic_dir is the picture source directory specified in the SchematicSearch Path for the system being worked on.

Hi-Spec Solutions

Internal Liquid asnd Vapor Calculation Configure Calculation Point

Revision 3.0 46

Configure Calculation Point

Configuration of the calculation point can be done either through the graphicLANDVCFG or through direct entry to the CDS ports on the Point Detail display.Use of the configuration graphic is recommended.

• Non Graphic Configuration of Internal Liquid/Vapor Calculation Point

• Linking CL Program.

Hi-Spec Solutions

Internal Liquid and Vapor Calculation Point Configuration Using Graphic LANDVCFG

Revision 3.0 47

Point Configuration Using Graphic LANDVCFG

Each entry port on the internal liquid/vapor calculation configuration graphic,LANDVCFG, is described below:

Graphic LANDVCFG

Continued

Hi-Spec Solutions

Internal Liquid and Vapor Calculation Point Configuration Using Graphic LANDVCFG

Revision 3.0 48

Point Configuration Using Graphic LANDVCFG (Continued)

Selection Port Parameter Description

Calculation Point -- Enter the internal liquid/vapor calculation pointname.

External Q Net Pnt: CALC_PT(1) Enter the tagname of the point supplying a QNETvalue from another envelope calculation. If none,leave blank.

External Q Filter(min)

FILTER(81) Enter the filter time, in minutes, to dynamicallycompensate the QNET value from anotherenvelope calculation.

Gravity Units[API] [SPGR]

CONV_FAC(18) Select the input gravity unit.

Mass Conv Factor(Output)

CONV_FAC(19) Enter the conversion factor to convert the internalliquid from thousand pounds per hour to userdefined units.

# of Envl Streams ENGPAR(1) Enter the number of input flow streams.

Temperature Units[DEG F] [DEG C]

CONV_FAC(16) Select the input temperature units.

Vap Temperature Pnt TEMP_PT(17) Enter the tagname for temperature indication forthe internal vapor temperature.

Vap Temperature Bias T_BIAS(17) Enter the additive bias to be applied to the internalvapor temperature.

Vap Temp Filter (min) FILTER(32) Enter the internal vapor temperature filter time inminutes.

Atmospheric Pressure ENGPAR(2) Enter the atmospheric pressure in input units OR14.696 for psi units. The program will handleeither entry correctly.

Pressure Conv Factor CONV_FAC(17) Enter the conversion factor to convert from inputpressure units to psi.

Envelope Calc Dir[TOP DN][BTM UP]

CALC_DIR(17) Enter whether the envelope calculations start at thetop of the tower or at the bottom.

Continued

Hi-Spec Solutions

Internal Liquid and Vapor Calculation Point Configuration Using Graphic LANDVCFG

Revision 3.0 49

Point Configuration Using Graphic LANDVCFG (Continued)

There are fifteen stream points that can be configured for the internal liquid/vaporcalculation. In addition, there is a configuration zone for the internal liquid processinputs, i.e. gravity. The configuration zone for these is located at the bottom of theconfiguration graphic. The page forward and back keys on the TDC 3000 keyboardstep through the sixteen setup zones.

Each different type of input (steam, gas, vapor, liquid) has its own individualconfiguration zone. The gas (GAS) stream configuration zone is shown below:

Note: Gas streams must be configured with in the first five stream positions.

Selection Port Parameter8 Description

Stream Temp (Point) TEMP_PT(i) Enter the tagname of the temperature input for thisstream.

Stream Temp (Filter) FILTER(15+i) Enter the filter time, in minutes, for this temperatureinput.

Stream Temp (Bias) T_BIAS(i) Enter any bias to be added to this temperature input.

Stream Press (Point) PRESS_PT(i) Enter the tagname of the pressure input for thisstream.

Stream Press (Filter) FILTER(32+i) Enter the filter time, in minutes, for this pressureinput.

Stream Press (Bias) P_BIAS(i) Enter any bias to be added to this pressure input.

Continued

8 The (i) indicates the number of the input.

Hi-Spec Solutions

Internal Liquid and Vapor Calculation Point Configuration Using Graphic LANDVCFG

Revision 3.0 50

Point Configuration Using Graphic LANDVCFG (Continued)

Refer to the gas stream configuration zone shown on the previous page:

Selection Port Parameter5 Description

Stream Flow (Point) FLOW_PT(i) Enter the tagname of the flow input for this stream.

Stream Flow (Filter) FILTER(i) Enter the filter time, in minutes, for this flow input.

Envelope Direction[ENTER] [EXIT]

CALC_DIR(i) Indicate whether the stream is coming out or goinginto the envelope.

(Value dependent on the “Q/V” type)

Stream Q Filter FILTER(81+i) Filter that is used to dynamically compensate theheat effect of this stream on the internal liquid/vaporcalculation.

Mass Flow Conv CONV_FAC(i) Enter the conversion factor to convert the input unitsto mass units (MPPH).

Q-TYPE[NONE][STM] [GAS][VAPOR] [LIQ]

QTYPE(i) The stream type for the QNET calculation. Whenthe stream type GAS is specified, the stream MUSTbe one of the first five inputs.

V-TYPE[NONE] [STM][GAS] [VAPOR]

VTYPE(i) The stream type for calculating the enthalpy atinternal vapor conditions. When the stream typeGAS is specified, the stream MUST be one of thefirst five inputs.

Gas Coef. B1(i), B2(i), B3(i),B4(i), B5(i), B6(i)

Coefficients for calculating the gas enthalpy9.

Continued

5 The (i) indicates the number of the input.9 Table 7A1.2, API Technical Data Book-Petroleum Refining, Volume 2, 4th Edition, 1982.

Hi-Spec Solutions

Internal Liquid and Vapor Calculation Point Configuration Using Graphic LANDVCFG

Revision 3.0 51

Point Configuration Using Graphic LANDVCFG (Continued)

The steam (STM) configuration zone is shown below:

Selection Port Parameter5 Description

Stream Temp (Point) TEMP_PT(i) Enter the tagname of the steam temperature.

Stream Temp (Filter) FILTER(15+i) Enter the filter time, in minutes, for the steamtemperature.

Stream Temp (Bias) T_BIAS(i) Enter any bias to be added to the steam temperature.

Stream Press (Point) PRESS_PT(i) Enter the tagname of the steam pressure.

Stream Press (Filter) FILTER(32+i) Enter the filter time, in minutes, for the steampressure.

Stream Press (Bias) P_BIAS(i) Enter any bias to be added to the steam pressure.

Stream Flow (Point) FLOW_PT(i) Enter the tagname of the steam flow.

Stream Flow (Filter) FILTER(i) Enter the filter time, in minutes, for the steam flow.

Envelope Direction[ENTER] [EXIT]

CALC_DIR(i) Indicate whether the steam is coming out or goinginto the envelope.

Continued

5 The (i) indicates the number of the input.

Hi-Spec Solutions

Internal Liquid and Vapor Calculation Point Configuration Using Graphic LANDVCFG

Revision 3.0 52

Point Configuration Using Graphic LANDVCFG (Continued)

Refer to the steam configuration zone shown on the previous page:

Selection Port Parameter5 Description

Stream Q Filter FILTER(81+i) Filter that is used to dynamically compensate theheat effect of the steam on the internal liquid/vaporcalculation.

Mass Flow Conv CONV_FAC(i) Enter the conversion factor to convert the input unitsto mass units (MPPH).

Q-TYPE[NONE][STM] [GAS][VAPOR] [LIQ]

QTYPE(i) The stream (STM) type for the QNET calculation.

V-TYPE[NONE] [STM][GAS] [VAPOR]

VTYPE(i) The stream type for calculating the enthalpy atinternal vapor conditions. When the type STM isspecified, the temperature and pressure inputs areleft blank as shown below. The internal vaportemperature and pressure are routinely used.

Continued

5 The (i) indicates the number of the input.

Hi-Spec Solutions

Internal Liquid and Vapor Calculation Point Configuration Using Graphic LANDVCFG

Revision 3.0 53

Point Configuration Using Graphic LANDVCFG (Continued)

The stream configuration zones for stream type liquid (LIQ) and vapor (VAPOR) arethe same, that is they have the same inputs. A typical configuration zone is shownbelow:

Selection Port Parameter5 Description

Stream Temp (Point) TEMP_PT(i) Enter the tagname of the temperature input for thisstream.

Stream Temp (Filter) FILTER(15+i) Enter the filter time, in minutes, for this temperatureinput.

Stream Temp (Bias) T_BIAS(i) Enter any bias to be added to this temperature input.

Stream Press (Point) PRESS_PT(i) Enter the tagname of the pressure input for thisstream.

Stream Press (Filter) FILTER(32+i) Enter the filter time, in minutes, for this pressureinput.

Stream Press (Bias) P_BIAS(i) Enter any bias to be added to this pressure input.

Stream Flow (Point) FLOW_PT(i) Enter the tagname of the flow input for this stream..

Stream Flow (Filter) FILTER(i) Enter the filter time, in minutes, for this flow input.

Stream Grav (Point) GRAV_PT(i) Enter the tagname of the gravity input for thisstream.

Stream Grav (Filter) FILTER(48+i) Enter the filter time, in minutes, for this gravityinput.

Continued

5 The (i) indicates the number of the input.

Hi-Spec Solutions

Internal Liquid and Vapor Calculation Point Configuration Using Graphic LANDVCFG

Revision 3.0 54

Point Configuration Using Graphic LANDVCFG (Continued)

Refer to the stream configuration zone shown on the previous page:

Selection Port Parameter5 Description

Stream Watk (Point) WATK_PT(i) Enter the tagname of the Watson K factor input forthis stream.

Stream Watk (Filter) FILTER(64+i) Enter the filter time, in minutes, for this Watson Kinput.

Envelope Direction[ENTER] [EXIT]

CALC_DIR(i) Indicate whether the steam is coming out or goinginto the envelope.

Stream Q Filter FILTER(81+i) Filter that is used to dynamically compensate theheat effect of the steam on the internal liquid/vaporcalculation.

Mass Flow Conv CONV_FAC(i) Enter the conversion factor to convert the input unitsto mass units (MPPH).

Q-TYPE[NONE][STM] [GAS][VAPOR] [LIQ]

QTYPE(i) The stream type (LIQ or VAPOR) for the QNETcalculation.

V-TYPE[NONE] [STM][GAS] [VAPOR]

VTYPE(i) The stream type for calculating the enthalpy atinternal vapor conditions.

Note: With in the V_TYPE definition the overhead product must enter the envelope as“vapor” and the overhead prod leave the top of the tower as “vapor.”

Continued

5 The (i) indicates the number of the input.

Hi-Spec Solutions

Internal Liquid and Vapor Calculation Point Configuration Using Graphic LANDVCFG

Revision 3.0 55

Point Configuration Using Graphic LANDVCFG (Continued)

The last configuration zone to be described is the configuration zone for the calculatedinternal liquid. This configuration zone is shown below:

Selection Port Parameter Description

Envelope Temp(Point)

TEMP_PT(16) Enter the tagname of the internal liquid temperatureinput.

Envelope Temp(Filter)

FILTER(31) Enter the filter time, in minutes, for the internalliquid temperature input.

Envelope Temp (Bias) T_BIAS(16) Enter any bias to be added to the internal liquidtemperature input.

Envelope Press (Point) PRESS_PT(16) Enter the tagname of the internal vapor pressureinput.

Envelope Press(Filter)

FILTER(48) Enter the filter time, in minutes, for the internalvapor pressure input.

Envelope Press (Bias) P_BIAS(16) Enter any bias to be added to the internal vaporpressure input.

Int Liq. Grav (Point) GRAV_PT(16) Enter the tagname of the internal liquid gravityinput.

Int Liq. Grav (Filter) FILTER(64) Enter the filter time, in minutes, for the internalliquid gravity input.

Int Liq. Watk (Point) WATK_PT(16) Enter the tagname of the internal liquid Watson Kfactor input.

Int Liq. Watk (Filter) FILTER(80) Enter the filter time, in minutes, for the internalliquid Watson K factor input.

Continued

Hi-Spec Solutions

Internal Liquid and Vapor Calculation Point Configuration Using Graphic LANDVCFG

Revision 3.0 56

Point Configuration Using Graphic LANDVCFG (Continued)

Refer to the internal liquid configuration zone shown on the previous page:

Selection Port Parameter Description

Envelope Direction[ENTER] [EXIT]

CALC_DIR(16) Indicate whether the internal liquid is entering orleaving the envelope. When the envelopecalculation direction is from the top down, EnvelopeCalc Dir [TOP DN], the internal liquid is leaving theenvelope. When the envelope calculation direction isfrom the bottom up, Envelope Calc Dir [BTN UP],the internal liquid is entering the envelope.

Q-TYPE[NONE][STM] [GAS][VAPOR] [LIQ]

QTYPE(16) The internal liquid stream type [LIQ]for the QNETcalculation.

V-TYPE[NONE] [STM][GAS] [VAPOR]

VTYPE(16) The internal liquid stream type [VAPOR] forcalculating the enthalpy at internal vapor conditions.

Hi-Spec Solutions

Internal Liquid and Vapor Calculation Point Configuration through Direct CDS Entry

Revision 3.0 57

Point Configuration through Direct CDS Entry

If the configuration graphic is not used, then the configuration data must be entereddirectly onto the calculation point. The required calculation point information andassociated parameter are listed below.

Parameter Description Comments

B1(1) Stream 1 gas enthalpy coefficient A API Gas Enthalpy Coefficient (A) forstream(1)

B1(2) Stream 2 gas enthalpy coefficient A API Gas Enthalpy Coefficient (A) forstream(2)

B1(3) Stream 3 gas enthalpy coefficient A API Gas Enthalpy Coefficient (A) forstream(3)

B1(4) Stream 4 gas enthalpy coefficient A API Gas Enthalpy Coefficient (A) forstream(4)

B1(5) Stream 5 gas enthalpy coefficient A API Gas Enthalpy Coefficient (A) forstream(5)

B2(1) Stream 1 gas enthalpy coefficient B API Gas Enthalpy Coefficient (B) forstream(1)

B2(2) Stream 2 gas enthalpy coefficient B API Gas Enthalpy Coefficient (B) forstream(2)

B2(3) Stream 3 gas enthalpy coefficient B API Gas Enthalpy Coefficient (B) forstream(3)

B2(4) Stream 4 gas enthalpy coefficient B API Gas Enthalpy Coefficient (B) forstream(4)

B2(5) Stream 5 gas enthalpy coefficient B API Gas Enthalpy Coefficient (B) forstream(5)

B3(1) Stream 1 gas enthalpy coefficient C API Gas Enthalpy Coefficient (C) forstream(1)

B3(2) Stream 2 gas enthalpy coefficient C API Gas Enthalpy Coefficient (C) forstream(2)

B3(3) Stream 3 gas enthalpy coefficient C API Gas Enthalpy Coefficient (C) forstream(3)

B3(4) Stream 4 gas enthalpy coefficient C API Gas Enthalpy Coefficient (C) forstream(4)

B3(5) Stream 5 gas enthalpy coefficient C API Gas Enthalpy Coefficient (C) forstream(5)

B4(1) Stream 1 gas enthalpy coefficient D API Gas Enthalpy Coefficient (D) forstream(1)

B4(2) Stream 2 gas enthalpy coefficient D API Gas Enthalpy Coefficient (D) forstream(2)

Hi-Spec Solutions

Internal Liquid and Vapor Calculation Point Configuration through Direct CDS Entry

Revision 3.0 58

Point Configuration through Direct CDS Entry (Continued)

Parameter Description Comments

B4(3) Stream 3 gas enthalpy coefficient D API Gas Enthalpy Coefficient (D) forstream(3)

B4(4) Stream 4 gas enthalpy coefficient D API Gas Enthalpy Coefficient (D) forstream(4)

B4(5) Stream 5 gas enthalpy coefficient D API Gas Enthalpy Coefficient (D) forstream(5)

B5(1) Stream 1 gas enthalpy coefficient E API Gas Enthalpy Coefficient (E) forstream(1)

B5(2) Stream 2 gas enthalpy coefficient E API Gas Enthalpy Coefficient (E) forstream(2)

B5(3) Stream 3 gas enthalpy coefficient E API Gas Enthalpy Coefficient (E) forstream(3)

B5(4) Stream 4 gas enthalpy coefficient E API Gas Enthalpy Coefficient (E) forstream(4)

B5(5) Stream 5 gas enthalpy coefficient E API Gas Enthalpy Coefficient (E) forstream(5)

B6(1) Stream 1 gas enthalpy coefficient F API Gas Enthalpy Coefficient (F) forstream(1)

B6(2) Stream 2 gas enthalpy coefficient F API Gas Enthalpy Coefficient (F) forstream(2)

B6(3) Stream 3 gas enthalpy coefficient F API Gas Enthalpy Coefficient (F) forstream(3)

B6(4) Stream 4 gas enthalpy coefficient F API Gas Enthalpy Coefficient (F) forstream(4)

B6(5) Stream 5 gas enthalpy coefficient F API Gas Enthalpy Coefficient (F) forstream(5)

Note: Coefficients are summations of individual component coefficients times theirmole fractions.

Continued

Hi-Spec Solutions

Internal Liquid and Vapor Calculation Point Configuration through Direct CDS Entry

Revision 3.0 59

Point Configuration through Direct CDS Entry (Continued)

Parameter Description Comments

CALC_DIR(1) Indicates if stream 1 is entering orleaving the envelope

-1.0 => entering envelope; 1.0 =>leaving envelope

CALC_DIR(2) Indicates if stream 2 is entering orleaving the envelope

-1.0 => entering envelope; 1.0 =>leaving envelope

CALC_DIR(3) Indicates if stream 3 is entering orleaving the envelope

-1.0 => entering envelope; 1.0 =>leaving envelope

CALC_DIR(4) Indicates if stream 4 is entering orleaving the envelope

-1.0 => entering envelope; 1.0 =>leaving envelope

CALC_DIR(5) Indicates if stream 5 is entering orleaving the envelope

-1.0 => entering envelope; 1.0 =>leaving envelope

CALC_DIR(6) Indicates if stream 6 is entering orleaving the envelope

-1.0 => entering envelope; 1.0 =>leaving envelope

CALC_DIR(7) Indicates if stream 7 is entering orleaving the envelope

-1.0 => entering envelope; 1.0 =>leaving envelope

CALC_DIR(8) Indicates if stream 8 is entering orleaving the envelope

-1.0 => entering envelope; 1.0 =>leaving envelope

CALC_DIR(9) Indicates if stream 9 is entering orleaving the envelope

-1.0 => entering envelope; 1.0 =>leaving envelope

CALC_DIR(10) Indicates if stream 10 is enteringor leaving the envelope

-1.0 => entering envelope; 1.0 =>leaving envelope

CALC_DIR(11) Indicates if stream 11 is enteringor leaving the envelope

-1.0 => entering envelope; 1.0 =>leaving envelope

CALC_DIR(12) Indicates if stream 12 is enteringor leaving the envelope

-1.0 => entering envelope; 1.0 =>leaving envelope

CALC_DIR(13) Indicates if stream 13 is enteringor leaving the envelope

-1.0 => entering envelope; 1.0 =>leaving envelope

CALC_DIR(14) Indicates if stream 14 is enteringor leaving the envelope

-1.0 => entering envelope; 1.0 =>leaving envelope

CALC_DIR(15) Indicates if stream 15 is enteringor leaving the envelope

-1.0 => entering envelope; 1.0 =>leaving envelope

CALC_DIR(16) Indicates if calculated internalliquid is entering or leaving theenvelope

-1.0 => entering envelope; 1.0 =>leaving envelope

CALC_DIR(17) Indicates calculation direction -1.0 => from bottom up; 1.0 => fromtop down

CALC_PT(1) Tagname for QNET input fromanother envelope calculation

MBTU/Lb * Mass Units

CALC_PT(2) Tagname for QNET input fromanother envelope calculation

MBTU/Lb * Mass Units

Continued

Hi-Spec Solutions

Internal Liquid and Vapor Calculation Point Configuration through Direct CDS Entry

Revision 3.0 60

Point Configuration through Direct CDS Entry (Continued)

Parameter Description Comments

CONV_FAC(1) Stream 1 multiplicative flowconversion factor

Convert stream 1 input units to massunits (MPPH).

CONV_FAC(2) Stream 2 multiplicative flowconversion factor

Convert stream 2 input units to massunits (MPPH).

CONV_FAC(3) Stream 3 multiplicative flowconversion factor

Convert stream 3 input units to massunits (MPPH).

CONV_FAC(4) Stream 4 multiplicative flowconversion factor

Convert stream 4 input units to massunits (MPPH).

CONV_FAC(5) Stream 5 multiplicative flowconversion factor

Convert stream 5 input units to massunits (MPPH).

CONV_FAC(6) Stream 6 multiplicative flowconversion factor

Convert stream 6 input units to massunits (MPPH).

CONV_FAC(7) Stream 7 multiplicative flowconversion factor

Convert stream 7 input units to massunits (MPPH).

CONV_FAC(8) Stream 8 multiplicative flowconversion factor

Convert stream 8 input units to massunits (MPPH).

CONV_FAC(9) Stream 9 multiplicative flowconversion factor

Convert stream 9 input units to massunits (MPPH).

CONV_FAC(10) Stream 10 multiplicative flowconversion factor

Convert stream 10 input units to massunits (MPPH).

CONV_FAC(11) Stream 11 multiplicative flowconversion factor

Convert stream 11 input units to massunits (MPPH).

CONV_FAC(12) Stream 12 multiplicative flowconversion factor

Convert stream 12 input units to massunits (MPPH).

CONV_FAC(13) Stream 13 multiplicative flowconversion factor

Convert stream 13 input units to massunits (MPPH).

CONV_FAC(14) Stream 14 multiplicative flowconversion factor

Convert stream 14 input units to massunits (MPPH).

CONV_FAC(15) Stream 15 multiplicative flowconversion factor

Convert stream 15 input units to massunits (MPPH).

CONV_FAC(16) Input temperature unit flag; 0 => °F; 1 => °C

Default is 0 (°F).

CONV_FAC(17) Pressure multiplicative conversionfactor

Convert input units to psi.

CONV_FAC(18) Input gravity type flag:0 => API; 1 => Specific gravity

Default is 0 (API).

CONV_FAC(19) Conversion factor for calculatedinternal liquid mass flow.

Convert from MPPH to any desiredunits.

Continued

Hi-Spec Solutions

Internal Liquid and Vapor Calculation Point Configuration through Direct CDS Entry

Revision 3.0 61

Point Configuration through Direct CDS Entry (Continued)

Parameter Description Comments

ENGPAR(1) Number of input flow streams. The maximum number of flow inputs is15.

ENGPAR(2) Local atmospheric pressure. A value of 14.696 will be usedinternally if a zero is entered.

ENGPAR(3) Envelope heat loss.

ENGPAR(4) Flag to force calculation BAD. 0 => Do not set BAD; 1 => Set calculation BAD.

FILTER(1) Stream 1 flow input filter time Minutes

FILTER(2) Stream 2 flow input filter time Minutes [enter in full minutes (1..2..3)

FILTER(3) Stream 3 flow input filter time Minutes [enter in full minutes (1..2..3)

FILTER(4) Stream 4 flow input filter time Minutes [enter in full minutes (1..2..3)

FILTER(5) Stream 5 flow input filter time Minutes [enter in full minutes (1..2..3)

FILTER(6) Stream 6 flow input filter time Minutes [enter in full minutes (1..2..3)

FILTER(7) Stream 7 flow input filter time Minutes [enter in full minutes (1..2..3)

FILTER(8) Stream 8 flow input filter time Minutes [enter in full minutes (1..2..3)

FILTER(9) Stream 9 flow input filter time Minutes [enter in full minutes (1..2..3)

FILTER(10) Stream 10 flow input filter time Minutes [enter in full minutes (1..2..3)

FILTER(11) Stream 11 flow input filter time Minutes [enter in full minutes (1..2..3)

FILTER(12) Stream 12 flow input filter time Minutes [enter in full minutes (1..2..3)

FILTER(13) Stream 13 flow input filter time Minutes [enter in full minutes (1..2..3)

FILTER(14) Stream 14 flow input filter time Minutes [enter in full minutes (1..2..3)

FILTER(15) Stream 15 flow input filter time Minutes [enter in full minutes (1..2..3)

FILTER(16) Stream 1 temperature input filtertime

Minutes [enter in full minutes (1..2..3)

Continued

Hi-Spec Solutions

Internal Liquid and Vapor Calculation Point Configuration through Direct CDS Entry

Revision 3.0 62

Point Configuration through Direct CDS Entry (Continued)

Parameter Description Comments

FILTER(17) Stream 2 temperature input filtertime

Minutes [enter in full minutes (1..2..3)

FILTER(18) Stream 3 temperature input filtertime

Minutes [enter in full minutes (1..2..3)

FILTER(19) Stream 4 temperature input filtertime

Minutes [enter in full minutes (1..2..3)

FILTER(20) Stream 5 temperature input filtertime

Minutes [enter in full minutes (1..2..3)

FILTER(21) Stream 6 temperature input filtertime

Minutes [enter in full minutes (1..2..3)

FILTER(22) Stream 7 temperature input filtertime

Minutes [enter in full minutes (1..2..3)

FILTER(23) Stream 8 temperature input filtertime

Minutes [enter in full minutes (1..2..3)

FILTER(24) Stream 9 temperature input filtertime

Minutes [enter in full minutes (1..2..3)

FILTER(25) Stream 10 temperature input filtertime

Minutes [enter in full minutes (1..2..3)

FILTER(26) Stream 11 temperature input filtertime

Minutes [enter in full minutes (1..2..3)

FILTER(27) Stream 12 temperature input filtertime

Minutes [enter in full minutes (1..2..3)

FILTER(28) Stream 13 temperature input filtertime

Minutes [enter in full minutes (1..2..3)

FILTER(29) Stream 14 temperature input filtertime

Minutes [enter in full minutes (1..2..3)

FILTER(30) Stream 15 temperature input filtertime

Minutes [enter in full minutes (1..2..3)

FILTER(31) Internal liquid temperature inputfilter time

Minutes [enter in full minutes (1..2..3)

FILTER(32) Internal vapor temperature inputfilter time

Minutes [enter in full minutes (1..2..3)

FILTER(33) Stream 1 pressure input filter time Minutes [enter in full minutes (1..2..3)

FILTER(34) Stream 2 pressure input filter time Minutes [enter in full minutes (1..2..3)

FILTER(35) Stream 3 pressure input filter time Minutes [enter in full minutes (1..2..3)

FILTER(36) Stream 4 pressure input filter time Minutes [enter in full minutes (1..2..3)

Continued

Hi-Spec Solutions

Internal Liquid and Vapor Calculation Point Configuration through Direct CDS Entry

Revision 3.0 63

Point Configuration through Direct CDS Entry (Continued)

Parameter Description Comments

FILTER(37) Stream 5 pressure input filter time Minutes [enter in full minutes (1..2..3)

FILTER(38) Stream 6 pressure input filter time Minutes [enter in full minutes (1..2..3)

FILTER(39) Stream 7 pressure input filter time Minutes [enter in full minutes (1..2..3)

FILTER(40) Stream 8 pressure input filter time Minutes [enter in full minutes (1..2..3)

FILTER(41) Stream 9 pressure input filter time Minutes [enter in full minutes (1..2..3)

FILTER(42) Stream 10 pressure input filtertime

Minutes [enter in full minutes (1..2..3)

FILTER(43) Stream 11 pressure input filtertime

Minutes [enter in full minutes (1..2..3)

FILTER(44) Stream 12 pressure input filtertime

Minutes [enter in full minutes (1..2..3)

FILTER(45) Stream 13 pressure input filtertime

Minutes [enter in full minutes (1..2..3)

FILTER(46) Stream 14 pressure input filtertime

Minutes [enter in full minutes (1..2..3)

FILTER(47) Stream 15 pressure input filtertime

Minutes [enter in full minutes (1..2..3)

FILTER(48) Internal vapor pressure input filtertime

Minutes [enter in full minutes (1..2..3)

FILTER(49) Stream 1 gravity input filter time Minutes [enter in full minutes (1..2..3)

FILTER(50) Stream 2 gravity input filter time Minutes [enter in full minutes (1..2..3)

FILTER(51) Stream 3 gravity input filter time Minutes [enter in full minutes (1..2..3)

FILTER(52) Stream 4 gravity input filter time Minutes [enter in full minutes (1..2..3)

FILTER(53) Stream 5 gravity input filter time Minutes [enter in full minutes (1..2..3)

FILTER(54) Stream 6 gravity input filter time Minutes [enter in full minutes (1..2..3)

FILTER(55) Stream 7 gravity input filter time Minutes [enter in full minutes (1..2..3)

FILTER(56) Stream 8 gravity input filter time Minutes [enter in full minutes (1..2..3)

Continued

Hi-Spec Solutions

Internal Liquid and Vapor Calculation Point Configuration through Direct CDS Entry

Revision 3.0 64

Point Configuration through Direct CDS Entry (Continued)

Parameter Description Comments

FILTER(57) Stream 9 gravity input filter time Minutes [enter in full minutes (1..2..3)

FILTER(58) Stream 10 gravity input filter time Minutes [enter in full minutes (1..2..3)

FILTER(59) Stream 11 gravity input filter time Minutes [enter in full minutes (1..2..3)

FILTER(60) Stream 12 gravity input filter time Minutes [enter in full minutes (1..2..3)

FILTER(61) Stream 13 gravity input filter time Minutes [enter in full minutes (1..2..3)

FILTER(62) Stream 14 gravity input filter time Minutes [enter in full minutes (1..2..3)

FILTER(63) Stream 15 gravity input filter time Minutes [enter in full minutes (1..2..3)

FILTER(64) Internal liquid gravity input filtertime

Minutes [enter in full minutes (1..2..3)

FILTER(65) Stream 1 Watson K input filtertime

Minutes [enter in full minutes (1..2..3)

FILTER(66) Stream 2 Watson K input filtertime

Minutes [enter in full minutes (1..2..3)

FILTER(67) Stream 3 Watson K input filtertime

Minutes [enter in full minutes (1..2..3)

FILTER(68) Stream 4 Watson K input filtertime

Minutes [enter in full minutes (1..2..3)

FILTER(69) Stream 5 Watson K input filtertime

Minutes [enter in full minutes (1..2..3)

FILTER(70) Stream 6 Watson K input filtertime

Minutes [enter in full minutes (1..2..3)

FILTER(71) Stream 7 Watson K input filtertime

Minutes [enter in full minutes (1..2..3)

FILTER(72) Stream 8 Watson K input filtertime

Minutes [enter in full minutes (1..2..3)

FILTER(73) Stream 9 Watson K input filtertime

Minutes [enter in full minutes (1..2..3)

FILTER(74) Stream 10 Watson K input filtertime

Minutes [enter in full minutes (1..2..3)

FILTER(75) Stream 11 Watson K input filtertime

Minutes [enter in full minutes (1..2..3)

FILTER(76) Stream 12 Watson K input filtertime

Minutes [enter in full minutes (1..2..3)

Continued

Hi-Spec Solutions

Internal Liquid and Vapor Calculation Point Configuration through Direct CDS Entry

Revision 3.0 65

Point Configuration through Direct CDS Entry (Continued)

Parameter Description Comments

FILTER(77) Stream 13 Watson K input filtertime

Minutes [enter in full minutes (1..2..3)

FILTER(78) Stream 14 Watson K input filtertime

Minutes [enter in full minutes (1..2..3)

FILTER(79) Stream 15 Watson K input filtertime

Minutes [enter in full minutes (1..2..3)

FILTER(80) Internal liquid Watson K inputfilter time

Minutes [enter in full minutes (1..2..3)

FILTER(81) Filter time for QNET input fromanother envelope calculation

Minutes [enter in full minutes (1..2..3)

FILTER(82) Stream 1 calculated dynamic heateffect filter time

Minutes [enter in full minutes (1..2..3)

FILTER(83) Stream 2 calculated dynamic heateffect filter time

Minutes [enter in full minutes (1..2..3)

FILTER(84) Stream 3 calculated dynamic heateffect filter time

Minutes [enter in full minutes (1..2..3)

FILTER(85) Stream 4 calculated dynamic heateffect filter time

Minutes [enter in full minutes (1..2..3)

FILTER(86) Stream 5 calculated dynamic heateffect filter time

Minutes [enter in full minutes (1..2..3)

FILTER(87) Stream 6 calculated dynamic heateffect filter time

Minutes [enter in full minutes (1..2..3)

FILTER(88) Stream 7 calculated dynamic heateffect filter time

Minutes [enter in full minutes (1..2..3)

FILTER(89) Stream 8 calculated dynamic heateffect filter time

Minutes [enter in full minutes (1..2..3)

FILTER(90) Stream 9 calculated dynamic heateffect filter time

Minutes [enter in full minutes (1..2..3)

FILTER(91) Stream 10 calculated dynamicheat effect filter time

Minutes [enter in full minutes (1..2..3)

FILTER(92) Stream 11 calculated dynamicheat effect filter time

Minutes [enter in full minutes (1..2..3)

FILTER(93) Stream 12 calculated dynamicheat effect filter time

Minutes [enter in full minutes (1..2..3)

FILTER(94) Stream 13 calculated dynamicheat effect filter time

Minutes [enter in full minutes (1..2..3)

FILTER(95) Stream 14 calculated dynamicheat effect filter time

Minutes [enter in full minutes (1..2..3)

FILTER(96) Stream 15 calculated dynamicheat effect filter time

Minutes [enter in full minutes (1..2..3)

Continued

Hi-Spec Solutions

Internal Liquid and Vapor Calculation Point Configuration through Direct CDS Entry

Revision 3.0 66

Point Configuration through Direct CDS Entry (Continued)

Parameter Description Comments

FLOW_PT(1) Tagname for stream 1 flow input Any flow units. (prefer mass units) (seenote)

FLOW_PT(2) Tagname for stream 2 flow input Any flow units. (prefer mass units) (seenote)

FLOW_PT(3) Tagname for stream 3 flow input Any flow units. (prefer mass units) (seenote)

FLOW_PT(4) Tagname for stream 4 flow input Any flow units. (prefer mass units) (seenote)

FLOW_PT(5) Tagname for stream 5 flow input Any flow units. (prefer mass units) (seenote)

FLOW_PT(6) Tagname for stream 6 flow input Any flow units. (prefer mass units) (seenote)

FLOW_PT(7) Tagname for stream 7 flow input Any flow units. (prefer mass units) (seenote)

FLOW_PT(8) Tagname for stream 8 flow input Any flow units. (prefer mass units) (seenote)

FLOW_PT(9) Tagname for stream 9 flow input Any flow units. (prefer mass units) (seenote)

FLOW_PT(10) Tagname for stream 10 flow input Any flow units. (prefer mass units) (seenote)

FLOW_PT(11) Tagname for stream 11 flow input Any flow units. (prefer mass units) (seenote)

FLOW_PT(12) Tagname for stream 12 flow input Any flow units. (prefer mass units) (seenote)

FLOW_PT(13) Tagname for stream 13 flow input Any flow units. (prefer mass units) (seenote)

FLOW_PT(14) Tagname for stream 14 flow input Any flow units. (prefer mass units) (seenote)

FLOW_PT(15) Tagname for stream 15 flow input Any flow units. (prefer mass units) (seenote)

GRAV_PT(1) Tagname for stream 1 gravity °API or Specific Gravity

GRAV_PT(2) Tagname for stream 2 gravity °API or Specific Gravity

GRAV_PT(3) Tagname for stream 3 gravity °API or Specific Gravity

GRAV_PT(4) Tagname for stream 4 gravity °API or Specific Gravity

GRAV_PT(5) Tagname for stream 5 gravity °API or Specific Gravity

GRAV_PT(6) Tagname for stream 6 gravity °API or Specific Gravity

GRAV_PT(7) Tagname for stream 7 gravity °API or Specific Gravity

GRAV_PT(8) Tagname for stream 8 gravity °API or Specific Gravity

GRAV_PT(9) Tagname for stream 9 gravity °API or Specific Gravity

Note: Flow units requires careful attention for the conversion factor.Continued

Hi-Spec Solutions

Internal Liquid and Vapor Calculation Point Configuration through Direct CDS Entry

Revision 3.0 67

Point Configuration through Direct CDS Entry (Continued)

Parameter Description Comments

GRAV_PT(10) Tagname for stream 10 gravity °API or Specific Gravity

GRAV_PT(11) Tagname for stream 11 gravity °API or Specific Gravity

GRAV_PT(12) Tagname for stream 12 gravity °API or Specific Gravity.

GRAV_PT(13) Tagname for stream 13 gravity °API or Specific Gravity

GRAV_PT(14) Tagname for stream 14 gravity °API or Specific Gravity

GRAV_PT(15) Tagname for stream 15 gravity °API or Specific Gravity

GRAV_PT(16) Tagname for internal liquidgravity

°API or Specific Gravity

PRESS_PT(1) Tagname for stream 1 pressureinput

Use P_BIAS(1) if direct pressuremeasurement not available

PRESS_PT(2) Tagname for stream 2 pressureinput

Use P_BIAS(2) if direct pressuremeasurement not available

PRESS_PT(3) Tagname for stream 3 pressureinput

Use P_BIAS(3) if direct pressuremeasurement not available

PRESS_PT(4) Tagname for stream 4 pressureinput

Use P_BIAS(4) if direct pressuremeasurement not available

PRESS_PT(5) Tagname for stream 5 pressureinput

Use P_BIAS(5) if direct pressuremeasurement not available

PRESS_PT(6) Tagname for stream 6 pressureinput

Use P_BIAS(6) if direct pressuremeasurement not available

PRESS_PT(7) Tagname for stream 7 pressureinput

Use P_BIAS(7) if direct pressuremeasurement not available

PRESS_PT(8) Tagname for stream 8 pressureinput

Use P_BIAS(8) if direct pressuremeasurement not available

PRESS_PT(9) Tagname for stream 9 pressureinput

Use P_BIAS(9) if direct pressuremeasurement not available

PRESS_PT(10) Tagname for stream 10 pressureinput

Use P_BIAS(10) if direct pressuremeasurement not available

PRESS_PT(11) Tagname for stream 11 pressureinput

Use P_BIAS(11) if direct pressuremeasurement not available

PRESS_PT(12) Tagname for stream 12 pressureinput

Use P_BIAS(12) if direct pressuremeasurement not available

PRESS_PT(13) Tagname for stream 13 pressureinput

Use P_BIAS(13) if direct pressuremeasurement not available

PRESS_PT(14) Tagname for stream 14 pressureinput

Use P_BIAS(14) if direct pressuremeasurement not available

PRESS_PT(15) Tagname for stream 15 pressureinput

Use P_BIAS(15) if direct pressuremeasurement not available

Continued

Hi-Spec Solutions

Internal Liquid and Vapor Calculation Point Configuration through Direct CDS Entry

Revision 3.0 68

Point Configuration through Direct CDS Entry (Continued)

Parameter Description Comments

PRESS_PT(16) Tagname of pressure input forinternal vapor

Use P_BIAS(16) if direct pressuremeasurement not available

P_BIAS(1) Stream 1 pressure input additivebias

Same units as PRESS_PT(1)

P_BIAS(2) Stream 2 pressure input additivebias

Same units as PRESS_PT(2)

P_BIAS(3) Stream 3 pressure input additivebias

Same units as PRESS_PT(3)

P_BIAS(4) Stream 4 pressure input additivebias

Same units as PRESS_PT(4)

P_BIAS(5) Stream 5 pressure input additivebias

Same units as PRESS_PT(5)

P_BIAS(6) Stream 6 pressure input additivebias

Same units as PRESS_PT(6)

P_BIAS(7) Stream 7 pressure input additivebias

Same units as PRESS_PT(7)

P_BIAS(8) Stream 8 pressure input additivebias

Same units as PRESS_PT(8)

P_BIAS(9) Stream 9 pressure input additivebias

Same units as PRESS_PT(9)

P_BIAS(10) Stream 10 pressure input additivebias

Same units as PRESS_PT(10)

P_BIAS(11) Stream 11 pressure input additivebias

Same units as PRESS_PT(11)

P_BIAS(12) Stream 12 pressure input additivebias

Same units as PRESS_PT(12)

P_BIAS(13) Stream 13 pressure input additivebias

Same units as PRESS_PT(13)

P_BIAS(14) Stream 14 pressure input additivebias

Same units as PRESS_PT(14)

P_BIAS(15) Stream 15 pressure input additivebias

Same units as PRESS_PT(15)

P_BIAS(16) Internal vapor pressure inputadditive bias

Same units as PRESS_PT(16)

QTYPE(1) Stream 1 type for QNETcalculation

0 => None; 1 => Gas; 2 => Vapor;3 => Liquid; 4 => Steam

QTYPE(2) Stream 2 type for QNETcalculation

0 => None; 1 => Gas; 2 => Vapor;3 => Liquid; 4 => Steam

QTYPE(3) Stream 3 type for QNETcalculation

0 => None; 1 => Gas; 2 => Vapor;3 => Liquid; 4 => Steam

Continued

Hi-Spec Solutions

Internal Liquid and Vapor Calculation Point Configuration through Direct CDS Entry

Revision 3.0 69

Point Configuration through Direct CDS Entry (Continued)

Parameter Description Comments

QTYPE(4) Stream 4 type for QNETcalculation

0 => None; 1 => Gas; 2 => Vapor;3 => Liquid; 4 => Steam

QTYPE(5) Stream 5 type for QNETcalculation

0 => None; 1 => Gas; 2 => Vapor;3 => Liquid; 4 => Steam

QTYPE(6) Stream 6 type for QNETcalculation

0 => None; 1 => Gas; 2 => Vapor;3 => Liquid; 4 => Steam

QTYPE(7) Stream 7 type for QNETcalculation

0 => None; 1 => Gas; 2 => Vapor;3 => Liquid; 4 => Steam

QTYPE(8) Stream 8 type for QNETcalculation

0 => None; 1 => Gas; 2 => Vapor;3 => Liquid; 4 => Steam

QTYPE(9) Stream 9 type for QNETcalculation

0 => None; 1 => Gas; 2 => Vapor;3 => Liquid; 4 => Steam

QTYPE(10) Stream 10 type for QNETcalculation

0 => None; 1 => Gas; 2 => Vapor;3 => Liquid; 4 => Steam

QTYPE(11) Stream 11 type for QNETcalculation

0 => None; 1 => Gas; 2 => Vapor;3 => Liquid; 4 => Steam

QTYPE(12) Stream 12 type for QNETcalculation

0 => None; 1 => Gas; 2 => Vapor;3 => Liquid; 4 => Steam

QTYPE(13) Stream 13 type for QNETcalculation

0 => None; 1 => Gas; 2 => Vapor;3 => Liquid; 4 => Steam

QTYPE(14) Stream 14 type for QNETcalculation

0 => None; 1 => Gas; 2 => Vapor;3 => Liquid; 4 => Steam

QTYPE(15) Stream 15 type for QNETcalculation

0 => None; 1 => Gas; 2 => Vapor;3 => Liquid; 4 => Steam

QTYPE(16) Internal liquid type for QNETcalculation

3 => Liquid

TEMP_PT(1) Tagname of source for stripperfeed temperature

Use bias T_BIAS(1) if the temperatureis not located on the stream.

TEMP_PT(2) Tagname of source for stripperproduct temperature

Use bias T_BIAS(2) if the temperatureis not located on the stream.

TEMP_PT(3) Tagname of source for strippingsteam temperature

Use bias T_BIAS(3) if the temperatureis not located on the stream.

TEMP_PT(4) Tagname for stream 4 temperatureinput

Use bias T_BIAS(4) if the temperatureis not located on the stream.

TEMP_PT(5) Tagname for stream 5 temperatureinput

Use bias T_BIAS(5) if the temperatureis not located on the stream.

TEMP_PT(6) Tagname for stream 6 temperatureinput

Use bias T_BIAS(6) if the temperatureis not located on the stream.

TEMP_PT(7) Tagname for stream 7 temperatureinput

Use bias T_BIAS(7) if the temperatureis not located on the stream.

Continued

Hi-Spec Solutions

Internal Liquid and Vapor Calculation Point Configuration through Direct CDS Entry

Revision 3.0 70

Point Configuration through Direct CDS Entry (Continued)

Parameter Description Comments

TEMP_PT(8) Tagname for stream 8 temperatureinput

Use bias T_BIAS(8) if the temperatureis not located on the stream.

TEMP_PT(9) Tagname for stream 9 temperatureinput

Use bias T_BIAS(9) if the temperatureis not located on the stream.

TEMP_PT(10) Tagname for stream 10temperature input

Use bias T_BIAS(10) if the temperatureis not located on the stream.

TEMP_PT(11) Tagname for stream 11temperature input

Use bias T_BIAS(11) if the temperatureis not located on the stream.

TEMP_PT(12) Tagname for stream 12temperature input

Use bias T_BIAS(12) if the temperatureis not located on the stream.

TEMP_PT(13) Tagname for stream 13temperature input

Use bias T_BIAS(13) if the temperatureis not located on the stream.

TEMP_PT(14) Tagname for stream 14temperature input

Use bias T_BIAS(14) if the temperatureis not located on the stream.

TEMP_PT(15) Tagname for stream 15temperature input

Use bias T_BIAS(15) if the temperatureis not located on the stream.

TEMP_PT(16) Tagname for temperature ofinternal liquid at envelopeconditions

Use bias T_BIAS(16) if the temperatureis not located in the internal liquid.

TEMP_PT(17) Tagname for temperature ofinternal vapor at envelopeconditions

Use bias T_BIAS(17) if the temperatureis not located in the internal vapor.

T_BIAS(1) Stream 1 temperature inputadditive bias

Same units as TEMP_PT(1)

T_BIAS(2) Stream 2 temperature inputadditive bias

Same units as TEMP_PT(2)

T_BIAS(3) Stream 3 temperature inputadditive bias

Same units as TEMP_PT(3)

T_BIAS(4) Stream 4 temperature inputadditive bias

Same units as TEMP_PT(4)

T_BIAS(5) Stream 5 temperature inputadditive bias

Same units as TEMP_PT(5)

T_BIAS(6) Stream 6 temperature inputadditive bias

Same units as TEMP_PT(6)

Continued

Hi-Spec Solutions

Internal Liquid and Vapor Calculation Point Configuration through Direct CDS Entry

Revision 3.0 71

Point Configuration through Direct CDS Entry (Continued)

Parameter Description Comments

T_BIAS(7) Stream 7 temperature inputadditive bias

Same units as TEMP_PT(7)

T_BIAS(8) Stream 8 temperature inputadditive bias

Same units as TEMP_PT(8)

T_BIAS(9) Stream 9 temperature inputadditive bias

Same units as TEMP_PT(9)

T_BIAS(10) Stream 10 temperature inputadditive bias

Same units as TEMP_PT(10)

T_BIAS(11) Stream 11 temperature inputadditive bias

Same units as TEMP_PT(11)

T_BIAS(12) Stream 12 temperature inputadditive bias

Same units as TEMP_PT(12)

T_BIAS(13) Stream 13 temperature inputadditive bias

Same units as TEMP_PT(13)

T_BIAS(14) Stream 14 temperature inputadditive bias

Same units as TEMP_PT(14)

T_BIAS(15) Stream 15 temperature inputadditive bias

Same units as TEMP_PT(15)

T_BIAS(16) Internal liquid temperatureadditive bias

Same units as TEMP_PT(16)

T_BIAS(17) Internal vapor temperatureadditive bias

Same units as TEMP_PT(17)

VTYPE(1) Stream 1 type for QVAPcalculation

0 => None; 1 => Gas; 2 => Vapor;3 => Liquid; 4 => Steam

VTYPE(2) Stream 2 type for QVAPcalculation

0 => None; 1 => Gas; 2 => Vapor;3 => Liquid; 4 => Steam

VTYPE(3) Stream 3 type for QVAPcalculation

0 => None; 1 => Gas; 2 => Vapor;3 => Liquid; 4 => Steam

VTYPE(4) Stream 4 type for QVAPcalculation

0 => None; 1 => Gas; 2 => Vapor;3 => Liquid; 4 => Steam

VTYPE(5) Stream 5 type for QVAPcalculation

0 => None; 1 => Gas; 2 => Vapor;3 => Liquid; 4 => Steam

VTYPE(6) Stream 6 type for QVAPcalculation

0 => None; 1 => Gas; 2 => Vapor;3 => Liquid; 4 => Steam

VTYPE(7) Stream 7 type for QVAPcalculation

0 => None; 1 => Gas; 2 => Vapor;3 => Liquid; 4 => Steam

VTYPE(8) Stream 8 type for QVAPcalculation

0 => None; 1 => Gas; 2 => Vapor;3 => Liquid; 4 => Steam

VTYPE(9) Stream 9 type for QVAPcalculation

0 => None; 1 => Gas; 2 => Vapor;3 => Liquid; 4 => Steam

Continued

Hi-Spec Solutions

Internal Liquid and Vapor Calculation Point Configuration through Direct CDS Entry

Revision 3.0 72

Point Configuration through Direct CDS Entry (Continued)

Parameter Description Comments

VTYPE(10) Stream 10 type for QVAPcalculation

0 => None; 1 => Gas; 2 => Vapor;3 => Liquid; 4 => Steam

VTYPE(11) Stream 11 type for QVAPcalculation

0 => None; 1 => Gas; 2 => Vapor;3 => Liquid; 4 => Steam

VTYPE(12) Stream 12 type for QVAPcalculation

0 => None; 1 => Gas; 2 => Vapor;3 => Liquid; 4 => Steam

VTYPE(13) Stream 13 type for QVAPcalculation

0 => None; 1 => Gas; 2 => Vapor;3 => Liquid; 4 => Steam

VTYPE(14) Stream 14 type for QVAPcalculation

0 => None; 1 => Gas; 2 => Vapor;3 => Liquid; 4 => Steam

VTYPE(15) Stream 15 type for QVAPcalculation

0 => None; 1 => Gas; 2 => Vapor;3 => Liquid; 4 => Steam

VTYPE(16) Internal liquid type for QVAPcalculation

2 => Vapor

WATK_PT(1) Tagname for stream 1 Watson Kfactor

Build an AM numeric point to hold amanually input value.

Or the Watson K can be calculatedusing the stream’s ASTM D8610%;50%; & 90% points and gravity.This requires an AM REG_PV pointand the Watson K CL code.

WATK_PT(2) Tagname for stream 2 Watson Kfactor

Build an AM numeric point to hold amanually input value.

Or the Watson K can be calculatedusing the stream’s ASTM D8610%;50%; & 90% points and gravity.This requires an AM REG_PV pointand the Watson K CL code.

WATK_PT(3) Tagname for stream 3 Watson Kfactor

Build an AM numeric point to hold amanually input value.

Or the Watson K can be calculatedusing the stream’s ASTM D8610%;50%; & 90% points and gravity.This requires an AM REG_PV pointand the Watson K CL code.

WATK_PT(4) Tagname for stream 4 Watson Kfactor

Build an AM numeric point to hold amanually input value.

Or the Watson K can be calculatedusing the stream’s ASTM D8610%;50%; & 90% points and gravity.This requires an AM REG_PV pointand the Watson K CL code.

Continued

Hi-Spec Solutions

Internal Liquid and Vapor Calculation Point Configuration through Direct CDS Entry

Revision 3.0 73

Point Configuration through Direct CDS Entry (Continued)

Parameter Description Comments

WATK_PT(5) Tagname for stream 5 Watson Kfactor

Build an AM numeric point to hold amanually input value.

Or the Watson K can be calculatedusing the stream’s ASTM D8610%;50%; & 90% points and gravity.This requires an AM REG_PV pointand the Watson K CL code.

WATK_PT(6) Tagname for stream 6 Watson Kfactor

Build an AM numeric point to hold amanually input value.

Or the Watson K can be calculatedusing the stream’s ASTM D8610%;50%; & 90% points and gravity.This requires an AM REG_PV pointand the Watson K CL code.

WATK_PT(7) Tagname for stream 7 Watson Kfactor

Build an AM numeric point to hold amanually input value.

Or the Watson K can be calculatedusing the stream’s ASTM D8610%;50%; & 90% points and gravity.This requires an AM REG_PV pointand the Watson K CL code.

WATK_PT(8) Tagname for stream 8 Watson Kfactor

Build an AM numeric point to hold amanually input value.

Or the Watson K can be calculatedusing the stream’s ASTM D8610%;50%; & 90% points and gravity.This requires an AM REG_PV pointand the Watson K CL code.

WATK_PT(9) Tagname for stream 9 Watson Kfactor

Build an AM numeric point to hold amanually input value.

Or the Watson K can be calculatedusing the stream’s ASTM D8610%;50%; & 90% points and gravity.This requires an AM REG_PV pointand the Watson K CL code.

WATK_PT(10) Tagname for stream 10 Watson Kfactor

Build an AM numeric point to hold amanually input value.

Or the Watson K can be calculatedusing the stream’s ASTM D8610%;50%; & 90% points and gravity.This requires an AM REG_PV pointand the Watson K CL code.

Continued

Hi-Spec Solutions

Internal Liquid and Vapor Calculation Point Configuration through Direct CDS Entry

Revision 3.0 74

Point Configuration through Direct CDS Entry (Continued)

Parameter Description Comments

WATK_PT(11) Tagname for stream 11 Watson Kfactor

Build an AM numeric point to hold amanually input value.

Or the Watson K can be calculatedusing the stream’s ASTM D8610%;50%; and 90% points and gravity.This requires an AM REG_PV pointand the Watson K CL code.

WATK_PT(12) Tagname for stream 12 Watson Kfactor

Build an AM numeric point to hold amanually input value.

Or the Watson K can be calculatedusing the stream’s ASTM D8610%;50%; and 90% points and gravity.This requires an AM REG_PV pointand the Watson K CL code.

WATK_PT(13) Tagname for stream 13 Watson Kfactor

Build an AM numeric point to hold amanually input value.

Or the Watson K can be calculatedusing the stream’s ASTM D8610%;50%; and 90% points and gravity.This requires an AM REG_PV pointand the Watson K CL code.

WATK_PT(14) Tagname for stream 14 Watson Kfactor

Build an AM numeric point to hold amanually input value.

Or the Watson K can be calculatedusing the stream’s ASTM D8610%;50%; and 90% points and gravity.This requires an AM REG_PV pointand the Watson K CL code.

WATK_PT(15) Tagname for stream 15 Watson Kfactor

Build an AM numeric point to hold amanually input value.

Or the Watson K can be calculatedusing the stream’s ASTM D8610%;50%; and 90% points and gravity.This requires an AM REG_PV pointand the Watson K CL code.

WATK_PT(16) Tagname for internal liquidWatson K factor

Build an AM numeric point to hold amanually input value.

Or the Watson K can be calculatedusing the internal liquid’s ASTM D8610%;50%; and 90% points and gravity.This requires an AM REG_PV pointand the Watson K CL code.

Hi-Spec Solutions

Internal Liquid & Vapor Calculation Appendix A Engineer’s Detailed Description

Revision 3.0 A-1

Link CL Programs

Step Action

Link LANDVGEN From the Command Processor Display:

LK $Fn>AO>LANDVGEN point_name [ENTER]

Activate point Call up the point detail and activate the point, or activate from LANDVCFGgraphic.

Verify Operation Verify that LANDVGEN is running without any CL errors.

Hi-Spec Solutions

Internal Liquid & Vapor Calculation Appendix A Engineer’s Detailed Description

Revision 3.0 A-2

Hi-Spec Solutions

Honeywell Hi-Spec Solutions • 16404 N. Black Canyon Hwy. • Phoenix, AZ 85023

Advanced Control Package

Laboratory Updating System

CONTROLLED

Revision 2.13/98

Hi-Spec Solutions

Laboratory Entry System Revision History

Revision 2.1

Table of Contents

Overview ...................................................................................................................................................................... 1

Acronym List ................................................................................................................................................................ 2

Hardware and Software Requirements.......................................................................................................................... 3

Point Structure Diagram ............................................................................................................................................... 4

Detailed Description ..................................................................................................................................................... 5

Point Structure.............................................................................................................................................. 6

LABMASTR..............................................................................................................6

LAB_NULL...............................................................................................................6

Point Structure (Continued).......................................................................................................................... 7

Process/Unit Points ..................................................................................................7

Bias Calculation Points............................................................................................7

Custom Data Segments (Parameter Lists).................................................................................................... 8

Master Graphics Point.............................................................................................8

Process/Unit Area Points .........................................................................................8

Custom Data Segments (Continued) ............................................................................................................ 9

Bias Calculation Points............................................................................................9

Laboratory Null Point............................................................................................10

Error Codes................................................................................................................................................................. 11

Diagnostic Error Codes (Bias Calculation Points) ..................................................................................... 12

Subroutine Error Codes (Bias Calculation Points) ..................................................................................... 13

History Collection Error Codes (Bias Calculation Points) ......................................................................... 14

Algorithms .................................................................................................................................................................. 15

Installation Procedure ................................................................................................................................................. 16

Preparation for Installation......................................................................................................................... 17

CDS and PL Installation............................................................................................................................. 18

Building the Master Graphics Point ........................................................................................................... 19

Building the Null Laboratory Point ............................................................................................................ 20

16404 North Black Canyon Hiway • Phoenix, AZ 85023325 Rolling Oaks Dr • Thousand Oaks, CA 91361-1200

10333 Richmond, Suite 1110 • Houston, TX 77042Chilworth Research Center • Southampton, United Kingdom SO1 7NP

Hi-Spec Solutions

Laboratory Entry System ContentsRevision 2.1

Building a Process/Unit Point .................................................................................................................... 21

Building a Bias Calculation Point .............................................................................................................. 22

Graphics Installation .................................................................................................................................. 23

Graphics Installation (Continued) .............................................................................................................. 24

Graphics Installation (Continued) .............................................................................................................. 25

System Configuration ................................................................................................................................................. 26

Master Graphics Point Configuration (Direct CDS Entry)......................................................................... 27

Lab Configuration through Displays .......................................................................................................... 28

Lab Configuration through Displays (Continued) ...................................................................................... 29

Selecting a Process/Unit Point ..............................................................................29

Configuring the Process/Unit Point ......................................................................29

Lab Configuration through Displays (Continued) ...................................................................................... 30

Altering the Property Button Descriptions ..........................................................30

Configuring a Bias Calculation Point ...................................................................30

Bias Calculation Display Input Fields ........................................................................................................ 31

Configuring Special Note.......................................................................................32

Link CL Programs ...................................................................................................................................................... 33

Hi-Spec Solutions

Laboratory Entry System OverviewRevision 2.1 1

Overview

Definition. The laboratory updating system is a series of displays and routines which compareslaboratory results to inferred properties, and biases the calculation routines. This provides a feedbackmechanism for the calculations to ensure they provide reliable and accurate results.

Application. The laboratory system is designed to work with any of the Honeywell inferential propertycalculations.

Bias Calculations. The additive bias applied to a calculated property is determined knowing the time atwhich the laboratory sample was taken, and calculation input information contained within the inferredvariable point:

• Processinputs: TDC 3000 system time when sample is drawn.

• Property Calcinputs: Calculated value and current bias.

• Calculatedvalue: New inferential property calculation bias.

Incentive. 1. To provide laboratory feedback to the inferential property estimations.

2. To provide an estimation as to how well the inferential property calculations areperforming.

Hi-Spec Solutions

Laboratory Entry System Acronym ListRevision 2.1 2

Acronym List

Term Acronym

Application Module AM

Local Control Network LCN

Universal Station US

control language CL

process variable PV

CL object code file extension AO

Parameter List PL

custom data segment CDS

Hi-Spec Solutions

Laboratory Entry System Hardware & Software RequirementsRevision 2.1 3

Hardware and Software Requirements

Requirement Description

Hardware Platform TDC 3000 AM

Special Boards None

Other Computing Systems None

LCN Release Release 410 or later

AM Load Modules AMCL03.LO

US Load Modules None

Other Packages Any of the Honeywell Inferential Property routines.

Other Control Applications None

Software Inputs The calculated value (CALC_VAL(1)) and the current additive bias(LAB_BIAS(2)) for each of the routines to be updated.

Hi-Spec Solutions

Laboratory Entry System Point StructureRevision 2.1 4

Point Structure Diagram

T DC D isp lay

L A BMA ST R

L A B_ GRPHCDS:

PN T :

U N IT

PN T # 1

U N IT

PN T # 2

U N IT

PN T # 3

U N IT

PN T # 4

B ia sPn t s

CL : L A B_ T IME

CD S: L A B_ CD S

CL : A D DBIA S

CDS: A D DB_ CD S

N u mPn t s

Ca lcPn t s

B ia sPn t s

B ia sPn t s

Figure 1. Laboratory Entry System Point Structure

Hi-Spec Solutions

Laboratory Entry System Detailed DescriptionRevision 2.1 5

Detailed Description

The information provided within this section describes the Laboratory Entry System architecture andcustom data segments.

This section covers the following topics:

• Point Structures

• Custom Data Segments (Parameter Lists).

Hi-Spec Solutions

Laboratory Entry System Point StructureRevision 2.1 6

Point Structure

LABMASTR

This point is used as the main interface between the operating displays and configuration information.This point is used for the storage of process grouping information.

Point Structure (LABMASTR)

Point Type Application Module Custom Point

PV_Type None

CTL_Type None

Custom Data Segment LAB_GRPH.CL

Algorithm None

Insertion Point None

Slot None

Output None

LAB_NULL

This point is used as a link between all of the different calculation points. Due to the LCN checksperformed during AO link time, it is necessary to have one consistent point with a consistent set of CDSparameters. After the AO file has been linked to the bias calculation point, LAB_NULL is replaced withthe actual calculation point which receives the new bias.

Point Structure (LAB_NULL)

Point Type Application Module Custom Point

PV_Type None

CTL_Type None

Custom Data Segment ADDN_CDS.CL

Algorithm None

Insertion Point None

Slot None

Output None

Hi-Spec Solutions

Laboratory Entry System Point StructureRevision 2.1 7

Point Structure (Continued)

Process/Unit Points

These points are used to maintain configuration information related to each of the process/unit areas. Thepoints are named such that they describe the process or unit area. These points also contain a CL routinewhich captures the system date/time stamps and triggers the bias calculation points.

Point Structure (Process/Unit Points)

Point Type Application Module Custom Point

PV_Type None

CTL_Type None

Custom Data Segment LAB_CDS.CL

Algorithm LAB_TIME.AO

Insertion Point General

Slot 1

Output None

Bias Calculation Points

These points calculate a new additive bias for each of the configured inferential property calculationpoints.

Point Structure (Bias Calculation Points)

Point Type Application Module Custom Point

PV_Type None

CTL_Type None

Custom Data Segment ADDB_CDS.CL & PHST_CDS.CL

Algorithm ADDBIAS.AO - (ADDBIAS & ADDHIST), PARMHIST.AO

Block Names ( PARMHIST and PARMWRIT)

Insertion Point Background

Slot ( 1 & 2 )

Output None

Hi-Spec Solutions

Laboratory Entry System Custom Data SegmentsRevision 2.1 8

Custom Data Segments (Parameter Lists)

The following section outline the custom data segments (CDS) which are attached to the lab systempoints. The tables provide information related to the point type, the parameter used, and a briefdescription of those parameters and their usage.

Master Graphics Point

The following CDS parameters are attached to the master graphics point LABMASTR.

Custom Data Segments (LAB_GRPH)

Parameter Description Default Values

ENGPAR(1) Selected Process/Unit point within the array of configuredprocess points (Also accessed/established within theoperating displays).

Default = 0

ENGPAR(2) Total number of Process/Unit points configured. Default = 0

ENGPAR(3) Current overlay page displayed within the main operatinggraphic (LAB_SYS).

Default = 0

ENGPAR(4) The pervious overlay page displayed within the mainoperating graphic (LAB_SYS).

Default = 0

ENGPAR(5) Available for future use. Default = 0

CALC_PT(1..20) This array hold the tagname of the Process/Unit area points. NULL

Process/Unit Area Points

The following CDS parameters are attached to the process/unit area points.

Custom Data Segments (LAB_CDS)

Parameter Description Default Values

CALC_PT(1..30) These parameter hold either the tagname of the BiasCalculation points or Numeric Lab value points

NULL

KLVL(1..30) Keylevel access for the associated array location data entry OPR

ENGPAR(1..30) Indicates the associated point type, 0=Bias, 1=Numeric 1.0

X(0) Used for property selection from the operating displays 0.0

X(1..30) Array which indicates which (Bias Calc/Process) points areassociated and therefore can be time stamped together

0.0

TIMEDESC(0) Used for storage of the modified Date/Time stampinformation

N/A

TIMEDESC(1..30) Array which holds the last sampling time for the associatedCALC_PT

N/A

REV_NO Revision Number of the CDS package N/A

Hi-Spec Solutions

Laboratory Entry System Custom Data SegmentsRevision 2.1 9

Custom Data Segments (Continued)

Bias Calculation Points

The following CDS parameters are attached to the points which determine the bias values for a inferentialproperty prediction points.

Custom Data Segments (ADDB_CDS)

Parameter Description Default Values

ENGPAR(1) Calculated difference between the Lab value and the system 0.0

ENGPAR(2) Available for future use. N/A

ENGPAR(3) Available for future use. N/A

ENGPAR(4) Execution flag. (0=None, 1=Collect Data, 2=Calc Bias) 0.0

ENGPAR(5) Type of bias to calculate (0=None, 1=Additive Bias) 0.0

ENGPAR(6) Maximum laboratory value accepted for bias calculation 0.0

ENGPAR(7) Minimum laboratory value accepted for bias calculation 0.0

ENGPAR(8) Deadband where calculation and laboratory value are considered tobe the same

0.0

ENGPAR(9) Maximum change allowed for bias calculation (calc - lab) 0.0

ENGPAR(10) Deadtime between process and sample point collection 0.0

ENGPAR(11) Number of history values to collect (Maximum 100) 0.0

ENGPAR(12) History Scope: Source of the history information (0 => HM andarchives), 1 => HM

0.0

1ENGPAR(13) History sampling frequency (Allowed values 5, 10, 20, and 60) 0.0

ENGPAR(14) Number of data points to collect after the sampling time stamp.(Must be less than ENGPAR(11))

0.0

ENGPAR(15) Gain applied to the calculated additive bias 0.0

TIMEDESC Date/Time stamp for associated data collection N/A

STATUS(1) CL Error location flag N/A

STATUS(2) Subroutine Error location flag N/A

STATUS(3) HM Data Collection Error location flag N/A

REV_NO Program revision number N/A

1 This MUST be the same as the snapshot sample rate for the history group that contains the data.

Hi-Spec Solutions

Laboratory Entry System Custom Data SegmentsRevision 2.1 10

Custom Data Segments (Continued)

Custom Data Segments (PHST_CDS.CL)

Parameter Description Default Values

EXECSTAT(1) Number of Points (1-15) 0.0

EXECSTAT(2) Execute File write routine 0.0

EXECSTAT(3) Available 0.0

PATHNAME Pathname for History file .NET>VOL> String “NET>RMPC>”

HISFILE Filename and Extention (File.xx), String “DATA.XX”

SNAME Array of Point.Parm names, String array 1-15

AVREC Array (1..15) Averaged history values 0.0

ERRCODE(1) Error location indication 0.0

ERRCODE(2) Subroutine error status 0.0

ERRCODE(3) Hist collection status 0.0

ERRCODE(4) Available 0.0

ERRCODE(5) Available 0.0

Laboratory Null Point

The following CDS parameters are attached to the Null Laboratory point which is required for CL linking.

Custom Data Segments (ADDN_CDS)

Parameter Description Default Values

CALC_VAL(1) Average Historized Prop. value N/A

CALC_VAL(2) Average historized Lab Bias (2) value

CALC_VAL(3) Old additive bias (Last time)

LAB_BIAS(1..2) Required for standardization of LAB_BIAS arrays N/A

Hi-Spec Solutions

Laboratory Entry System Error CodesRevision 2.1 11

Error Codes

The following tables describes the error codes associated with the bias calculation points

This section covers the following topics:

• Diagnostic error codes

• Subroutine error codes

• History collection error codes.

Hi-Spec Solutions

Laboratory Entry System Error CodesRevision 2.1 12

Diagnostic Error Codes (Bias Calculation Points)

Diagnostic Error Codes

Parameter Value Description

STATUS(1)2 0.0 No errors

1.0 CALC_PT has a null point entered or ENGPAR(4) contains aBAD value

2.0 The configured data sampling rate is incorrect ENGPAR(13)

3.0 The history collection for the CALC_PT.PV has failed

4.0 The history collection for the CALC_PT.LAB_BIAS(2) has failed

5.0 The ABS(Maximum Value) is <= 0.0 ENGPAR(6)

6.0 The ABS(Minimum Value) is <= 0.0 ENGPAR(7)

7.0 The configured deadband is <= 0.0 ENGPAR(8)

8.0 The configured maximum difference is <= 0.0 ENGPAR(9)

9.0 A BAD value has been collected from history CALC_VAL(1)

10.0 A BAD laboratory value has been stored CALC_VAL(2)

11.0 The laboratory value is > than the Maximum

12.0 The laboratory value is < than the Minimum

2 STATUS(1) indicates errors in the calculation.

Hi-Spec Solutions

Laboratory Entry System History Collection Error CodesRevision 2.1 13

Subroutine Error Codes (Bias Calculation Points)

Subroutine Error Codes

Parameter Value Description

STATUS(2) 0.0 No errors

1.0 Error in parameter

2.0 Some item contain errors

3.0 System busy, request denied

4.0 Could not complete collection request

5.0 An intermediate error has occurred

6.0 An unknown error has occurred

7.0 Data access error

8.0 A memory error has occurred

9.0 Error converting string

1000.0+ Contact Honeywell TAC (Illogical Error)

Hi-Spec Solutions

Laboratory Entry System History Collection Error CodesRevision 2.1 14

History Collection Error Codes (Bias Calculation Points)

History Error Codes (Ordinal States)

Parameter Value Description

STATUS(3) 0.0 No errors

1.0 Limit Violation

2.0 Right Error

3.0 Communication Error

4.0 Abort Error

5.0 Arithmetic Error

6.0 Array Limit Violation

7.0 Range Error

8.0 Program Error

9.0 Keylevel Error

10.0 Configuration Error

Hi-Spec Solutions

Laboratory Entry System AlgorithmsRevision 2.1 15

Algorithms

Average. The inferential property values collected from history are averaged over the collection period,as shown in Equation 1:

ave_val = Sum(prop_val)/num_of_samples

Where:

ave_val = Average inferential property valueprop_val = Inferential property values within configured periodnum_of_samples = Number of property values collected within the period

Equation 1

Bias Calculation. The new additive bias value is determined using the averaged property value, thelaboratory results, and configuration information, as shown in Equation 2:

new_bias = old_bias + (bias_gain * (lab_val - ave_val))

Where:

new_bias = The new additive bias return to the calculation pointold_bias = The calculation bias used during the collection periodbias_gain = Scaling factor applied to the differencelab_val = The internal laboratory valueave_val = The averaged calculated property value

Equation 2

Hi-Spec Solutions

Laboratory Entry System Installation ProcedureRevision 2.1 16

Installation Procedure

This document describes the installation procedure for the Laboratory Entry System on the TDC 3000System AM.

This section covers the following topics:

• Preparation for Installation

• CDS and PL Installation

• Building the Graphics Point (LABMASTR)

• Building the Null Laboratory Point (LAB_NULL)

• Building the Process/Unit Points

• Building the Bias Calculation Points

• Graphics Installation.

Hi-Spec Solutions

Laboratory Entry System Preparation for InstallationRevision 2.1 17

Preparation for Installation

Step Action

Gather media Gather the following items:

• Removable media containing the directory LAB

• Commissioning Worksheet

Make media backup Make a backup copy of media/directory on a US with drives n and mconfigured as follows:

Media:

FCOPY $Fn $Fm

Directory only:

CD $Fm>vol_dir> LAB

COPY $Fn>LAB>*.* $Fm>LAB>= -V -D

Where $Fn is the drive with the source media and $Fm is the drive withthe target media

Hi-Spec Solutions

Laboratory Entry System CDS and PL InstallationRevision 2.1 18

CDS and PL Installation

This procedure must be done once per LCN installation.

Step Action

Set volumepathnames

From Modify Volume Paths display:

CL CUSTOM GDF: NET>CDSG>

USER DEFLT PATH: $Fn>LAB

CompileADDN_CDS.CL

From the Command Processor display, compile the CDS file, ADDN_CDS:CL $Fn>CDS>ADDN_CDS.CL -UL

If it is necessary to change the CDS due to a software revision, refer to theApplication Module Data Control Language/Application Module Data Entry

CompileADDB_PL.CL

From the Command Processor display, compile the PL file, ADDB_PL:CL $Fn>PL>ADDB_PL.CL -UL

If it is necessary to change the PL due to a software revision, refer to theApplication Module Data Control Language/Application Module Data Entry

CompileLAB_CDS.CL

From the Command Processor display, compile the CDS file, LAB_CDS:CL $Fn>CDS>LAB_CDS.CL -UL

If it is necessary to change the CDS due to a software revision, refer to theApplication Module Data Control Language/Application Module Data Entry

CompileADDB_CDS.CL

From the Command Processor display, compile the CDS file, ADDB_CDS:CL $Fn>CDS>ADDB_CDS.CL -UL

If it is necessary to change the CDS due to a software revision, refer to theApplication Module Data Control Language/Application Module Data Entry

CompileLAB_GRPH.CL

From the Command Processor display, compile the CDS file, LAB_GRPH:CL $Fn>CDS>LAB_GRPH.CL -UL

If it is necessary to change the CDS due to a software revision, refer to theApplication Module Data Control Language/Application Module Data Entry

CompilePHST_CDS.CL

From the Command Processor display, compile the CDS file,PHST_CDS.CLCL $Fn>CDS> PHST_CDS.CL -UL

If it is necessary to change the CDS due to a software revision, refer to theApplication Module Data Control Language/Application Module Data Entry

Hi-Spec Solutions

Laboratory Entry System Building the Master Graphics PointRevision 2.1 19

Building the Master Graphics Point

An information point is required to maintain configuration information related to the operating displays.

Step Action

Modify ExceptionBuild file,LAB_MSTR.EB

From the Command Processor display:

ED $Fn>EB>LAB_MSTR.EB [ENTER]

Edit template as follows:

&N point name

UNIT = unit number

PTDESC ="point descriptor text"

KEYWORD = "keyword"

Load EB file. From the Builder Commands display:

Select the EXCEPTION BUILD target.

Fill in ports as:

REFERENCE PATH NAME: $Fn>EB

Load Entities (select target)

Pathname for SOURCE file: LAB_MSTR.EB

Pathname for IDF file: LAB_MSTR.DB

[ENTER]

Verify load When the load is complete, verify point loading by calling the point detailfrom the [DETAIL] button

Hi-Spec Solutions

Laboratory Entry System Building the Null Laboratory PointRevision 2.1 20

Building the Null Laboratory Point

A point which contain a specific CDS structure is required for AO linking to the Bias Calculation points.This is accomplished using the NULL Laboratory point.

Step Action

Modify ExceptionBuild file,LAB_NULL.EB

From the Command Processor display:

ED $Fn>EB>LAB_NULL.EB [ENTER]

Edit template as follows:

&N point name

UNIT = unit number

PTDESC ="point descriptor text"

KEYWORD = "keyword"

Load EB file. From the Builder Commands display:

Select the EXCEPTION BUILD target.

Fill in ports as:

REFERENCE PATH NAME: $Fn>EB

Load Entities (select target)

Pathname for SOURCE file: LAB_NULL.EB

Pathname for IDF file: LAB_NULL.DB

[ENTER]

Verify load When the load is complete, verify point loading by calling the point detailfrom the [DETAIL] button

Hi-Spec Solutions

Laboratory Entry System Building Process/Unit PointsRevision 2.1 21

Building a Process/Unit Point

For each separate process or unit an information point is required to maintain configuration informationan operating information.

Step Action

Modify ExceptionBuild file,LAB_PROC.EB

From the Command Processor display:

ED $Fn>EB>LAB_PROC.EB [ENTER]

Edit template as follows:

&N point name

UNIT = unit number

PTDESC ="point descriptor text"

KEYWORD = "keyword"

Load EB file. From the Builder Commands display:

Select the EXCEPTION BUILD target.

Fill in ports as:

REFERENCE PATH NAME: $Fn>EB

Load Entities (select target)

Pathname for SOURCE file: LAB_PROC.EB

Pathname for IDF file: LAB_PROC.DB

[ENTER]

Verify load When the load is complete, verify point loading by calling the point detailfrom the [DETAIL] button

Hi-Spec Solutions

Laboratory Entry System Building Bias Calculation PointsRevision 2.1 22

Building a Bias Calculation Point

Each inferential property calculation point requires a bias calculation point.

Step Action

Modify ExceptionBuild file,LAB_BIAS.EB

From the Command Processor display:

ED $Fn>EB>LAB_BIAS.EB [ENTER]

Edit template as follows:

&N point name

UNIT = unit number

PTDESC ="point descriptor text"

KEYWORD = "keyword"

Note: Add the following line to this .EB template

CALC_PT=LAB_NULL

Load EB file. From the Builder Commands display:

Select the EXCEPTION BUILD target.

Fill in ports as:

REFERENCE PATH NAME: $Fn>EB

Load Entities (select target)

Pathname for SOURCE file: LAB_BIAS.EB

Pathname for IDF file: LAB_BIAS.DB

[ENTER]

Verify load When the load is complete, verify point loading by calling the point detailfrom the [DETAIL] button

Hi-Spec Solutions

Laboratory Entry System Graphics InstallationRevision 2.1 23

Graphics Installation

The laboratory entry system contains a main operating display LAB_SYS, and an on-line help displayLAB_HELP. There are a total of 9 overlays associated with the 2 main displays. Graphics must becompiled and installed once per LCN.

Step Action

Go to the PictureEditor

Enter the Picture Editor, one of two ways:

From the Engineering Main Menu select the Picture Editor target

or

From the Command Processor command line type PE [ENTER]

Load DDB file. Load the global display data base variable definition file, DDB:

L $Fn>PICS>DDB [ENTER]

Read LAB_SYS Read in the picture file, LAB_SYS

R $Fn>LAB>LAB_SYS [ENTER]

Verify and Compile Verify picture: VER [ENTER]

When the verification is complete Compile the picture: COM [ENTER]

Read LAB_OV1 Read in the picture file, LAB_OV1

R $Fn>LAB>LAB_OV1 [ENTER]

Verify and Compile Verify picture: VER [ENTER]

When the verification is complete Compile the picture: COM [ENTER]

Read LAB_OV2 Read in the picture file, LAB_OV2

R $Fn>LAB>LAB_OV2 [ENTER]

Verify and Compile Verify picture: VER [ENTER]

When the verification is complete Compile the picture: COM [ENTER]

Read LAB_OV3 Read in the picture file, LAB_OV3

R $Fn>LAB>LAB_OV3 [ENTER]

Verify and Compile Verify picture: VER [ENTER]

When the verification is complete Compile the picture: COM [ENTER]

Read LAB_OV4 Read in the picture file, LAB_OV4

R $Fn>LAB>LAB_OV4 [ENTER]

Verify and Compile Verify picture: VER [ENTER]

When the verification is complete Compile the picture: COM [ENTER]

Read LAB_OV5 Read in the picture file, LAB_OV5

R $Fn>LAB>LAB_OV5 [ENTER]

Verify and Compile Verify picture: VER [ENTER]

When the verification is complete Compile the picture: COM [ENTER]

Continued

Hi-Spec Solutions

Laboratory Entry System Graphics InstallationRevision 2.1 24

Graphics Installation (Continued)

Step Action

Read LAB_HELP Read in the picture file, LAB_SYS

R $Fn>LAB>LAB_HELP [ENTER]

Verify and Compile Verify picture: VER [ENTER]

When the verification is complete Compile the picture: COM [ENTER]

Read HLP_OV1 Read in the picture file, HLP_OV1

R $Fn>LAB>HLP_OV1[ENTER]

Verify and Compile Verify picture: VER [ENTER]

When the verification is complete Compile the picture: COM [ENTER]

Read HLP_OV2 Read in the picture file, HLP_OV2

R $Fn>LAB>HLP_OV2[ENTER]

Verify and Compile Verify picture: VER [ENTER]

When the verification is complete Compile the picture: COM [ENTER]

Read HLP_OV3 Read in the picture file, HLP_OV3

R $Fn>LAB>HLP_OV3[ENTER]

Verify and Compile Verify picture: VER [ENTER]

When the verification is complete Compile the picture: COM [ENTER]

Read HLP_OV4 Read in the picture file, HLP_OV4

R $Fn>LAB>HLP_OV4[ENTER]

Verify and Compile Verify picture: VER [ENTER]

When the verification is complete Compile the picture: COM [ENTER]

Copy LAB_SYS.DOto the graphicsdirectory

From the Command Processor Display:

COPY $Fn>LAB>LAB_SYS.DO NET>pic_dir>= -D [ENTER]

Where pic_dir is the picture source directory specified in the SchematicSearch Path for the system being worked on.

Copy LAB_OV1.DOto the graphicsdirectory

From the Command Processor Display:

COPY $Fn>LAB>LAB_OV1.DO NET>pic_dir>= -D [ENTER]

Where pic_dir is the picture source directory specified in the SchematicSearch Path for the system being worked on.

Copy LAB_OV2.DOto the graphicsdirectory

From the Command Processor Display:

COPY $Fn>LAB>LAB_OV2.DO NET>pic_dir>= -D [ENTER]

Where pic_dir is the picture source directory specified in the SchematicSearch Path for the system being worked on.

Continued

Hi-Spec Solutions

Laboratory Entry System Graphics InstallationRevision 2.1 25

Graphics Installation (Continued)

Step Action

Copy LAB_OV3.DOto the graphicsdirectory

From the Command Processor Display:

COPY $Fn>LAB>LAB_OV3.DO NET>pic_dir>= -D [ENTER]

Where pic_dir is the picture source directory specified in the SchematicSearch Path for the system being worked on.

Copy LAB_OV4.DOto the graphicsdirectory

From the Command Processor Display:

COPY $Fn>LAB>LAB_OV4.DO NET>pic_dir>= -D [ENTER]

Where pic_dir is the picture source directory specified in the SchematicSearch Path for the system being worked on.

Copy LAB_OV5.DOto the graphicsdirectory

From the Command Processor Display:

COPY $Fn>LAB>LAB_OV5.DO NET>pic_dir>= -D [ENTER]

Where pic_dir is the picture source directory specified in the SchematicSearch Path for the system being worked on.

CopyLAB_HELP.DO tothe graphics directory

From the Command Processor Display:

COPY $Fn>LAB>LAB_OV3.DO NET>pic_dir>= -D [ENTER]

Where pic_dir is the picture source directory specified in the SchematicSearch Path for the system being worked on.

Copy HLP_OV1.DOto the graphicsdirectory

From the Command Processor Display:

COPY $Fn>LAB>HLP_OV1.DO NET>pic_dir>= -D [ENTER]

Where pic_dir is the picture source directory specified in the SchematicSearch Path for the system being worked on.

Copy HLP_OV2.DOto the graphicsdirectory

From the Command Processor Display:

COPY $Fn>LAB>HLP_OV2.DO NET>pic_dir>= -D [ENTER]

Where pic_dir is the picture source directory specified in the SchematicSearch Path for the system being worked on.

Copy HLP_OV3.DOto the graphicsdirectory

From the Command Processor Display:

COPY $Fn>LAB>HLP_OV3.DO NET>pic_dir>= -D [ENTER]

Where pic_dir is the picture source directory specified in the SchematicSearch Path for the system being worked on.

Copy HLP_OV4.DOto the graphicsdirectory

From the Command Processor Display:

COPY $Fn>LAB>HLP_OV4.DO NET>pic_dir>= -D [ENTER]

Where pic_dir is the picture source directory specified in the SchematicSearch Path for the system being worked on.

Hi-Spec Solutions

Laboratory Entry System System ConfigurationRevision 2.1 26

System Configuration

Configuration of the Laboratory Entry System is accomplished through the configuration/operatingdisplays and through direct entry to the CDS ports on the Master Graphics Point.

Setup of the Laboratory Entry System requires the following steps:

• CDS Configuration of Master Graphics Point

• Graphic Configuration of remaining Laboratory System Functions

• Linking CL Program.

Notes:

Configuration errors may occur if points are deleted. To correct this problem, the AO files must beunlinked and then relinked to reestablish dynamic indirection.

Link errors can occur, when an improper point type is configured in a CDS parameter. This is caused bya missing parameter. A null point containing all required parameters can be used in the configuration forlinking purposes only. After the CL is linked, the desired point is then entered into the proper CDSlocation.

Hi-Spec Solutions

Laboratory Entry System Completing Configuration (Operating Displays)Revision 2.1 27

Master Graphics Point Configuration (Direct CDS Entry)

Configuration data must be entered directly onto the master graphics point, LABMASTR. The requiredinformation and associated parameter are listed below.

Parameter Description Comments

CALC_PT(1..n) Tagname of desired Process/Unitpoints.

See page 21

ENGPAR(1) The current selected process/unitpoint within the system

Default = 1, This parameter is selectedlater from the operating display

ENGPAR(2) Total number of Process/Unitpoints within the lab system.

This parameter sets the number ofprocess/unit points displayed.

The remaining configuration is completed using the laboratory system operating and configurationdisplays. Although it is possible to configure the system through direct CDS entry it is highlydiscouraged.

Hi-Spec Solutions

Laboratory Entry System Completing Configuration (Operating Displays)Revision 2.1 28

Lab Configuration through Displays

Once all of the required points have been built and the master graphics point configured, the remainingconfiguration is performed using the Laboratory Entry System displays. To begin, call up the operatingdisplay by selecting SCHEM, and entering LAB_SYS into the schematic port.

Graphic LAB_SYS

Continued

Hi-Spec Solutions

Laboratory Entry System Completing Configuration (Operating Displays)Revision 2.1 29

Lab Configuration through Displays (Continued)

Selecting a Process/Unit Point

To begin the configuration process, first select the desired process/unit area. The following procedureoutlines the selection task.

• Select SCHEM and enter LAB_SYS

• In the lower left corner select "SELECT UNIT" and a new menu bar appears.

• Select the desired Process/Unit area, the main menu bar now returns.

Configuring the Process/Unit Point

The next step is to configure the process/unit point with the desired bias calculation points, numericstorage points, keylevel access, and time stamp associations:

• Select the "CONFIG DISPLAY" button within the menu bar. A new overlay appears which providesaccess to the overall system configuration.

• Select an entry port within the "CALC PNT" column. Enter a point name which corresponds to either alab numeric (Gravity, Sulfur, Viscosity point) or a bias calculation point.

• Select the "CALC TYPE," either numeric or bias calculation.

• Provide a time stamp index as a sample association number. This index number is used to direct timestamp data collection. If CALC PNT (1) is a gravity point then the index for TIME (1) could be setequal to 1. If CALC PNT (2) were the 90% bias calculation for the same material as CALC PNT (1)then TIME (2) would also be equal to 1. Therefore, these 2 points share the same index value. Thisthen says that when a sample is drawn, the gravity and the 90% point calculation uses the same timestamp. A new index number must have the same number as the line 3 in the left and column.

• Select the desired display "KEYLEVEL." This can be used to customized the display to fit anyoperating environment.

• If within the "CALC TYPE" column, "BIAS" was selected, a new target will appear under the headingof "ADDITIONAL CFG." Selection of this target provides a new overlay for the configuration of thebiasing routine. See next page.

• Once all of the process/unit points and the associated parameters have been defined return to theoperating overlay by selecting the "PROP DISPLAY" target.

Hi-Spec Solutions

Laboratory Entry System Completing Configuration (Operating Displays)Revision 2.1 30

Lab Configuration through Displays (Continued)

Altering the Property Button Descriptions

After configuring the process/unit point, the property description buttons should be verified to ensure theyare correct. If the button name is truncated or needs to be altered to better reflect the property:

• Select the "SCHEM" button and enter "PEEKPOKE," a standard Honeywell display.

• Select any open cell and type "PNT_NAME.PTDESC," where PNT_NAME is the name of the systempoint.

• Select the old point description and enter a new description in the data port provided and press ENTER.

• Return to LAB_SYS and examine the property descriptions.

Configuring a Bias Calculation Point

Once the lab operating displays and process/unit areas have been configured, the actual bias calculationpoints must be configured. To complete the configuration execute the following tasks:

• Select the "CONFIG DISPLAY" button from the lower right corner of the LAB_SYS menu bar, thisbrings up the process/unit configuration overlay.

• Select the "ADD BIAS CONFIG" target. This provides a new configuration overlay.

• The new overlay provides the configuration display for the bias calculation points. The following tabledescribes each of the fields and action required and the CDS storage for that configuration field.

Hi-Spec Solutions

Laboratory Entry System Completing Configuration (Operating Displays)Revision 2.1 31

Bias Calculation Display Input Fields

Selection Port Parameter Action

Additive Bias Calc Pnt $_DDB The current bias point is displayed in this field.

Calculation PNT CALC_PT Enter the point LAB_NULL after linking the AOADDBIAS replace LAB_NULL with the desiredInferred Property Calculation point.

History Data Scope[HM] [HM&A]

ENGPAR(12) History Module only => 1.0History Module and Archives => 0.0

History SamplingFreq.

ENGPAR(13) Enter the desired sampling frequency in SECONDSValid Values are (5, 10, 20, or 60).

# of History Values ENGPAR(11) Enter the number of history values to be collected,the maximum value is 100.0.

# of History Valuesafter Sampling Time

ENGPAR(14) Enter the number of values to be collected AFTERthe sampling time. (Less than ENGPAR(11)).

Max Lab ValueConsidered

ENGPAR(6) Enter the maximum allowable laboratory valueconsidered for biasing.

Mim Lab ValueConsidered

ENGPAR(7) Enter the minimum allowable laboratory valueconsidered for biasing.

Bias CalculationDeadband

ENGPAR(8) Enter the number for a deadband where the lab andcalculated values are considered equal. This MUSTbe a non-zero value.

Max Change ENGPAR(9) Enter the maximum allowed change to the additivebias.

Process/SampleDeadtime

ENGPAR(10) Enter the number of minutes of deadtime betweenthe process and the sample point.

Gain on Additive Bias ENGPAR(15) Enter a gain or percentage of the new bias which isapplied to the existing bias.

After completing the Bias Calculation Point configuration a CL block must be link to the point. Toaccomplish this follow the steps outlined below.

Step Action

Link ADDBIAS From the Command Processor Display:

LK $Fn>AO>ADDBIAS point_name [ENTER]

Link PARMHIST

ReplaceLAB_NULL

Return to the configuration display and replace LAB_NULL with the desiredinferential calculation point name.

Activate point Call up the point detail and activate the point.

Hi-Spec Solutions

Laboratory Entry System Completing Configuration (Operating Displays)Revision 2.1 32

Configuring Special Note

For each bias calculation point there are (2) parameters which MUST be historized on the system. Referto the Honeywell documentation for a description of the historization procedure. The following:

• CALC_PT.CALC_VAL(1) - Which is the value of the inferential property calculation.

• CALC_PT.LAB_BIAS(2) - Which is the value of the additive bias used within the inferential propertycalculation point.

Where CALC_PT is the actual property calculation point, NOT the name of the bias calculation point.

For PARMHIST block, all Point.param in SNAME must be historized. Data written to

PATHNAME = NET>XXXX> where directory XXXX is 4 non-blank characters.

HISFILE = ZZZDATA.XX Must be an 8 digit non-blank filename.

When the file is first created, column header information is written out. The proplerty calc and Lab biasvalue are written out to the history file in the last two columns.

EXECSTAT (1) = Number of points (SNAME entries)

(2) = Non-zero to execute file write.

Hi-Spec Solutions

Laboratory Entry System Linking CL ProgramRevision 2.1 33

Link CL Programs

Step Action

Link LAB_TIME From the Command Processor Display:

LK $Fn>AO>LAB_TIME process/unit point [ENTER]

Activate point Call up the point detail and activate the point.

Verify Operation Verify that LAB_TIME is running without any CL errors.

Hi-Spec Solutions

Laboratory Entry System Linking CL ProgramRevision 2.1 34

Hi-Spec Solutions

Honeywell Hi-Spec Solutions • 16404 N. Black Canyon Hwy. • Phoenix, AZ 85023

Advanced Control Package

Pour Point Calculation

CONTROLLED

May 1995Revision 3.0

Hi-Spec Solutions

Pour Point Calculation Revision HistoryRevision 3.0

16404 North Black Canyon Hiway • Phoenix, Az 85023325 Rolling Oaks Dr • Thousand Oaks, CA 91361-1200

10333 Richmond, Suite 1110 • Houston, Tx 77042Chilworth Research Centre • Southampton, United Kingdom SO1 7NP

Hi-Spec Solutions

Pour Point Calculation ContentsRevision 3.0

Table of ContentsOverview.........................................................................................................................................1

Acronym List ..................................................................................................................................3

Hardware and Software Requirements ...........................................................................................4

Instrumentation (Process Inputs).....................................................................................................5

Process Diagram .............................................................................................................................6

Detailed Description .......................................................................................................................7

Point Structure ..................................................................................................................8

Process Inputs ...................................................................................................................9

Continued..........................................................................................................................9

Process Inputs (Continued) .............................................................................................10

Configuration Inputs .......................................................................................................11

Configuration Inputs (Continued)...................................................................................12

Configuration Inputs (Continued)...................................................................................13

Continued........................................................................................................................13

Configuration Inputs (Continued)...................................................................................14

Calculation Outputs ........................................................................................................15

Calculation Outputs (Continued) ....................................................................................16

Error Codes ...................................................................................................................................17

Diagnostic Error Codes...................................................................................................18

Diagnostic Error Codes (Continued)...............................................................................19

Molecular Weight Error Codes .......................................................................................20

EFV Temperature Error Codes .......................................................................................21

Configuration and Tuning.............................................................................................................22

Biases in the Pour Point Program ...................................................................................23

Tuning Parameters ..........................................................................................................24

Algorithms ....................................................................................................................................25

Algorithms (Continued) ..................................................................................................26

Installation Procedure ...................................................................................................................27

Preparation for Installation..............................................................................................28

CDS and PL Installation .................................................................................................29

Building Pour Point Calculation Point............................................................................30

Configuration Graphics Installation................................................................................31

Hi-Spec Solutions

Pour Point Calculation ContentsRevision 3.0

Configure Calculation Point .........................................................................................................32

Point Configuration Using Graphic POUR_CFG...........................................................33

Point Configuration Using Graphic POUR_CFG (Continued).......................................34

Point Configuration Using Graphic POUR_CFG (Continued).......................................35

Point Configuration Using Graphic POUR_CFG (Continued).......................................36

Point Configuration through Direct CDS Entry..............................................................37

Point Configuration through Direct CDS Entry (Continued) .........................................38

Point Configuration through Direct CDS Entry (Continued) .........................................39

Point Configuration through Direct CDS Entry (Continued) .........................................40

Point Configuration through Direct CDS Entry (Continued) .........................................41

Point Configuration through Direct CDS Entry (Continued) .........................................42

Point Configuration through Direct CDS Entry (Continued) .........................................43

Link CL Programs...........................................................................................................44

Hi-Spec Solutions

Pour Point Calculation Overview

Revision 3.0 1

Overview

Definition. The pour point temperature provides an estimate of the relative amount ofwax within the petroleum fraction. A pour point test will not indicate the actual amountof wax content within a fraction, but does indicate that most of the wax above the pourtemperature has been removed. The pour point temperature is affected by thehydrocarbons paraffinic content, symmetrical molecular structures, and aromaticcontent.

Application. The pour point of a hydrocarbon fraction is an important specification fordistillates and diesel fuels.

Calculation. The pour point calculation program calculates the inferential pour pointof a hydrocarbon product based on:

• Processinputs:

Temperatures, pressures, and flows

• Characterizationinputs:

Watson K and specific gravity

• Calculatedvalues:

Molecular weight, equilibrium flash vaporizationtemperature, and the TBP 50% point.

Incentive. 1. To indicate how closely a hydrocarbon stream is meeting the pour pointspecification.

2. To eliminate dead time associated with laboratory analysis and on-lineanalyzers.

3. To provide a real-time input for use in advanced control applications.

Hi-Spec Solutions

Pour Point Calculation Overview

Revision 3.0 2

30252015105 0 10

15

20

25

30

Calc Pour Lab Pour

Unbiased Pour Point Predictions

Samples

Figure 1

The lab results in Figure 1 are shown with error bars of + or - 1 degree F. The ASTM D97-85 Pour Point, states a reproducibility of + or -5.0 degrees F when the test isperformed by the same technician.

Hi-Spec Solutions

Pour Point Calculation Acronym List

Revision 3.0 3

Acronym List

Term AcronymApplication Module AM

Local Control Network LCN

Universal Station US

control language CL

process variable PV

custom data segment CDS

Equilibrium Flash Vaporization EFV

pounds per square inch psi

Parameter List PL

CL object code file extension AO

true boiling point TBP

Hi-Spec Solutions

Pour Point Calculation Hardware and Software Requirements

Revision 3.0 4

Hardware and Software Requirements

Requirement DescriptionHardware Platform TDC 3000 AM

Special Boards None

Other Computing Systems None

LCN Release Release 300 or later

AM Load Modules None

US Load Modules None

Other Packages None

Other Control Applications None

Software Inputs Specific gravities and Watson K factors for tower products and theinternal liquid, must exist as points on the LCN

Hi-Spec Solutions

Pour Point Calculation Instrumentation (Process Inputs)

Revision 3.0 5

Instrumentation (Process Inputs)

Process Input1 Required Recommended

Input stream flow rates XDraw temperature XDraw pressure X

1 Required inputs can sometimes be obtained by inference. However, calculations based upon inferred data can be less accurate than calculations based upon direct readings.

Hi-Spec Solutions

Pour Point Calculation Process Diagram

Revision 3.0 6

Process Diagram

To be determined.

Hi-Spec Solutions

Pour Point Calculation Detailed Description

Revision 3.0 7

Detailed Description

The tables in this section describe the following Pour Point program architecture:

• Point Structure

• Process Inputs

• Configuration Inputs

• Calculation Outputs.

Hi-Spec Solutions

Pour Point Calculation Point Structure

Revision 3.0 8

Point Structure

Point StructurePoint Type AM Regulatory, CL

PV_Type CL

CTL_Type Any

Custom Data Segment POUR_CDS.CL

Algorithm POUR_PNT.CL

Insertion Point PV_ALG

Slot 5

Output The calculated inferential Pour point is displayed as the point’s PV

Hi-Spec Solutions

Pour Point Calculation Process Inputs

Revision 3.0 9

Process Inputs

Process Inputs

Critical2

Parameter Description Units Yes NoPRESS_PT Tagname of source for draw pressure Any pressure units XTEMP_PT Tagname of source for draw temperature °F or °C XFLOW_PT(1) Tagname for stream 1 flow rate Any flow units XFLOW_PT(2) Tagname for stream 2 flow rate Any flow units XFLOW_PT(3) Tagname for stream 3 flow rate Any flow units XFLOW_PT(4) Tagname for stream 4 flow rate Any flow units XFLOW_PT(5) Tagname for stream 5 flow rate Any flow units XFLOW_PT(6) Tagname for stream 6 flow rate Any flow units XFLOW_PT(7) Tagname for stream 7 flow rate Any flow units XFLOW_PT(8) Tagname for stream 8 flow rate Any flow units XFLOW_PT(9) Tagname for stream 9 flow rate Any flow units XFLOW_PT(10) Tagname for stream 10 flow rate Any flow units XGRAV_PT(1) Tagname for stream 1 gravity input °API or none (S.G.)XGRAV_PT(2) Tagname for stream 2 gravity input °API or none (S.G.)XGRAV_PT(3) Tagname for stream 3 gravity input °API or none (S.G.)XGRAV_PT(4) Tagname for stream 4 gravity input °API or none (S.G.)XGRAV_PT(5) Tagname for stream 5 gravity input °API or none (S.G.)XGRAV_PT(6) Tagname for stream 6 gravity input °API or none (S.G.)XGRAV_PT(7) Tagname for stream 7 gravity input °API or none (S.G.)XGRAV_PT(8) Tagname for stream 8 gravity input °API or none (S.G.)XGRAV_PT(9) Tagname for stream 9 gravity input °API or none (S.G.)XGRAV_PT(10) Tagname for stream 10 gravity input °API or none (S.G.)XWATK_PT(1) Tagname for stream 1 Watson K factor None XWATK_PT(2) Tagname for stream 1 Watson K factor None XWATK_PT(3) Tagname for stream 1 Watson K factor None X

Continued

2 Critical indicates that a bad input causes the output of the calculation to be set BAD.

Hi-Spec Solutions

Pour Point Calculation Process Inputs

Revision 3.0 10

Process Inputs (Continued)

Process Inputs

Critical3

Parameter Description Units Yes NoWATK_PT(4) Tagname for stream 1 Watson K factor None XWATK_PT(5) Tagname for stream 1 Watson K factor None XWATK_PT(6) Tagname for stream 1 Watson K factor None XWATK_PT(7) Tagname for stream 1 Watson K factor None XWATK_PT(8) Tagname for stream 1 Watson K factor None XWATK_PT(9) Tagname for stream 1 Watson K factor None XWATK_PT(10) Tagname for stream 1 Watson K factor None X

.

3 Critical indicates that a bad input causes the output of the calculation to be set BAD.

Hi-Spec Solutions

Pour Point Calculation Configuration Inputs

Revision 3.0 11

Configuration Inputs

Configuration InputsParameter Description Units

T_BIAS Additive bias to draw temperature Same units asTEMP_PT

P_BIAS Additive bias to draw pressure Same units asPRESS_PT

ENGPAR(1) Number of configured streams (2.0 < ENGPAR(1) <= 10.0)

N/A

ENGPAR(2) Local atmospheric pressure (a value of 14.696 will be usedinternally if a zero is entered)

Same units asPRESS_PT

ENGPAR(3) Location of product stream within configured streams None

ENGPAR(4) Indicates if the mole weight for stream 1 is entered orcalculated. (0 = Calc, 1 = Entered)

None

ENGPAR(5) Indicates if the mole weight for stream 2 is entered orcalculated. (0 = Calc, 1 = Entered)

None

ENGPAR(6) Indicates if the mole weight for stream 3 is entered orcalculated. (0 = Calc, 1 = Entered)

None

ENGPAR(7) Indicates if the mole weight for stream 4 is entered orcalculated. (0 = Calc, 1 = Entered)

None

ENGPAR(8) Indicates if the mole weight for stream 5 is entered orcalculated. (0 = Calc, 1 = Entered)

None

ENGPAR(9) Indicates if the mole weight for stream 6 is entered orcalculated. (0 = Calc, 1 = Entered)

None

ENGPAR(10) Indicates if the mole weight for stream 7 is entered orcalculated. (0 = Calc, 1 = Entered)

None

ENGPAR(11) Indicates if the mole weight for stream 8 is entered orcalculated. (0 = Calc, 1 = Entered)

None

ENGPAR(12) Indicates if the mole weight for stream 9 is entered orcalculated. (0 = Calc, 1 = Entered)

None

ENGPAR(13) Indicates if the mole weight for stream 10 is entered orcalculated. (0 = Calc, 1 = Entered)

None

ENGPAR(14) Spare - Available for future development N/A

ENGPAR(15) Flag to force calculation BAD( 0 => Do not set BAD; 1 => Set calculation BAD)

N/A

LAB_BIAS(1) Multiplicative bias applied to the mole fraction N/A

LAB_BIAS(2) Additive laboratory bias to calculated pour point Same units asTEMP_PT(1)

B1 Scaler value used to adjust the Coef (A) within the EFV toD86 convertion rountine.

N/A

B2 Scaler value used to adjust the Coef (B) within the EFV toD86 convertion rountine.

N/A

Continued

Hi-Spec Solutions

Pour Point Calculation Configuration Inputs

Revision 3.0 12

Configuration Inputs (Continued)

Configuration InputsParameter Description Units

B3 Scaler value used to adjust the Coef (C) within the EFV toD86 convertion rountine.

N/A

NUMER(1) Numerator indication for stream 1(0 = Not in Numer, 1 = In Numer)

None

NUMER(2) Numerator indication for stream 2(0 = Not in Numer, 1 = In Numer)

None

NUMER(3) Numerator indication for stream 3(0 = Not in Numer, 1 = In Numer)

None

NUMER(4) Numerator indication for stream 4(0 = Not in Numer, 1 = In Numer)

None

NUMER(5) Numerator indication for stream 5(0 = Not in Numer, 1 = In Numer)

None

NUMER(6) Numerator indication for stream 6(0 = Not in Numer, 1 = In Numer)

None

NUMER(7) Numerator indication for stream 7(0 = Not in Numer, 1 = In Numer)

None

NUMER(8) Numerator indication for stream 8(0 = Not in Numer, 1 = In Numer)

None

NUMER(9) Numerator indication for stream 9(0 = Not in Numer, 1 = In Numer)

None

NUMER(10) Numerator indication for stream 10(0 = Not in Numer, 1 = In Numer)

None

CONV_FAC(1) Conversion factor for stream 1 - (Input units => mass) From input unitsto Mass

CONV_FAC(2) Conversion factor for stream 2 - (Input units => mass) From input unitsto Mass

CONV_FAC(3) Conversion factor for stream 3 - (Input units => mass) From input unitsto Mass

CONV_FAC(4) Conversion factor for stream 4 - (Input units => mass) From input unitsto Mass

CONV_FAC(5) Conversion factor for stream 5 - (Input units => mass) From input unitsto Mass

CONV_FAC(6) Conversion factor for stream 6 - (Input units => mass) From input unitsto Mass

CONV_FAC(7) Conversion factor for stream 7 - (Input units => mass) From input unitsto Mass

CONV_FAC(8) Conversion factor for stream 8 - (Input units => mass) From input unitsto Mass

Continued

Hi-Spec Solutions

Pour Point Calculation Configuration Inputs

Revision 3.0 13

Configuration Inputs (Continued)

Configuration InputsParameter Description Units

CONV_FAC(9) Conversion factor for stream 9 - (Input units => mass) From input unitsto Mass

CONV_FAC(10) Conversion factor for stream 10 - (Input units => mass) From input unitsto Mass

CONV_FAC(11) Stripper pressure (PRESS_PT) multiplicative conversionfactor

From input unitsto psi

CONV_FAC(12) Input temperature unit flag; ( 0 => °F, 1 => °C )

N/A

CONV_FAC(13) Input gravity type flag: ( 0 => API, 1 => Specific gravity )

N/A

CONV_FAC(14) Spare - Available for future development N/A

CONV_FAC(15) Spare - Available for future development N/A

FILTER(1) Filter time for FLOW_PT(1) Minutes

FILTER(2) Filter time for FLOW_PT(2) Minutes

FILTER(3) Filter time for FLOW_PT(3) Minutes

FILTER(4) Filter time for FLOW_PT(4) Minutes

FILTER(5) Filter time for FLOW_PT(5) Minutes

FILTER(6) Filter time for FLOW_PT(6) Minutes

FILTER(7) Filter time for FLOW_PT(7) Minutes

FILTER(8) Filter time for FLOW_PT(8) Minutes

FILTER(9) Filter time for FLOW_PT(9) Minutes

FILTER(10) Filter time for FLOW_PT(10) Minutes

FILTER(11) Filter time for input gravities - GRAV_PT Minutes

FILTER(12) Filter time for input Watson K factors - WATK_PT Minutes

FILTER(13) Filter time for the input temperature - TEMP_PT Minutes

FILTER(14) Filter time for the input pressure - PRESS_PT Minutes

FILTER(15) Filter time for multiplicative bias - LAB_BIAS(1) Minutes

FILTER(16) Filter time for additive laboratory bias - LAB_BIAS(2) Minutes

FILTER(17) Filter time for the calculated mole fraction Minutes

FILTER(18) Spare - Available for future development Minutes

FILTER(19) Spare - Available for future development Minutes

FILTER(20) Spare - Available for future development Minutes

MOLWT(1) Molecular weight for stream 1 - ( Calc or Entered ) lb / (lb-mol)

MOLWT(2) Molecular weight for stream 2 - ( Calc or Entered ) lb / (lb-mol)

MOLWT(3) Molecular weight for stream 3 - ( Calc or Entered ) lb / (lb-mol)

MOLWT(4) Molecular weight for stream 4 - ( Calc or Entered ) lb / (lb-mol)

Continued

Hi-Spec Solutions

Pour Point Calculation Configuration Inputs

Revision 3.0 14

Configuration Inputs (Continued)

Configuration InputsParameter Description Units

MOLWT(5) Molecular weight for stream 5 - ( Calc or Entered ) lb / (lb-mol)

MOLWT(6) Molecular weight for stream 6 - ( Calc or Entered ) lb / (lb-mol)

MOLWT(7) Molecular weight for stream 7 - ( Calc or Entered ) lb / (lb-mol)

MOLWT(8) Molecular weight for stream 8 - ( Calc or Entered ) lb / (lb-mol)

MOLWT(9) Molecular weight for stream 9 - ( Calc or Entered ) lb / (lb-mol)

MOLWT(10) Molecular weight for stream 10 - ( Calc or Entered ) lb / (lb-mol)

Hi-Spec Solutions

Pour Point Calculation Calculation Outputs

Revision 3.0 15

Calculation Outputs

Calculation OutputsParameter Description Units

PVCALC Calculated hydrocarbon product inferential pour point Temperatureinput units

CALC_VAL(1) Calculated hydrocarbon product inferential pour point Temperatureinput units

CALC_VAL(2) Calculated moles in the numerator Moles

CALC_VAL(3) Calculated moles in the denominator Moles

CALC_VAL(4) Calculated mole fraction None

CALC_VAL(5) Calculated effective pressure psi

CALC_VAL(6) Calculated EFV temperature Temperatureinput units

CALC_VAL(7) ASTM D86 50% point temperature Temperatureinput units

CALC_VAL(8) Calculated TBP 50% point temperature Temperatureinput units

CALC_VAL(9) Calculated low pour search limit N/A

CALC_VAL(10) Calculated high pour search limit N/A

CALC_VAL(11) Calculated pour point limit ratio N/A

CALC_VAL(12) Calculated pour point delta value N/A

CALC_VAL(13) Calculated moles input from stream 1 Moles

CALC_VAL(14) Calculated moles input from stream 2 Moles

CALC_VAL(15) Calculated moles input from stream 3 Moles

CALC_VAL(16) Calculated moles input from stream 4 Moles

CALC_VAL(17) Calculated moles input from stream 5 Moles

CALC_VAL(18) Calculated moles input from stream 6 Moles

CALC_VAL(19) Calculated moles input from stream 7 Moles

CALC_VAL(20) Calculated moles input from stream 8 Moles

CALC_VAL(21) Calculated moles input from stream 9 Moles

CALC_VAL(22) Calculated moles input from stream 10 Moles

CALC_VAL(23) Spare - Available for future development N/A

CALC_VAL(24) Spare - Available for future development N/A

CALC_VAL(25) Spare - Available for future development N/A

STATUS(1) Diagnostic indication of location and possible causes ofprogram error

N/A

STATUS(2) Diagnostic indication of subroutine error N/A

REV_NO Program revision number N/A

Continued

Hi-Spec Solutions

Pour Point Calculation Calculation Outputs

Revision 3.0 16

Calculation Outputs (Continued)

Calculation OutputsParameter Description Units

FILT_VAL(1) Filtered value of input stream 1 flow rate Input units

FILT_VAL(2) Filtered value of input stream 2 flow rate Input units

FILT_VAL(3) Filtered value of input stream 3 flow rate Input units

FILT_VAL(4) Filtered value of input stream 4 flow rate Input units

FILT_VAL(5) Filtered value of input stream 5 flow rate Input units

FILT_VAL(6) Filtered value of input stream 6 flow rate Input units

FILT_VAL(7) Filtered value of input stream 7 flow rate Input units

FILT_VAL(8) Filtered value of input stream 8 flow rate Input units

FILT_VAL(9) Filtered value of input stream 9 flow rate Input units

FILT_VAL(10) Filtered value of input stream 10 flow rate Input units

FILT_VAL(11) Stream 1 filtered gravity input, GRAV_PT(1) Input units

FILT_VAL(12) Stream 2 filtered gravity input, GRAV_PT(2) Input units

FILT_VAL(13) Stream 3 filtered gravity input, GRAV_PT(3) Input units

FILT_VAL(14) Stream 4 filtered gravity input, GRAV_PT(4) Input units

FILT_VAL(15) Stream 5 filtered gravity input, GRAV_PT(5) Input units

FILT_VAL(16) Stream 6 filtered gravity input, GRAV_PT(6) Input units

FILT_VAL(17) Stream 7 filtered gravity input, GRAV_PT(7) Input units

FILT_VAL(18) Stream 8 filtered gravity input, GRAV_PT(8) Input units

FILT_VAL(19) Stream 9 filtered gravity input, GRAV_PT(9) Input units

FILT_VAL(20) Stream 10 filtered gravity input, GRAV_PT(10) Input units

FILT_VAL(21) Stream 1 filtered Watson K input, WATK_PT(1) Input units

FILT_VAL(22) Stream 2 filtered Watson K input, WATK_PT(2) Input units

FILT_VAL(23) Stream 3 filtered Watson K input, WATK_PT(3) Input units

FILT_VAL(24) Stream 4 filtered Watson K input, WATK_PT(4) Input units

FILT_VAL(25) Stream 5 filtered Watson K input, WATK_PT(5) Input units

FILT_VAL(26) Stream 6 filtered Watson K input, WATK_PT(6) Input units

FILT_VAL(27) Stream 7 filtered Watson K input, WATK_PT(7) Input units

FILT_VAL(28) Stream 8 filtered Watson K input, WATK_PT(8) Input units

FILT_VAL(29) Stream 9 filtered Watson K input, WATK_PT(9) Input units

FILT_VAL(30) Stream 10 filtered Watson K input, WATK_PT(10) Input units

FILT_VAL(31) Filtered value of input temperature, TEMP_PT Input units

FILT_VAL(32) Filtered value of input pressure, PRESS_PT Input units

FILT_VAL(33) Filtered value of input multiplicative bias, LAB_BAIS(1) N/A

FILT_VAL(34) Filtered value of input additive bias, LAB_BAIS(2) N/A

FILT_VAL(35) Filtered value of calculated mole fraction None

Hi-Spec Solutions

Pour Point Calculation Error Codes

Revision 3.0 17

Error Codes

The tables in this section describe the following program error codes:

• Diagnostic error codes

• Molecular weight error codes

• EFV temperature error codes.

Hi-Spec Solutions

Pour Point Calculation Diagnostic Error Codes

Revision 3.0 18

Diagnostic Error Codes

Diagnostic Error CodesParameter Value Description

STATUS(1) 0.0 No errors

1.0 Set calculation BAD flag on [ENGPAR(15)<>0]

2.0 Input number of streams is outside the range 1 to 10 [2 <= ENGPAR(1) <= 10]

3.0 Location of the product stream within the configured streaminformation is out of range. [2 <= ENGPAR(2) <= 10]

4.0 FLOW_PT(1) has a null point entered or has a bad PV

5.0 FLOW_PT(2) has a null point entered or has a bad PV

6.0 FLOW_PT(3) has a null point entered or has a bad PV

7.0 FLOW_PT(4) has a null point entered or has a bad PV

8.0 FLOW_PT(5) has a null point entered or has a bad PV

9.0 FLOW_PT(6) has a null point entered or has a bad PV

10.0 FLOW_PT(7) has a null point entered or has a bad PV

11.0 FLOW_PT(8) has a null point entered or has a bad PV

12.0 FLOW_PT(9) has a null point entered or has a bad PV

13.0 FLOW_PT(10) has a null point entered or has a bad PV

14.0 GRAV_PT(1) has a null point entered or has a bad PV

15.0 GRAV_PT(2) has a null point entered or has a bad PV

16.0 GRAV_PT(3) has a null point entered or has a bad PV

17.0 GRAV_PT(4) has a null point entered or has a bad PV

18.0 GRAV_PT(5) has a null point entered or has a bad PV

19.0 GRAV_PT(6) has a null point entered or has a bad PV

20.0 GRAV_PT(7) has a null point entered or has a bad PV

21.0 GRAV_PT(8) has a null point entered or has a bad PV

22.0 GRAV_PT(9) has a null point entered or has a bad PV

23.0 GRAV_PT(10) has a null point entered or has a bad PV

24.0 WATK_PT(1) has a null point entered or has a bad PV

25.0 WATK_PT(2) has a null point entered or has a bad PV

26.0 WATK_PT(3) has a null point entered or has a bad PV

27.0 WATK_PT(4) has a null point entered or has a bad PV

28.0 WATK_PT(5) has a null point entered or has a bad PV

29.0 WATK_PT(6) has a null point entered or has a bad PV

30.0 WATK_PT(7) has a null point entered or has a bad PV

31.0 WATK_PT(8) has a null point entered or has a bad PV

32.0 WATK_PT(9) has a null point entered or has a bad PV

Continued

Hi-Spec Solutions

Pour Point Calculation Diagnostic Error Codes

Revision 3.0 19

Diagnostic Error Codes (Continued)

Diagnostic Error CodesParameter Value Description

STATUS(1) 33.0 WATK_PT(10) has a null point entered or has a bad PV

34.0 Error in user defined MOLWT(1) - ( Badvalue or value <= 0.0 )

35.0 Error in user defined MOLWT(2) - ( Badvalue or value <= 0.0 )

36.0 Error in user defined MOLWT(3) - ( Badvalue or value <= 0.0 )

37.0 Error in user defined MOLWT(4) - ( Badvalue or value <= 0.0 )

38.0 Error in user defined MOLWT(5) - ( Badvalue or value <= 0.0 )

39.0 Error in user defined MOLWT(6) - ( Badvalue or value <= 0.0 )

40.0 Error in user defined MOLWT(7) - ( Badvalue or value <= 0.0 )

41.0 Error in user defined MOLWT(8) - ( Badvalue or value <= 0.0 )

42.0 Error in user defined MOLWT(9) - ( Badvalue or value <= 0.0 )

43.0 Error in user defined MOLWT(10) - ( Badvalue or value <= 0.0 )

44.0 Error in calculating MOLWT(1) - see STATUS(2)

45.0 Error in calculating MOLWT(2) - see STATUS(2)

46.0 Error in calculating MOLWT(3) - see STATUS(2)

47.0 Error in calculating MOLWT(4) - see STATUS(2)

48.0 Error in calculating MOLWT(5) - see STATUS(2)

49.0 Error in calculating MOLWT(6) - see STATUS(2)

50.0 Error in calculating MOLWT(7) - see STATUS(2)

51.0 Error in calculating MOLWT(8) - see STATUS(2)

52.0 Error in calculating MOLWT(9) - see STATUS(2)

53.0 Error in calculating MOLWT(10) - see STATUS(2)

54.0 TEMP_PT has a null point entered, bad PV, or filter error

55.0 PRESS_PT has a null point entered, bad PV, or filter error

56.0 LAB_BIAS(1) has a bad value or filter error

57.0 LAB_BIAS(2) has a bad value or filter error

58.0 Calculated mole fraction has a bad value or filter error

59.0 Calculated partial pressure has a bad value or filter error

60.0 Calculated EFV temperature has a bad value

61.0 Pour point calculation return an error

Hi-Spec Solutions

Pour Point Calculation Molecular Weight Error Codes

Revision 3.0 20

Molecular Weight Error Codes

Molecular Weight Error CodesParameter Value Description

STATUS(2)4 0.0 No errors

1.0 Calculated molecular weight has a bad value

2.0 Input specific gravity has a bad value

3.0 Input Watson K has a bad value

-1.0 Input specific gravity or Watson K equal to or less than 0.0

4 STATUS(2) indicates errors returned by the molecular weight calculation subroutine.

Hi-Spec Solutions

Pour Point Calculation EFV Temperature Error Codes

Revision 3.0 21

EFV Temperature Error Codes

EFV Temperature Error CodesParameter Value Description

STATUS(2)5 0.0 No errors

1.0 Calculated EFV temperature has a bad value

2.0 Input temperature has a bad value

3.0 Input effective vapor pressure has a bad value

4.0 Input Watson K has a bad value

-1.0 Input temperature, effective vapor pressure, or Watson K has azero or negative value

5 STATUS(2) indicates errors returned by the EFV temperature calculation subroutine.

Hi-Spec Solutions

Pour Point Calculation Configuration and Tuning

Revision 3.0 22

Configuration and Tuning

This section describes the parameters and values used to configure and tune the packageto a specific application.

Biases

• Temperature Bias

• Pressure Bias

• Laboratory Additive Bias.

Tuning

• Multiplicative Bias

• Scaler Biases.

Hi-Spec Solutions

Pour Point Calculation Biases in the Pour Point Program

Revision 3.0 23

Biases in the Pour Point Program

The Pour Point program is equipped with the following additive biases:

• Input draw temperature

• Input draw pressure

• Laboratory bias for the pour point.

Bias ParametersParameter Description

T_BIAS Additive bias to input draw temperature TEMP_PT

P_BIAS Additive bias to input draw pressure PRESS_PT

LAB_BIAS(2) Additive laboratory bias to calculated pour point

Pressure and Temperature Bias. The pressure bias (P_BIAS) and temperature bias(T_BIAS) are added to the input values before performance of the unit conversions andshould be entered in the same units as the input pressure and temperatures.

The T_BIAS parameter is used when there is a known error in either the draw orproduct temperature indication. The P_BIAS parameter is used when the actual drawpressure is not available as an input to the calculation.

Example. If the column overhead pressure is used for PRESS_PT, then P_BIAS is setequal to the pressure change between the column overhead and the draw location.

Additive Laboratory Bias. The pour point program biases the calculated pour pointtemperature using the parameters LAB_BIAS(2) for additive biasing. Only the additivebias, LAB_BIAS(2), is used dynamically and is expected to be updated manually orwith a laboratory results interface package.

Both PVCALC and CALC_VAL(1) contain the biased calculated pour pointtemperatures. The unbiased pour is not reported. For unbiased calculated results setLAB_BIAS(2) = 0.0

Hi-Spec Solutions

Pour Point Calculation Tuning Parameters

Revision 3.0 24

Tuning Parameters

If there is a sustained offset between the calculated and laboratory pour points even withthe use of the biasing, the following parameters can be adjusted.

Parameter Suggested AdjustmentT_BIAS Increasing the temperature additive bias increase the calculated pour

point value.

LAB_BIAS(1) Increasing the multiplicative bias decreases the calculated pour pointvalue. (This bias is applied to the calculated mole fraction)

B1 Scaler value used to adjust the Coef (A) within the EFV to D86convertion rountine.

B2 Scaler value used to adjust the Coef (B) within the EFV to D86convertion rountine.

B3 Scaler value used to adjust the Coef (C) within the EFV to D86convertion rountine.

Temperature Bias [T_BIAS]

If the vapor temperature at the draw tray is not directly measured, then the inputtemperature may be biased to give the approximate vapor temperature. The vaportemperature is corrected for pressure to determine the EFV temperature. The EFVtemperature is then converted to the TBP temperature.

Multiplicative Bias [LAB_BAIS(1)]

The mole fraction of hydrocarbon vapor which is in equilibrium with the hydrocarbonproduct is calculated using the internal reflux, all product coming off the column abovethe draw tray and above (to the column overhead), and inert material. Themultiplicative bias is applied to the mole fraction. The mole fraction is used todetermine the partial pressure of the hydrocarbon vapor which is used to determine theEFV temperature. The EFV temperature is then converted to the desired TBPtemperature.

Scaler Biases [B1, B2, and B3]

The routine which converts from the calculated EFV temperature to the TBP 50% pointtemperature has three parameters. These three parameters can be indivigually scaled ortuned to provide a clear representation of the TBP value. The default values are all 1.0and should remain at this value unless calculation performance requires a change.

Note: The EFV to TBP equation is highly sensitive to changes in these parameters.Once altered from their default values re-tuning of the entire calculation is required.

Hi-Spec Solutions

Pour Point Calculation Algorithms

Revision 3.0 25

Algorithms

Conversion of Engineering Units. The input process flows can have any units, but theconversion factors must be configured to yield consistent MASS flow units, as shown inEquation 1:

flow(i) = FLOW_PT(i).PV * CONV_FAC(i)

Where:

flow(i) = Process flow i converted to MASS for internal useFLOW_PT(i).PV = Input process flow i in any unitsCONV_FAC(i) = Conversion for flow i from input units to MASS units

Equation 1

The input process pressure can have any units. However, the conversion factor must beconfigured to yield psi, as shown in Equation 2:

press = ( (PRESS_PT.PV +P_BIAS) *CONV_FAC(11) ) + atm_pres

Where:

press = Process pressure converted to psia for internal usePRESS_PT.PV = Input process pressure in any gauge unitsP_BIAS = Bias to input pressure in input gauge unitsCONV_FAC(11) = Conversion factor for pressure from input units to psiatm_pres = Atmospheric pressure in psi

and When:ENG_PAR(2) <= 0 then (atm_pres = 14.696 )

else ( atm_pres = ENG_PAR(2) * CONV_FAC(11) )

Equation 2

Continued

Hi-Spec Solutions

Pour Point Calculation Algorithms

Revision 3.0 26

Algorithms (Continued)

Pour Point Calculation. The pour point is calculated from process inputs using theHoneywell pour point calculation, as shown in Equation 3:

pour_pnt = Function[draw_t, press, prod_char]

Where:

pour_pnt = Calculated pour pointdraw_t = Draw temperaturepress = Draw pressureprod_char = Material characterization (gravity and Watson K)

Equation 3

Biasing. One bias factor is provided to reduce the offset between the inferential pourpoint and a laboratory or on-line analysis-determined pour point. The additive bias isused, as shown in Equation 4:

bias_pour = pour_pnt + LAB_BIAS(2)

Where:

bias_pour = Biased pour pointpour_pnt = Calculated pour pointLAB_BIAS(2) = Additive laboratory bias

Equation 4

Hi-Spec Solutions

Pour Point Calculation Installation Procedure

Revision 3.0 27

Installation Procedure

This document describes the installation procedure for POUR_PNT on the TDC 3000System AM.

This section covers the following topics:

• Preparation for Installation

• CDS and PL Installation

• Building Pour Point Calculation Point

• Configuration Graphics Installation.

Hi-Spec Solutions

Pour Point Calculation Preparation for Installation

Revision 3.0 28

Preparation for Installation

Step ActionGather media Gather the following items:

• Removable media containing the directory POUR• Commissioning Worksheet

Make media backup Make a backup copy of media/directory on a US with drives n and mconfigured as follows:

Media:FCOPY $Fn $FmDirectory only:CD $Fm>vol_dir> POURCOPY $Fn>POUR>*.* $Fm>POUR>= -V -DWhere $Fn is the drive with the source media and $Fm is the drive withthe target media

Hi-Spec Solutions

Pour Point Calculation CDS and PL Installation

Revision 3.0 29

CDS and PL Installation

This procedure must be done once per LCN installation.

Step ActionSet volumepathnames

From Modify Volume Paths display:CL CUSTOM GDF: NET>CDSG>

USER DEFLT PATH: $Fn>POUR

CompilePOUR_CDS.CL

From the Command Processor display, compile the CDS file, POUR_CDS:CL $Fn>CDS>POUR_CDS.CL -UL

If it is necessary to change the CDS due to a software revision, refer to theApplication Module Data Control Language/Application Module Data Entry

Parameter list There is no parameter list for the standard pour calculation package

Hi-Spec Solutions

Pour Point Calculation Building Pour Point Calculation Point

Revision 3.0 30

Building Pour Point Calculation Point

A calculation point is required for each hydrocarbon pour point calculated.

Step ActionModify ExceptionBuild file,POUR_PNT.EB

From the Command Processor display:ED $Fn>EB>POUR_PNT.EB [ENTER]Edit template as follows:

&N point nameUNIT = unit numberPTDESC ="point descriptor text"KEYWORD = "keyword"PERIOD = as required

Load EB file. From the Builder Commands display:Select the EXCEPTION BUILD target.Fill in ports as:

REFERENCE PATH NAME: $Fn>EBLoad Entities (select target)Pathname for SOURCE file: POUR_PNT.EBPathname for IDF file: POUR_PNT.DB[ENTER]

Verify load When the load is complete, verify point loading by calling the point detailfrom the [DETAIL] button

Hi-Spec Solutions

Pour Point Calculation Configuration Graphics Installation

Revision 3.0 31

Configuration Graphics Installation

Graphics must be compiled and installed once per LCN.

Step ActionGo to Picture Editor Enter the Picture Editor, one of two ways:

From the Engineering Main Menu select the PICTUREEDITOR target OR From the Command Processor command line typePE [ENTER]

Load DDB Load Global variable definition file, DDB:L $Fn>PICS>DDB [ENTER]

Read POUR_CFG Read in the picture file, POUR_CFGR $Fn>FREZ>POUR_CFG [ENTER]

Verify and Compile Verify picture:VER [ENTER]When the verification is complete compile the picture:COM [ENTER]

CopyPOUR_CFG.DO tographics directory

From the Command Processor display:COPY $Fn>POUR>POUR_CFG.DO NET>pic_dir>= -D [ENTER]Where pic_dir is the picture source directory specified in the SchematicSearch Path

Hi-Spec Solutions

Pour Point Calculation Configure Calculation Point

Revision 3.0 32

Configure Calculation Point

Configuration of the calculation point can be done either through the graphicPOUR_CFG or through direct entry to the CDS ports on the Point Detail display.Use of the configuration graphic is recommended.

Setup of the calculation point requires the following steps:

• Graphic or Non Graphic Configuration of Pour Point Calculation Point

• Linking CL Program.

Notes:

Configuration errors may occur if associated points are deleted. To correct thisproblem, the AO files must be unlinked and then relinked to reestablish dynamicindirection.

Link errors may occur, when an improper point type is configured in a CDS parameter.This is caused by a missing parameter. A null point containing all required parameterscan be used in the configuration for linking purposes only. After the CL is linked, thedesired point is then entered into the proper CDS location.

Hi-Spec Solutions

Pour Point Calculation Point Configuration Using Graphic POUR_CFG

Revision 3.0 33

Point Configuration Using Graphic POUR_CFG

Each entry port on the pour configuration graphic, POUR_CFG, is described below:

Graphic POUR_CFG

Continued

Hi-Spec Solutions

Pour Point Calculation Point Configuration Using Graphic POUR_CFG

Revision 3.0 34

Point Configuration Using Graphic POUR_CFG (Continued)

Selection Port Parameter ActionCalculation Point -- Enter the pour calculation point name.

Number of Streams ENGPAR(1) Enter the number of tower streams desired.

Product Location ENGPAR(3) Enter the array location of the product stream withinthe listing of unit streams.

Gain on EFV Value LAB_BIAS(1) Enter the number to use as the pour multiplicativebias. This bias and should be set to 1.0 if not used,mole fraction correction.

Gain Filter (min) FILTER(15) Enter the multiplicative bias filter time in minuets.

Additive Calc Bias LAB_BIAS(2) Enter the additive bias value. This value is used toeliminate offset between the calculation and thelaboratory results.

Additive Filter (min) FILTER(16) Enter the additive bias filter time in minutes.

Mole Frac Filter FILTER(17) Enter a filter time to be applied to the calculatedmole fraction in minutes.

Gravity Units[API] [SPGR]

CONV_FAC(13) Select the input gravity units.

Gravity Pnt Filter FILTER(11) Enter a filter time which is applied to each gravityinput in minutes.

Watson K Pnt Filter FILTER(12) Enter a filter time which is applied to each WatsonK factor input in minutes.

Temperature Units[DEG F] [DEG C]

CONV_FAC(12) Select the input temperature units.

Temperature Pnt TEMP_PT Enter the name of the draw temperature point.

Temperature Bias T_BIAS Enter the number for the material draw temperaturebias.

Temp Filter FILTER(13) Enter the number for the material draw temperaturefilter.

Pressure Pnt PRESS_PT Enter the name for the draw pressure point.

Pressure Bias P_BIAS Enter the number for the material draw pressurebias.

Pressure Filter FILTER(14) Enter the number for the material draw pressurefilter.

Atmospheric Press ENGPAR(2) Enter the atmospheric pressure in input units OR 0.0for 14.696 for psi units. The program will handleeither entry correctly.

Press Conv Factor CONV_FAC(11) Enter the conversion factor to convert input pressureunits to psi.

Continued

Hi-Spec Solutions

Pour Point Calculation Point Configuration Using Graphic POUR_CFG

Revision 3.0 35

Point Configuration Using Graphic POUR_CFG (Continued)

There can be a maximum of ten stream points configured for the pour calculation. Theconfiguration zone for these flows is located at the bottom of the configuration graphic.The page forward and back keys on the TDC 3000 keyboard step through the setupzones.

The stream configuration zones are indexes off of the # of Prod Flows parameter at thetop left of the configuration graphic. The graphic displays only the number of productstream configurations indicated by # of Prod Flows, this will be from 1 to 10.

Depending on the selected configuration the zone will alter to guide the user to therequired input information. If the user would like the calculation to determine thestreams molecular weight, then the following change zone is presented.

Selection Port Parameter DescriptionEnvelope Flow Pnt FLOW_PT(i) Enter the desired stream input point.Flow Conv Factor CONV_FAC(i) Enter the conversion factor to convert the

input units to consistent mass units.Flow Filter (min) FILTER(i) Enter the stream filter in minutes.Molecular Weight[CALC] [USER]

ENGPAR(3+i) Select the desired method for determiningthe stream molecular weight.

Strm in Numerator[YES] [NO]

NUMER(i) Select whether the configured stream is tobe used in the numerator and denominatoror within the denominator only.

Stream Gravity Pnt GRAV_PT(i) Enter the name of the gravity point whichcorresponds to the configured stream.

Stream Watson K Pnt WATK_PT(i) Enter the name of the Watson K pointwhich corresponds to the configuredstream.

Continued

Hi-Spec Solutions

Pour Point Calculation Point Configuration Using Graphic POUR_CFG

Revision 3.0 36

Point Configuration Using Graphic POUR_CFG (Continued)

If the user provides the molecular weight for the current stream the configuration zonewill alter to provide the new entry port.

Selection Port Parameter DescriptionEnvelope Flow Pnt FLOW_PT(i) Enter the desired stream input point.Flow Conv Factor CONV_FAC(i) Enter the conversion factor to convert the

input units to consistent volume/mass units.Flow Filter (min) FILTER(i) Enter the stream filter in minutes.Molecular Weight[CALC] [USER]

ENGPAR(3+i) Select the desired method for determiningthe stream molecular weight.

Strm in Numerator[YES] [NO]

NUMER(i) Select whether the configured stream is tobe used in the numerator and denominatoror within the denominator only.

MOLWT(i) Enter the molecular weight for theconfigured stream.

Continued

Hi-Spec Solutions

Pour Point Calculation Point Configuration through Direct CDS Entry

Revision 3.0 37

Point Configuration through Direct CDS Entry

If the configuration graphic is not used, then the configuration data must be entereddirectly onto the calculation point. The required calculation point information andassociated parameter are listed below.

Parameter Description CommentsPRESS_PT Tagname of source for process

pressureUse bias in P_BIAS if the pressure isnot located at the draw tray.

TEMP_PT Tagname of source for stripperfeed temperature

Use bias in T_BIAS if the temperatureis not located on the draw tray.

FLOW_PT(1) Tagname of source for 1 streamflow rate

Must have 1 internal liquid stream.

FLOW_PT(2) Tagname of source for 2 streamflow rate

Must have 1 internal vapor stream oruse the overhead unit streams.

FLOW_PT(3) Tagname of source for 3 streamflow rate

Required only if more than 2 productstream exists.

FLOW_PT(4) Tagname of source for 4 streamflow rate

Required only if more than 3 productstream exists.

FLOW_PT(5) Tagname of source for 5 streamflow rate

Required only if more than 4 productstream exists.

FLOW_PT(6) Tagname of source for 6 streamflow rate

Required only if more than 5 productstream exists.

FLOW_PT(7) Tagname of source for 7 streamflow rate

Required only if more than 6 productstream exists.

FLOW_PT(8) Tagname of source for 8 streamflow rate

Required only if more than 7 productstream exists.

FLOW_PT(9) Tagname of source for 9 streamflow rate

Required only if more than 8 productstream exists.

FLOW_PT(10) Tagname of source for 10 streamflow rate

Required only if more than 9 productstream exists.

GRAV_PT(1) Tagname of input gravity 1 whichcorresponds to stream 1

If an on-line gravity is not available,bring in an estimate through an AMnumeric point. This is gravity atstandard conditions.

GRAV_PT(2) Tagname of input gravity 2 whichcorresponds to stream 2

If an on-line gravity is not available,bring in an estimate through an AMnumeric point. This is gravity atstandard conditions.

GRAV_PT(3) Tagname of input gravity 3 whichcorresponds to stream 3

If an on-line gravity is not available,bring in an estimate through an AMnumeric point. This is gravity atstandard conditions.

Continued

Hi-Spec Solutions

Pour Point Calculation Point Configuration through Direct CDS Entry

Revision 3.0 38

Point Configuration through Direct CDS Entry (Continued)

Parameter Description CommentsGRAV_PT(4) Tagname of input gravity 4 which

corresponds to stream 4If an on-line gravity is not available,bring in an estimate through an AMnumeric point. This is gravity atstandard conditions.

GRAV_PT(5) Tagname of input gravity 5 whichcorresponds to stream 5

If an on-line gravity is not available,bring in an estimate through an AMnumeric point. This is gravity atstandard conditions.

GRAV_PT(6) Tagname of input gravity 6 whichcorresponds to stream 6

If an on-line gravity is not available,bring in an estimate through an AMnumeric point. This is gravity atstandard conditions.

GRAV_PT(7) Tagname of input gravity 7 whichcorresponds to stream 7

If an on-line gravity is not available,bring in an estimate through an AMnumeric point. This is gravity atstandard conditions.

GRAV_PT(8) Tagname of input gravity 8 whichcorresponds to stream 8

If an on-line gravity is not available,bring in an estimate through an AMnumeric point. This is gravity atstandard conditions.

GRAV_PT(9) Tagname of input gravity 9 whichcorresponds to stream 9

If an on-line gravity is not available,bring in an estimate through an AMnumeric point. This is gravity atstandard conditions.

GRAV_PT(10) Tagname of input gravity 10which corresponds to stream 10

If an on-line gravity is not available,bring in an estimate through an AMnumeric point. This is gravity atstandard conditions.

WATK_PT(1) Tagname of input Watson K 1which corresponds to stream 1

Build an AM numeric point to hold amanually input value.Or the Watson K can be calculatedusing the 10;50;90 points and gravity.This requires an AM REG_PV pointand the WatK code block.

WATK_PT(2) Tagname of input Watson K 2which corresponds to stream 2

Build an AM numeric point to hold amanually input value.Or the Watson K can be calculatedusing the 10;50;90 points and gravity.This requires an AM REG_PV pointand the WatK code block.

Continued

Hi-Spec Solutions

Pour Point Calculation Point Configuration through Direct CDS Entry

Revision 3.0 39

Point Configuration through Direct CDS Entry (Continued)

Parameter Description CommentsWATK_PT(3) Tagname of input Watson K 3

which corresponds to stream 3Build an AM numeric point to hold amanually input value.Or the Watson K can be calculatedusing the 10;50;90 points and gravity.This requires an AM REG_PV pointand the WatK code block.

WATK_PT(4) Tagname of input Watson K 4which corresponds to stream 4

Build an AM numeric point to hold amanually input value.Or the Watson K can be calculatedusing the 10;50;90 points and gravity.This requires an AM REG_PV pointand the WatK code block.

WATK_PT(5) Tagname of input Watson K 5which corresponds to stream 5

Build an AM numeric point to hold amanually input value.Or the Watson K can be calculatedusing the 10;50;90 points and gravity.This requires an AM REG_PV pointand the WatK code block.

WATK_PT(6) Tagname of input Watson K 6which corresponds to stream 6

Build an AM numeric point to hold amanually input value.Or the Watson K can be calculatedusing the 10;50;90 points and gravity.This requires an AM REG_PV pointand the WatK code block.

WATK_PT(7) Tagname of input Watson K 7which corresponds to stream 7

Build an AM numeric point to hold amanually input value.Or the Watson K can be calculatedusing the 10;50;90 points and gravity.This requires an AM REG_PV pointand the WatK code block.

WATK_PT(8) Tagname of input Watson K 8which corresponds to stream 8

Build an AM numeric point to hold amanually input value.Or the Watson K can be calculatedusing the 10;50;90 points and gravity.This requires an AM REG_PV pointand the WatK code block.

WATK_PT(9) Tagname of input Watson K 9which corresponds to stream 9

Build an AM numeric point to hold amanually input value.Or the Watson K can be calculatedusing the 10;50;90 points and gravity.This requires an AM REG_PV pointand the WatK code block.

Continued

Hi-Spec Solutions

Pour Point Calculation Point Configuration through Direct CDS Entry

Revision 3.0 40

Point Configuration through Direct CDS Entry (Continued)

Parameter Description CommentsWATK_PT(10) Tagname of input Watson K 10

which corresponds to stream 10Build an AM numeric point to hold amanually input value.Or the Watson K can be calculatedusing the 10;50;90 points and gravity.This requires an AM REG_PV pointand the WatK code block.

T_BIAS Additive bias to the drawtemperature

Same units as TEMP_PT.

P_BIAS Additive bias to draw pressure Same units as PRESS_PT.

ENGPAR(1) Number of input stream flow rates(2.0 < ENGPAR(2) <= 10.0)

Number of stream flows must match #of entries reflected inFLOW_PT(1..10).

ENGPAR(2) Local atmospheric pressure (avalue of 14.696 will be usedinternally if a zero is entered)

Same units as PRESS_PT.

ENGPAR(3) Location of product stream withinthe configured streams

The number must be within theconfigured number of streams.

ENGPAR(4) Indicates if the molecular weightfor stream 1 is calculated orsupplied

0 => Calculated1 => User supplied

ENGPAR(5) Indicates if the molecular weightfor stream 2 is calculated orsupplied

0 => Calculated1 => User supplied

ENGPAR(6) Indicates if the molecular weightfor stream 3 is calculated orsupplied

0 => Calculated1 => User supplied

ENGPAR(7) Indicates if the molecular weightfor stream 4 is calculated orsupplied

0 => Calculated1 => User supplied

ENGPAR(8) Indicates if the molecular weightfor stream 5 is calculated orsupplied

0 => Calculated1 => User supplied

ENGPAR(9) Indicates if the molecular weightfor stream 6 is calculated orsupplied

0 => Calculated1 => User supplied

ENGPAR(10) Indicates if the molecular weightfor stream 7 is calculated orsupplied

0 => Calculated1 => User supplied

ENGPAR(11) Indicates if the molecular weightfor stream 8 is calculated orsupplied

0 => Calculated1 => User supplied

Continued

Hi-Spec Solutions

Pour Point Calculation Point Configuration through Direct CDS Entry

Revision 3.0 41

Point Configuration through Direct CDS Entry (Continued)

Parameter Description CommentsENGPAR(12) Indicates if the molecular weight

for stream 9 is calculated orsupplied

0 => Calculated1 => User supplied

ENGPAR(13) Indicates if the molecular weightfor stream 10 is calculated orsupplied

0 => Calculated1 => User supplied

ENGPAR(15) Flag to set calculation BAD: 0 =>Do not set BAD;1 => Set calculation BAD

This input allows the calculation to beset bad by Engineering request.

FILTER(1) Filter time for input stream 1 flowrate.

Minutes

FILTER(2) Filter time for input stream 2 flowrate.

Minutes

FILTER(3) Filter time for input stream 3 flowrate.

Minutes

FILTER(4) Filter time for input stream 4 flowrate.

Minutes

FILTER(5) Filter time for input stream 5 flowrate.

Minutes

FILTER(6) Filter time for input stream 6 flowrate.

Minutes

FILTER(7) Filter time for input stream 7 flowrate.

Minutes

FILTER(8) Filter time for input stream 8 flowrate.

Minutes

FILTER(9) Filter time for input stream 9 flowrate.

Minutes

FILTER(10) Filter time for input stream 10flow rate.

Minutes

FILTER(11) Filter time for the gravity inputs. Minutes

FILTER(12) Filter time for the Watson Kinputs.

Minutes

FILTER(13) Filter time for the inputtemperature.

Minutes

FILTER(14) Filter time for the input pressure. Minutes

FILTER(15) Filter time for the multiplicativebias value.

Minutes

FILTER(16) Filter time for the additive biasvalue.

Minutes

FILTER(17) Filter time for the calculated molefraction.

Minutes

Continued

Hi-Spec Solutions

Pour Point Calculation Point Configuration through Direct CDS Entry

Revision 3.0 42

Point Configuration through Direct CDS Entry (Continued)

Parameter Description CommentsLAB_BIAS(1) Multiplicative bias applied to the

mole fraction.Used to bias proportionally.

LAB_BIAS(2) Additive laboratory bias tocalculated pour point

Same units as TEMP_PT.

NUMER(1) Indicates if stream 1 is used in thenumerator of the mole fractionequation.

0 => Not in Numerator1 => In Numerator

NUMER(2) Indicates if stream 2 is used in thenumerator of the mole fractionequation.

0 => Not in Numerator1 => In Numerator

NUMER(3) Indicates if stream 3 is used in thenumerator of the mole fractionequation.

0 => Not in Numerator1 => In Numerator

NUMER(4) Indicates if stream 4 is used in thenumerator of the mole fractionequation.

0 => Not in Numerator1 => In Numerator

NUMER(5) Indicates if stream 5 is used in thenumerator of the mole fractionequation.

0 => Not in Numerator1 => In Numerator

NUMER(6) Indicates if stream 6 is used in thenumerator of the mole fractionequation.

0 => Not in Numerator1 => In Numerator

NUMER(7) Indicates if stream 7 is used in thenumerator of the mole fractionequation.

0 => Not in Numerator1 => In Numerator

NUMER(8) Indicates if stream 8 is used in thenumerator of the mole fractionequation.

0 => Not in Numerator1 => In Numerator

NUMER(9) Indicates if stream 9 is used in thenumerator of the mole fractionequation.

0 => Not in Numerator1 => In Numerator

NUMER(10) Indicates if stream 10 is used inthe numerator of the mole fractionequation.

0 => Not in Numerator1 => In Numerator

CONV_FAC(1) Stream 1 (FLOW_PT(1))multiplicative flow conversionfactor

Convert input units to consistent massunits.

CONV_FAC(2) Stream 2 (FLOW_PT(2))multiplicative flow conversionfactor

Convert input units to consistent massunits.

Continued

Hi-Spec Solutions

Pour Point Calculation Point Configuration through Direct CDS Entry

Revision 3.0 43

Point Configuration through Direct CDS Entry (Continued)

Parameter Description CommentsCONV_FAC(3) Stream 3 (FLOW_PT(3))

multiplicative flow conversionfactor

Convert input units to consistent massunits.

CONV_FAC(4) Stream 4 (FLOW_PT(4))multiplicative flow conversionfactor

Convert input units to consistent massunits.

CONV_FAC(5) Stream 5 (FLOW_PT(5))multiplicative flow conversionfactor

Convert input units to consistent massunits.

CONV_FAC(6) Stream 6 (FLOW_PT(6))multiplicative flow conversionfactor

Convert input units to consistent massunits.

CONV_FAC(7) Stream 7 (FLOW_PT(7))multiplicative flow conversionfactor

Convert input units to consistent massunits.

CONV_FAC(8) Stream 8 (FLOW_PT(8))multiplicative flow conversionfactor

Convert input units to consistent massunits.

CONV_FAC(9) Stream 9 (FLOW_PT(9))multiplicative flow conversionfactor

Convert input units to consistent massunits.

CONV_FAC(10) Stream 10 (FLOW_PT(10))multiplicative flow conversionfactor

Convert input units to consistent massunits.

Hi-Spec Solutions

Pour Point Calculation Link CL Programs

Revision 3.0 44

Link CL Programs

Step ActionLink POUR_PNT From the Command Processor Display:

LK $Fn>AO>POUR_PNT point_name [ENTER]

Activate point Call up the point detail and activate the point, or activate from POUR_CFGgraphic.

Verify Operation Verify that POUR_PNT is running without any CL errors.

Hi-Spec Solutions

Pour Point Calculation Link CL Programs

Revision 3.0 45

Fractionator Toolkit

Pressure CompensatedTemperature Calculation

4/98Rev 4.0

Part of AP13-200

4/99 Pressure Compensated Temperature Calculation 1

Fractionator Toolkit

Honeywell Inc.

Pressure Compensated Temperature Calculation

Definition A mixture of hydrocarbons of constant composition and at a specified pressure,will always boil at the same temperature. As the system pressure changes a givenboiling temperature represents a different hydrocarbon composition. ThePressure Compensated Temperature is the boiling temperature needed to yield thedesired composition at the current system pressure.

The Base Pressure is the pressure at the reference (target) temperature thatcorresponds to the desired composition. PCT uses the Antoine coefficientsderived from the desired composition and the measured unit pressure andtemperature to calculate a corrected temperature at the base pressure. Thecalculated temperature can be compared to the target temperature for controlpurposes.

Application The Pressure Compensated Temperature of a hydrocarbon mixture is used tomaintain a constant stream composition by accounting for system pressurechanges.

Calculation The Pressure Compensated Temperature calculation program compensates thesystem temperature for deviations from the reference temperature and pressure tomaintain a constant hydrocarbon composition, based on input processtemperature and pressure.

Incentive 1. To indicate how closely a hydrocarbon stream is meeting the desiredcomposition.

2. To eliminate dead time associated with laboratory analysis and on-lineanalyzers.

3. To provide a real-time input for use in advanced control applications.

A Quick Tour of the RMPCT Point DatabaseScheduling Points

Fractionator Toolkit

Honeywell Inc.

Hardware andSoftwareRequirements

Requirement Description

Hardware Platform TDC 3000x AM

Special Boards None

Other ComputingSystems

None

LCN Release Release 300 or later

AM Load Modules None

US Load Modules None

Other Packages None

Other ControlApplications

None

Software Inputs None

Instrumentation

(Process Inputs)

Process Input1 Required Recommended

System temperature X

System pressure X

Process Diagram There is no process diagram associated with the Pressure CompensatedTemperature calculation.

1 Required inputs can sometimes be obtained by inference. However, calculations based upon inferred data can be less accurate than calculations based upon direct readings.

Pressure Compensated Temperature Calculation Overview

4/99 Pressure Compensated Temperature Calculation 3

Fractionator Toolkit

Honeywell Inc.

Detailed DescriptionThe tables in this section describe the following Pressure CompensatedTemperature program architecture:

• Point Structure

• Process Inputs

• Configuration Inputs

• Calculation Outputs.

Point Structure Point Structure

Point Type AM Regulatory, CL

Custom Data Segment PCT_CDS.CL

Algorithm PCOMP_T.CL

Insertion Point PV_ALG

Slot 5

Output The calculated Pressure CompensatedTemperature is displayed as the point’s PV

Pressure Compensated Temperature Calculation Overview

4/99 Pressure Compensated Temperature Calculation 4

Fractionator Toolkit

Honeywell Inc.

Process Inputs Process Inputs

Critical2

Parameter Description Units Yes No

PRESS_PT(1) Tagname of source for processpressure

Anypressureunits

X

TEMP_PT(1) Tagname of source for processtemperature

°F or °CX

Configuration

Inputs

Configuration Inputs

Parameter Description Units

T_BIAS Additive bias to input systemtemperature

Same units asTEMP_PT(1)

P_BIAS Additive bias to input systempressure

Same units asPRESS_PT(1)

ENGPAR(1) Antoine "A" coefficient (Componentmoe % average)

None

ENGPAR(2) Antoine "B" coefficient (Componentmoe % average)

None

ENGPAR(3) Base pressure (use normal operatingpressure as first estimate)

Same units asPRESS_PT(1)

ENGPAR(4) Local atmospheric pressure (a valueof 760.0 will be used internally if azero is entered)

Same units asPRESS_PT(1)

2 Critical indicates that a bad input causes the output of the calculation to be set BAD.

Pressure Compensated Temperature Calculation

4/99 Pressure Compensated Temperature Calculation 5

Fractionator Toolkit

Honeywell Inc.

ENGPAR(5) Flag indicating temperature inputsource(0 => TEMP_PT(1).PV; 1 =>TEMP_PT(1).SP)

N/A

ENGPAR(6) Flag indicating pressure input source(0 => PRESS_PT(1).PV; 1 =>PRESS_PT(1).SP)

N/A

ENGPAR(7) Flag to set calculation BAD (0 => Donot set BAD;1 => Set calculation BAD)

N/A

CONV_FAC(1)

System pressure (PRESS_PT(1))multiplicative conversion factor

From inputunits to mmHG

CONV_FAC(2)

Input temperature unit flag (0 => °F;1 => °C)

N/A

FILTER(1) Filter time for input systemtemperature measurement

Minutes

FILTER(2) Filter time for input system pressuremeasurement

Minutes

Pressure Compensated Temperature Calculation

4/99 Pressure Compensated Temperature Calculation 6

Fractionator Toolkit

Honeywell Inc.

Calculation

OutputsCalculation Outputs

Parameter Description Units

PVCALC Calculated pressure compensatedtemperature

Input units

CALC_VAL(1) Calculated pressure compensatedtemperature

Input units

FILT_VAL(1) Filtered value of last input systemtemperature

Input units

FILT_VAL(2) Filtered value of last input systempressure

Input units

STATUS Diagnostic indication of location andpossible causes of program error

N/A

REV_NO Program revision number N/A

Pressure Compensated Temperature Calculation

4/99 Pressure Compensated Temperature Calculation 7

Fractionator Toolkit

Honeywell Inc.

Error Codes

The tables in this section describe the following program error codes:

• Diagnostic error codes.

Diagnostic Error

Codes

Diagnostic Error Codes

Parameter Value Meaning

STATUS(1)3 0.0 No errors

1.0 Set calculation BAD flag is on

2.0 TEMP_PT(1) has a null point entered or has a bad PV

3.0 TEMP_PT(1) does not have a SP and is configured with the temperaturesource as SP

4.0 T_BIAS has a bad value

5.0 PRESS_PT(1) has a null point entered or has a bad PV

6.0 PRESS_PT(1) does not have a SP and is configured with thetemperature source as SP

7.0 P_BIAS has a bad value

8.0 Input system pressure has a value less than or equal to zero

9.0 Input reference pressure has a value less than or equal to zero

10.0 Natural logarithm of input system pressure has a value equal to Antoine"A" coefficient

11.0 Natural logarithm of input reference pressure has a value equal toAntoine "B" coefficient

3 STATUS(1) indicates errors in the calculation.

Pressure Compensated Temperature CalculationOverview

4/99 Pressure Compensated Temperature Calculation 8

Fractionator Toolkit

Honeywell Inc.

Configuration and Tuning

This section describes the parameters and values used to configure and tune thepackage to a specific application.

Biases • Temperature Bias

• Pressure Bias.

Tuning • Antoine Coefficient “A”

• Antoine Coefficient “B”

• Selected Base Temperatures.

Biases in the

Program

The Pressure Compensated Temperature program is equipped with the followingadditive biases:

• Input system temperature

• Input system pressure.

Bias Parameters

Parameter Description

T_BIAS Additive bias to input system temperature TEMP_PT(1)

P_BIAS Additive bias to input system pressure PRESS_PT(1)

Pressure and

Temperature Bias

The pressure bias (P_BIAS) and temperature bias (T_BIAS) are added to the inputvalues before performance of the unit conversions and should be entered in thesame units as the input pressure and temperature.

The T_BIAS parameter is used when there is a known error in the systemtemperature indication. The P_BIAS parameter is used when the actual systempressure is not available as an input to the calculation.

Example If the column overhead pressure is used for PRESS_PT(1), then P_BIAS is setequal to the pressure change between the column overhead and the desiredlocation.

Pressure Compensated Temperature Calculation Overview

4/99 Pressure Compensated Temperature Calculation 9

Fractionator Toolkit

Honeywell Inc.

Tuning

Parameters

If there is a sustained offset between the desired composition and laboratorycomposition, the following parameters can be adjusted.

Parameter Suggested Adjustment

ENGPAR(1) Increasing the Antoine "A" coefficient increases the calculated pressurecompensated temperature.

“A” increased 1 unit increases Temp 7 deg F

ENGPAR(2) Increasing the Antoine "B" coefficient decreases the calculated pressurecompensated temperature.

“B” increased 10 units decreases Temp 0.1 deg F

ENGPAR(3) Increasing the base pressure increases the calculated pressure compensatedtemperature.

Base pressure increased 10 psi increases Temp 6 deg F

Use the sum of the component mole % times the Antoine’s A to get the initial“A” estimate.

Use the sum of the component mole % times the Antoine’s B to get the initial “B”estimate.

Antoine’s “C” coefficient is not used in this calculation. The Base Pressure is the pressure at the target temperature that corresponds to the

desired composition. PCT uses the Antoine coefficients derived from the desiredcomposition and the measured unit pressure and temperature to calculate acorrected temperature at the base pressure. The calculated temperature can becompared to the target temperature for control purposes.

Pressure Compensated Temperature Calculation Overview

4/99 Pressure Compensated Temperature Calculation 10

Fractionator Toolkit

Honeywell Inc.

Algorithms

Conversion of

Engineering Units

The input process pressure can have any units, but the conversion factors andatmospheric pressure input must be configured to millimeters of mercury (mmHg),as shown in Equation 1:

When: atm_pres = 0 atm_pres = 760 Else: atm_pres = atm_pres * CONV_FAC(1) press = (PRESS_PT.PV * CONV_FAC(1)) + atm_pres Where:

atm_pres = Atmospheric pressure in input units CONV_FAC(1) = Conversion factor for pressure from input units to mmHg press = Process pressure converted to mmHg for internal

use PRESS_PT.PV = Input process pressure in any units

Equation 1

Calculation The pressure compensated temperature is calculated from process inputsusing the Honeywell Pressure Compensated Temperature calculation, asshown in Equation 2:

p_comp_t = Function[temp, press, ref_pres, ant_a, ant_b]

Where:

p_comp_t = Calculated pressure compensatedtemperature temp = Current system temperature press = Current system pressure ref_pres = Reference pressure ant_a = Antoine "A" coefficient ant_b= Antoine "B" coefficient

Equation 2

Pressure Compensated Temperature Calculation Overview

4/99 Pressure Compensated Temperature Calculation 11

Fractionator Toolkit

Honeywell Inc.

Installation Procedure

This document describes the installation procedure for Pressure CompensatedTemperature on the TDC 3000 System AM.

This section covers the following topics:

• Preparation for Installation

• CDS and PL Installation

• Building Flash Point Calculation Point

• Configuration Graphics Installation.

Preparation for

Installation

Step Action

Gather media Gather the following items:

• Removable media containing the PCT software.

Make media backup Make a backup copy of media/directory on a US with drives n and mconfigured as follows:

Media:

FCOPY $Fn $Fm

Directory only:

CD $Fm>vol_dir> AO

CD $Fm>vol_dir> CDS

COPY $Fn>AO>*.* $Fm>AO>= -V -D

COPY $Fn>CDS>*.* $Fm>CDS>= -V -D

Where $Fn is the drive with the source media and $Fm is the drive withthe target media

Pressure Compensated Temperature CalculationOverview

4/99 Pressure Compensated Temperature Calculation 12

Fractionator Toolkit

Honeywell Inc.

CDS and PL

Installation

This procedure must be done once per LCN installation

Step Action

Set volumepathnames

From Modify Volume Paths display:

CL CUSTOM GDF: NET>CDSG>

USER DEFLT PATH: $Fn>CDS

CompilePCT_CDS.CL

From the Command Processor display, compile the CDS file, PCT_CDS:

CL $Fn>CDS>PCT_CDS.CL -UL

If it is necessary to change the CDS due to a software revision, refer to theApplication Module Data Control Language/Application Module Data Entry.

Standard CDS packages should not be altered. If additional CDS parametersare required they should be added with a separate CDS package.

Parameter list There is no parameter list for the standard PCT calculation package

Configuration

Graphics

Installation

There is no configuration display for this routine at this time.

Configure

Calculation Point

Configuration of the calculation point can be done through direct entry to the CDSports on the Point Detail display.

Setup of the calculation point requires the following steps:

•Non Graphic Configuration of PCT Point Calculation Point

• Linking CL Program.

Notes:

Configuration errors may occur if points are deleted. To correct this problem, theAO files must be unlinked and then relinked to reestablish dynamic indirection.

Link errors may occur, when an improper point type is configured in a CDSparameter. This is caused by a missing parameter. A null point containing allrequired parameters can be used in the configuration for linking purposes only.After the CL is linked, the desired point is then entered into the proper CDSlocation.

Pressure Compensated Temperature Calculation Overview

4/99 Pressure Compensated Temperature Calculation 13

Fractionator Toolkit

Honeywell Inc.

Point

Configuration

Direct CDS Entry

Configuration data must be entered directly onto the flash calculation point. Therequired flash calculation point information and associated parameter are listedbelow.

Parameter Description Comments

TEMP_PT(1) Tagname of source for process temperature °F or °C

PRESS_PT(1) Tagname of source for process pressure Any pressure units

T_BIAS Additive bias to input system temperature Same units as TEMP_PT(1);default is 0

P_BIAS Additive bias to input system pressure Same units as PRESS_PT(1);default is 0

ENGPAR(1) Antoine "A" coefficient Sum of mole % x componentfraction Antoine A

ENGPAR(2) Antoine "B" coefficient Sum of mole % x componentfraction Antoine B

ENGPAR(3) Base pressure ( use normal operatingpressure as first estimate)

Same units as PRESS_PT(1)

Pressure that targettemperature gives desiredcomposition

ENGPAR(4) Local atmospheric pressure (a value of 760.0will be used internally if a zero is entered)

Same units as PRESS_PT(1)

ENGPAR(5) Flag indicating temperature input source(0 => TEMP_PT(1).PV;1 => TEMP_PT(1).SP)

N/A

ENGPAR(6) Flag indicating pressure input source(0 => PRESS_PT(1).PV;1 => PRESS_PT(1).SP)

Enter correct flag

ENGPAR(7) Flag to set calculation BAD (0 => Do not setBAD; 1 => Set calculation BAD)

Enter nothing in this field. setby the programs or graphics

CONV_FAC(1) System pressure (PRESS_PT(1))multiplicative conversion factor

From input units to mmHG

CONV_FAC(2) Input temperature unit flag(0 => °F; 1 => °C)

Enter correct flag

FILTER(1) Filter time for input system temperaturemeasurement

Minutes; default is 0

FILTER(2) Filter time for input system pressuremeasurement

Minutes; default is 0

Pressure Compensated Temperature Calculation Overview

4/99 Pressure Compensated Temperature Calculation 15

Fractionator Toolkit

Honeywell Inc.

Link CL Programs Step Action

Link PCOMP_T From the Command Processor Display:

LK $Fn>AO>PCOMP_T point_name [ENTER]

Activate point Call up the point detail and activate the point.

Verify Operation Verify that PCOMP_T is running without any CL errors.

Pressure Compensated Temperature Calculation Overview

4/99 Pressure Compensated Temperature Calculation 16

Fractionator Toolkit

Honeywell Inc.

Hi-Spec Solutions

Honeywell Hi-Spec Solutions • 16404 N. Black Canyon Hwy. • Phoenix, AZ 85023

Advanced Control Package

Reid Vapor Pressure Calculation

CONTROLLED

March 1995Revision 3.0

Hi-Spec Solutions

Reid Vapor Pressure Calculation Revision HistoryRevision 3.0

Hi-Spec Solutions

Reid Vapor Pressure Calculation ContentsRevision 3.0

Table of Contents

Overview.........................................................................................................................................1

Acronym List ..................................................................................................................................2

Hardware and Software Requirements ...........................................................................................3

Instrumentation (Process Inputs).....................................................................................................4

Process Diagram .............................................................................................................................5

Detailed Description .......................................................................................................................6

Point Structure ..................................................................................................................7

Process Inputs ...................................................................................................................8

Configuration Inputs .........................................................................................................9

Calculation Outputs ........................................................................................................11

Error Codes ...................................................................................................................................13

Diagnostic Error Codes...................................................................................................14

EFV Temperature Calculation Error Codes....................................................................16

Configuration and Tuning.............................................................................................................17

Biases in the RVP Program.............................................................................................18

Tuning Parameters ..............................................................................................................20

Algorithms ....................................................................................................................................21

Installation Procedure ...................................................................................................................23

Preparation for Installation..............................................................................................24

Custom Data Segment (CDS) and Parameter List (PL) Installation...............................25

Building the RVP Calculation Point ...............................................................................26

Configuration Graphics Installation................................................................................27

Configure Calculation Point .........................................................................................................28

Point Configuration Using Graphic RVP_CFG..............................................................29

Point Configuration through Direct CDS Entry..............................................................34

Link CL Programs.........................................................................................................................38

Input Configuration Using Graphic RVP_CFG..............................................................39

Input Configuration through Direct CDS Entry..............................................................40

Activate Point................................................................................................................................41

Hi-Spec Solutions

Reid Vapor Pressure Calculation Overview

Revision 3.0 1

Overview

Definition. RVP is the vapor pressure at 100°F of a product determined in a volume ofair four times the liquid volume. RVP is an indication of the vapor-lock tendency of amotor gasoline as well as explosion and evaporation hazards.

Application. The RVP of a hydrocarbon fraction is an important specification for allblending stocks, because the RVP indicates the vapor-lock potential of the product.

Calculation. The calculation program calculates the inferential RVP of a hydrocarbonproduct based on:

• Processinputs :

Product temperature and pressure

• Characterizationinputs:

Watson K and specific gravity

• Calculatedvalues:

Molecular weight,EFV temperature,ASTM 10% point, andASTM 30% point

Incentive. 1. To indicate how closely a hydrocarbon stream is meeting the RVPspecification.

2. To eliminate dead time associated with laboratory analysis and on-lineanalyzers.

3. To provide a real-time input for use in advanced control applications.

Hi-Spec Solutions

Reid Vapor Pressure Calculation Acronym List

Revision 3.0 2

Acronym List

Term Acronym

Reid vapor pressure RVP

Application Module AM

Local Control Network LCN

Universal Station US

control language CL

process variable PV

custom data segment CDS

Equilibrium Flash Vaporization EFV

pounds per square inch psi

Parameter List PL

CL object code file extension AO

setpoint SP

Hi-Spec Solutions

Reid Vapor Pressure Calculation Hardware and Software Requirements

Revision 3.0 3

Hardware and Software Requirements

Requirement Description

Hardware Platform TDC 3000 AM

Special Boards None

Other Computing Systems None

LCN Release Release 300 or later

AM Load Modules None

US Load Modules None

Other Packages None

Other Control Applications None

Software Inputs Product Watson K (as point on the LCN)

Product gravity (as point on the LCN)

Stripping medium partial pressure (if stripping material is present) (asa PV of a point on the LCN)

Hi-Spec Solutions

Reid Vapor Pressure Calculation Instrumentation (Process Inputs)

Revision 3.0 4

Instrumentation (Process Inputs)

Process Input1 Required Recommended

Product draw temperature X

Product draw pressure X

1 Required inputs can sometimes be obtained by inference. However, calculations based upon inferred data can be less accurate than calculations based upon direct readings.

Hi-Spec Solutions

Reid Vapor Pressure Calculation Process Diagram

Revision 3.0 5

Process Diagram

Stripping Material

Column

TIFC

PI

Recommended

Required

MW

Stripping Material

Partial PressureCalculation

Note 1

Note 1: Needed if Stripping Material is used.

Pressure of saturated stm at draw temperature if stm is use.

Hydrocarbon

Product

TIFC MW WatK

Hydrocarbon and

Stripping Media (if any)

RVP

Calculation

Hi-Spec Solutions

Reid Vapor Pressure Calculation Detailed Description

Revision 3.0 6

Detailed Description

The tables in this section describe the following program architecture:

• Point Structure

• Process Inputs

• Configuration Inputs

• Calculation Outputs.

Hi-Spec Solutions

Reid Vapor Pressure Calculation Point Structure

Revision 3.0 7

Point Structure

Point Structure

Point Type Application Module Regulatory, CL

PV_Type CL

CTL_Type Any

Custom Data Segment RVP_CDS.CL

Algorithm REID_VP.CL

Insertion Point PV_ALG

Slot 5

Output The calculated inferential is displayed as the point’s PV

Hi-Spec Solutions

Reid Vapor Pressure Calculation Process Inputs

Revision 3.0 8

Process Inputs

Process Inputs

Critical2

Parameter Description Units Yes No

TEMP_PT(1) Tagname of source for input processtemperature

°F or °CX

PRESS_PT(1) Tagname of source for input processpressure

Any pressureunits X

PRESS_PT(2) Tagname of source for input steam partialpressure*

Any pressureunits

Xif used

GRAV_PT Tagname of source for input productgravity

°API orspecific gravity

X

WATK_PT Tagname of source for input productWatson K factor

None X

* Partial pressure of stripping media for stream it is the pressure at saturation for the draw temperature.

2 Critical indicates that a bad input causes the output of the calculation to be set BAD.

Hi-Spec Solutions

Reid Vapor Pressure Calculation Configuration Inputs

Revision 3.0 9

Configuration Inputs

Configuration Inputs

Parameter Description Units

T_BIAS Additive bias to input product temperature Same units asTEMP_PT(1)

P_BIAS Additive bias to input product pressure Same units asPRESS_PT(1)

ENGPAR(1) Local atmospheric pressure (a value of 14.696 will be usedinternally if a zero is entered)

Same units asPRESS_PT(1)

ENGPAR(2) User entered slope of ASTM D86 temperature curve at 10%point

° input temp.units /volumepercent

ENGPAR(3) Spare - Available for future development N/A

ENGPAR(4) Spare - Available for future development N/A

ENGPAR(5) Flag indicating source of ASTM D86 slope (0 => Calculateslope internally; 1 => Use ENGPAR(2))

N/A

ENGPAR(6) Flag indicating source of TEMP_PT(1) source (0 => Use PV; 1 => Use SP)

N/A

ENGPAR(7) Flag indicating source of PRESS_PT(1) (0 => Use PV; 1 => Use SP)

N/A

ENGPAR(8) Flag to set calculation BAD ( 0 => Calculate Normally;

1 => Set calculation BAD)

N/A

ENGPAR(9) Spare - Available for future development N/A

ENGPAR(10) Flag indicating presence of stripping medium ( 0 => Stripping is not present;

1 => Stripping is present)

N/A

ENGPAR(11) Bias to calculated ASTM 10% to 30% slope Input temp units /%

LAB_BIAS(1) Multiplicative bias to calculated system partial pressure N/A

LAB_BIAS(2) Additive laboratory bias to calculated RVP Desired units

Continued

Hi-Spec Solutions

Reid Vapor Pressure Calculation Configuration Inputs

Revision 3.0 10

Configuration Inputs (Continued)

Configuration Inputs

Parameter Description Units

CONV_FAC(1) Product pressure (PRESS_PT) multiplicative conversionfactor

From input unitsto psia

CONV_FAC(2) Calculated RVP multiplicative conversion factor From psi tooutput units

CONV_FAC(3) Input temperature unit flag( 0 => °F;

1 => °C )

N/A

CONV_FAC(4) Input gravity type flag( 0 => API;

1 => Specific gravity)

N/A

FILTER(1) Filter time for product temperature input Minutes

FILTER(2) Filter time for product hydrocarbon partial pressure (appliedto input pressure, and input stripping medium partialpressure)

Minutes

FILTER(3) Filter time for gravity Minutes

FILTER(4) Filter time for Watson K Minutes

FILTER(5) Filter time for multiplicative lab bias to RVP Minutes

FILTER(6) Filter time for additive lab bias to RVP Minutes

FILTER(7) Filter time for bias to slope of ASTM D86 curve Minutes

FILTER(8) Spare Minutes

Hi-Spec Solutions

Reid Vapor Pressure Calculation Calculation Outputs

Revision 3.0 11

Calculation Outputs

Calculation Outputs

Parameter Description Units

PVCALC Calculated hydrocarbon product inferential RVP desired outputunits

CALC_VAL(1) Calculated hydrocarbon product inferential RVP desired outputunits

CALC_VAL(2) Calculated product EFV temperature input temperatureunits

CALC_VAL(3) Calculated ASTM D86 10% point input temperatureunits

CALC_VAL(4) Calculated ASTM D86 slope at 10% to 30% deg inputper %

CALC_VAL(5) Value of vapor pressure recursive function minus systemvapor pressure

CALC_VAL(6) First derivative of above vapor pressure recursive function N/A

CALC_VAL(7) Calculated system pressure Input pressureunits

CALC_VAL(8) Calculated RVP (converged or not) unbiased psi

CALC_VAL(9) Number of iterations used to converge to the RVP N/A

FILT_VAL(1) Filtered value of bias temperature input Input units

FILT_VAL(2) Filtered value of calculated product hydrocarbon partialpressure (biased)

Input units

FILT_VAL(3) Filtered value of last input gravity Input units

FILT_VAL(4) Filtered value of last input Watson K factor N/A

FILT_VAL(5) Filtered value of last input multiplicative laboratory bias tocalculated RVP

N/A

Continued

Hi-Spec Solutions

Reid Vapor Pressure Calculation Calculation Outputs

Revision 3.0 12

Calculation Outputs (Continued)

Calculation Outputs

Parameter Description Units

FILT_VAL(6) Filtered value of last input additive laboratory bias toASTM D86 10% point

Input units

FILT_VAL(7) Filtered value of additive bias to ASTM slope Input Temp units/%

STATUS(1) Diagnostic indication of location and possible causes ofprogram error

N/A

STATUS(2) Diagnostic indication of subroutine error N/A

REV_NO Program revision number set by code N/A

Hi-Spec Solutions

Reid Vapor Pressure Calculation Error Codes

Revision 3.0 13

Error Codes

The tables in this section describe the following program error codes:

• Diagnostic error codes

• EFV temperature calculation subroutine error codes.

Hi-Spec Solutions

Reid Vapor Pressure Calculation Diagnostic Error Codes

Revision 3.0 14

Diagnostic Error Codes

Diagnostic Error Codes

Parameter Value Meaning

STATUS(1)3 0.0 No errors

1.0 Set calculation BAD flag is on

2.0 Input multiplicative pressure conversion factor (CONV_FAC(1))has a zero or negative value

3.0 Input multiplicative RVP conversion factor (CONV_FAC(2)) hasa zero or negative value

4.0 TEMP_PT(1) has a null point entered or has a bad PV

5.0 TEMP_PT(1) does not have a SP and is configured with thetemperature source as SP

6.0 T_BIAS or TEMP_PT(1).SP [if used] has a bad value

7.0 PRESS_PT(1) has a null point entered or has a bad PV

8.0 PRESS_PT(1) does not have a SP and is configured with thetemperature source as SP

9.0 Stripping media is present (ENGPAR(10) = 1.0) andPRESS_PT(2) has a null point entered or has a bad PV

10.0 P_BIAS or PRESS_PT(1).SP [if used] has a bad value

11.0 GRAV_PT has a null point entered or has a bad PV

12.0 WATK_PT has a null point entered or has a bad PV

13.0 Input additive bias to ASTM D86 10% slope (ENGPAR(11)) hasa bad value

14.0 Input multiplicative lab bias to RVP (LAB_BIAS(1)) has a badvalue

Continued

3 STATUS(1) indicates errors in the calculation.

Hi-Spec Solutions

Reid Vapor Pressure Calculation Diagnostic Error Codes

Revision 3.0 15

Diagnostic Error Codes (Continued)

Diagnostic Error Codes

Parameter Value Meaning

STATUS(1) 15.0 Input additive lab bias to RVP (LAB_BIAS(2)) has a bad value

16.0 User entered slope of ASTM curve (ENGPAR(2)) has a bad valueor less than or equal to zero

17.0 GRAV_PT has a value outside the range 0.3 to 1.9

18.0 WATK_PT has a value outside the range 5.0 to 18.0

19.0 Error in calculating EFV temperature (see STATUS(2) in "EFVtemperature calculation error codes")

20.0 Calculated slope of ASTM curve has a bad value

21.0 Calculated slope of ASTM curve has a value less than or equal tozero (check bias value)

22.0 Input temperature has a value less than 0.0 °F

23.0 Calculated hydrocarbon partial pressure has a value less than 0.2psia

24.0 RVP did not converge in the configured number of iterations (10iterations)

Hi-Spec Solutions

Reid Vapor Pressure Calculation EFV Temperature Error Codes

Revision 3.0 16

EFV Temperature Calculation Error Codes

EFV Temperature Calculation Error Codes

Parameter Value Meaning

STATUS(2)4 0.0 No errors

1.0 Calculated EFV temperature has a bad value

2.0 Input temperature has a bad value

3.0 Input effective vapor pressure has a bad value

4.0 Input Watson K has a bad value

-1.0 Input temperature, effective vapor pressure,or Watson K has a negative value

4 STATUS(2) indicates errors returned by the molecular weight calculation subroutine.

Hi-Spec Solutions

Reid Vapor Pressure Calculation Configuration and Tuning

Revision 3.0 17

Configuration and Tuning

This section describes the parameters and values used to configure and tune the packageto a specific application.

Biases

• Temperature Bias

• Pressure Bias

• Laboratory Additive bias for the RVP.

Tuning

• Multiplicative bias to the calculated system partial pressure.

• Additive bias for the ASTM D86 curve slope from 10% to 30%.

Hi-Spec Solutions

Reid Vapor Pressure Calculation Biases in the RVP Program

Revision 3.0 18

Biases in the RVP Program

The RVP program is equipped with the following additive biases:

• Input product temperature

• Input product pressure

• Additive bias for the ASTM D86 10% point

Bias Parameters

Parameter Description

T_BIAS Additive bias to input product temperature TEMP_PT(1)

P_BIAS Additive bias to input product pressure PRESS_PT(1)

LAB_BIAS(2) Additive laboratory bias to calculated RVP

Pressure and Temperature Bias. The pressure bias (P_BIAS) and temperature bias(T_BIAS) are added to the input values before performance of the unit conversions andshould be entered in the same units as the input pressure and temperatures.

The T_BIAS parameters are used when there is a known error in the producttemperature indication or the actual product temperature is not available as an input tothe calculation. The P_BIAS parameter is used when the actual product pressure is notavailable as an input to the calculation.

Example. If the column overhead pressure is used for PRESS_PT, then P_BIAS is setequal to the pressure change between the column overhead and the product location.

Additive Laboratory Biases [LAB_BIAS(2)] . The RVP program biases the calculatedRVP using the parameter LAB_BIAS(2) for additive biasing.

LAB_BIAS(2) is used dynamically and is expected to be updated manually or with alaboratory results interface package.

Both PVCALC and CALC_VAL(1) contain the biased calculated RVP. The unbiasedRVP is stored in CALC_VAL(8) in psia units. For unbiased calculations setLAB_BIAS(2) = 0.0.

Hi-Spec Solutions

Reid Vapor Pressure Calculation Tuning Parameters

Revision 3.0 19

Tuning Parameters

If there is a sustained offset between the calculated and laboratory RVPs even with theuse of the biasing, the following parameter can be adjusted.

Parameter Suggested Adjustment

LAB_BIAS(1) Multiplicative bias to calculated system partial pressure

ENGPAR(11)if ENGPAR(5) 1

ENGPAR(2)if ENGPAR(5) =1

Increasing the slope of the ASTM D86 temperature curve at the 10%point decreases the RVP

When the ASTM D86 slope is entered and fixed (ENGPAR(5) = 1), the ASTM D86temperature curve slope, ENGPAR(2), can be adjusted. This adjustment should beperformed using optimization techniques applied to large volumes of lab and plant datain order to find the best slope bias.

ASTM slope Bias [ENGPAR(11)]

The ASTM D86 slope is dynamic calculated from the Equilibrium Flash Vaporization(EFV) temperature. A bias is applied to this slope to generate a corrected slope used inthe RVP calculation.

The relation is: Corrected Slope = Calculated Slope + ASTM slope baisfiltered

When the ASTM D86 slope is calculated (ENGPAR(5) 1), the ASTM D86 temperaturecurve slope bias, ENGPAR(11), can be adjusted. This adjustment should be performedusing optimization techniques applied to large volumes of lab and plant data in order tofind the best slope bias.

The following samples show the direction and magnitude to be expected with anadjustment to the ASTM slope.

Increase Slope Bias to DecreaseRVP ENGPAR(11) psia

slope = 2.0 0.0 32.021

Temperature = 70F 0.5 31.474

Pressure = 8 psig 1.0 31.014

Hi-Spec Solutions

Reid Vapor Pressure Calculation Tuning Parameters

Revision 3.0 20

Multiplicative Bias [LAB_BIAS(1)]

The multiplicative bias, LAB_BIAS(1), is used as a proportional bias. This bias isoptional and is manually entered when used. If this bias is not used it must be set to 1.0.

Hi-Spec Solutions

Reid Vapor Pressure Calculation Algorithms

Revision 3.0 21

Algorithms

Conversion of Engineering Units. The hydrocarbon partial pressure, calculated fromthe input process pressure and input stripping media partial pressure) is converted, asshown in Equation 1:

Pres(i) = ( PRESS_PT(1).PV(or .SP)- PRESS_PT(2).PV)if used *CONV_FAC(1)+ atm_pres

Where:

Pres(i) = Hydrocarbon partial pressure in psia for internal usePRESS_PT(1).PV or .SP = Input process pressure in any unitsPRESS_PT(2).PV = Input process stripping media partial pressure

in same units as process pressureCONV_FAC(1) = Conversion for pressure from input units to psigatm_pres = Atmospheric pressure in psiandWhen:ENGPAR(1) <= 0 then atm_pres = 14.696 else atm_pres = ENGPAR(1) * CONV_FAC(1)

Equation 1

Continued

Hi-Spec Solutions

Reid Vapor Pressure Calculation Algorithms

Revision 3.0 22

Algorithms (Continued)

RVP Calculation. The RVP is calculated from process inputs using the Honeywellcalculation, as shown in Equation 2:

RVP = Function[draw_t, draw_p, draw_char, steam_pp]or if slope is not calculated

= Function[draw_t, draw_p, astm_s, steam_pp]

Where:

RVP = Calculated Reid vapor pressuredraw_t = Product draw temperaturedraw_p = Product draw pressuredraw_char = Product characterization (gravity and Watson K)steam_pp = Partial pressure of stripping media (if present)astm_s = Product ASTM distillation slope at 10% distilled

Equation 2

Biasing. One bias factor is provided to reduce the offset between the inferential RVPand a laboratory or on-line analysis-determined RVP, as shown in Equation 3:

bias_RVP = RVP_c + LAB_BIAS(2)

Where:

bias_RVP = Biased Reid vapor pressureRVP_c = Calculated Reid vapor pressureLAB_BIAS(2) = Additive laboratory bias

Equation 3

Hi-Spec Solutions

Reid Vapor Pressure Calculation Preparation for Installation

Revision 3.0 23

Installation Procedure

This document describes the installation procedure for the RVP calculation on theTDC 3000 System AM.

This section covers the following topics:

• Preparation for Installation

• Custom Data Segment (CDS) and Parameter List (PL) Installation

• Building the RVP Calculation Point

• Configuration Graphics Installation.

Hi-Spec Solutions

Reid Vapor Pressure Calculation Preparation for Installation

Revision 3.0 24

Preparation for Installation

Step Action

Gather media Gather the following items:

• Removable media containing the directory RVP

• Commissioning Worksheet

Make media backup Make a backup copy of media/directory on a US with drives n and mconfigured as follows:

Media:

FCOPY $Fn $Fm

Directory only:

CD $Fm>vol_dir> RVP

CD $Fm>vol_dir> CDS

CD $Fm>vol_dir> AO

CD $Fm>vol_dir> EB

CD $Fm>vol_dir> PICS

COPY $Fn>RVP>*.* $Fm>RVP>= -V -D

COPY $Fn>CDS>*.* $Fm>CDS>= -V -D

COPY $Fn>AO>*.* $Fm>AO>= -V -D

COPY $Fn>EB>*.* $Fm>EB>= -V -D

COPY $Fn>PICS>*.* $Fm>PICS>= -V -D

Where $Fn is the drive with the source media and $Fm is the drive withthe target media.

Hi-Spec Solutions

Reid Vapor Pressure Calculation CDS and PL Installation

Revision 3.0 25

Custom Data Segment (CDS) and Parameter List (PL) Installation

This procedure must be done once per LCN installation.

Step Action

Set volumepathnames

From Modify Volume Paths display:

CL CUSTOM GDF: NET>CDSG>

USER DEFLT PATH: $Fn>CDS

CompileRVP_CDS.CL

From the Command Processor Display, compile the CDS file, RVP_CDS:

CL $Fn>CDS>RVP_CDS.CL -UL

If it is necessary to change the CDS due to a software revision, refer to theApplication Module Data Control Language/Application Module Data Entry

Parameter list There is no parameter list for the standard RVP calculation package

Hi-Spec Solutions

Reid Vapor Pressure Calculation Building the RVP Calculation Point

Revision 3.0 26

Building the RVP Calculation Point

A calculation point is required for each RVP calculated.

Step Action

Modify ExceptionBuild file,RVP_PNT.EB

From the Command Processor Display:

ED $Fn>EB>RVP_PNT.EB [ENTER]

Edit template as follows:

&N point name

UNIT = unit number

PTDESC ="point descriptor text"

KEYWORD = "keyword"

PERIOD = as required

Load EB file. From the Builder Commands Display:

Select the EXCEPTION BUILD target.

Fill in ports as:

REFERENCE PATH NAME: $Fn>EB

Load Entities (select target)

Pathname for SOURCE file: RVP_PNT.EB

Pathname for IDF file: RVP_PNT.DB

[ENTER]

Verify load When the load is complete, verify point loading by calling the point detailfrom the [DETAIL] button.

Hi-Spec Solutions

Reid Vapor Pressure Calculation Configuration Graphics Installation

Revision 3.0 27

Configuration Graphics Installation

Graphics must be compiled and installed once per LCN.

Step Action

Go to Picture Editor Enter the Picture Editor, one of two ways:From the Engineering Main Menu select the Pictureeditor target OR From the Command Processorcommand line type PE [ENTER]

Load DDB Load Global variable definition file, DDB:

L $Fn>PICS>DDB [ENTER]

Read RVP_CFG Read in the picture file, RVP_CFG

R $Fn>RVP>RVP_CFG [ENTER]

Verify and Compile Verify picture:

VER [ENTER]

When the verification is complete Compile the picture:

COM [ENTER]

Copy RVP_CFG.DOto graphics directory

From the Command Processor Display:

COPY $Fn>RVP>RVP_CFG.DO NET>pic_dir>= -D [ENTER]

Where pic_dir is the picture source directory specified in the SchematicSearch Path

Hi-Spec Solutions

Reid Vapor Pressure Calculation Configure Calculation Point

Revision 3.0 28

Configure Calculation Point

Configuration of the calculation point can be done either through the graphic RVP_CFGor through direct entry to the CDS ports on the Point Detail display. Use of theconfiguration graphic is recommended. Configuration of the calculation point consistsof:

• Graphic/Non Graphic Configuration of RVP Point Calculation Point(excluding the TEMP_PT, and PRESS_PT entries)

• Linking CL Program

• Graphic/Non Graphic Configuration of RVP Point Calculation Point(entry of the TEMP_PT, and PRESS_PT entries).

Linkage of the CL prior to entry of tagnames in point arrays allows the followingfunctions:

• Selectable of PV or SP parameters for inputs, while allowing entry of points whichdo not have the SP parameter.

• Dynamic relinking of input points (on-line change of the point, without the need forCL code unlinking and linking.

• Reentry of the input point after deletion and rebuilding of the point.

Hi-Spec Solutions

Reid Vapor Pressure Calculation Point Configuration Using Graphic RVP_CFG

Revision 3.0 29

Point Configuration Using Graphic RVP_CFG

Each entry port on the configuration graphic, RVP_CFG, is described below:

Graphic RVP_CFG

Continued

Hi-Spec Solutions

Reid Vapor Pressure Calculation Point Configuration Using Graphic RVP_CFG

Revision 3.0 30

Point Configuration Using Graphic RVP_CFG (Continued)

Selection Port Parameter Description

Calculation Point -- Enter the RVP calculation point name.

RVP Conv Factor CONV_FAC(2) Enter a number for converting from psia to thedesired output units

output units Conv Factorkg/cm2 0.070307psi 1.0000kPa 6.894757

Gain on Raw Value LAB_BIAS(1) Enter the multiplicative bias term for adjusting thepartial pressure calculation.

Gain Filter FILTER(5) Enter a first order filter time in minutes for filteringthe multiplicative bias term.

Additive Calc Bias LAB_BIAS(2) Enter the additive bias term for adjusting the rawRVP calculation.

Additive Filter FILTER(6) Enter a first order filter time in minutes for filteringthe multiplicative bias term.

D86 Slope Type ENGPAR(5) If the ASTM D86 slope is to be calculated from theprocess temperature, pressure, and hydrocarboncharacterization then select CALCIf the ASTM D86 slope at 10% is to be entered(automatically or manually) then select USER.

Users D86 Slope ENGPAR(2) If the ASTM D86 slope at 10% is to be entered(automatically or manually) then enter then currentslope value.

D86 Slope Bias ENGPAR(11) Enter the additive bias term for adjusting thecalculated slope.

D86 Slope Filter FILTER(7) Enter a first order filter time in minutes for filteringthe slope additive bias term.

Gravity Units CONV_FAC(4) Select the input units for the product gravity (API orSpecific gravity)

Stream Gravity Pnt GRAV_PT Enter the point name of the points whose PV is theproduct gravity.If the slope is a USER input, this point is notneeded, but for code linking a valid LCN point witha PV must be entered

Continued

Hi-Spec Solutions

Reid Vapor Pressure Calculation Point Configuration Using Graphic RVP_CFG

Revision 3.0 31

Point Configuration Using Graphic RVP_CFG (Continued)

Selection Port Parameter Description

Gravity Pnt Filter FILTER(3) Enter a first order filter time in minutes for filteringthe gravity input.

Stream Watson K Pnt WATK_PT Enter the point name of the points whose PV is theproduct Watson K.If the slope is a USER input, this point is notneeded, but for code linking a valid LCN point witha PV must be entered

Watson K Pnt Filter FILTER(4) Enter a first order filter time in minutes for filteringthe Watson K input.

Temperature Units CONV_FAC(3) Select the proper input units,(C, or F)

Temperature Bias T_BIAS Enter the bias to the input temperature in theselected units

Temp Filter FILTER(1) Enter the filter time (in minutes) for filtering of theinput temperature

Temp Input Type ENGPAR(6) Select whether the PV or SP of the temperatureinput with be used

Pressure Bias P_BIAS Enter the bias to the input pressure in the same unitsas the input units

Pressure Filter FILTER(2) Enter the filter time (in minutes) for filtering of thepressure inputs

Press Input Type ENGPAR(7) Select whether the PV or SP of the draw pressureinput with be used

Atmospheric Press ENGPAR(1) Enter the atmospheric pressure in input units.If a 0 or negative number is entered14.696 psi is assumedIf a positive number is enteredatmospheric pressure = this number *

the pressure conversion factor

Press Conv Factor CONV_FAC(1) Enter a number for converting from input units topsi

input units Conv Factorkg/cm2 14.223343psi 1.0000kPa 0.145038

Envelope IncludesSteam

ENGPAR(10) If a stripping media is present at the draw tray(steam, nitrogen, Fuel gas) then choose YESOtherwise select NO

Continued

Hi-Spec Solutions

Reid Vapor Pressure Calculation Point Configuration Using Graphic RVP_CFG

Revision 3.0 32

Point Configuration Using Graphic RVP_CFG (Continued)

Selection Port Parameter Description

Temperature Pnt TEMP_PT(1) Leave Blank (NULL) until after code linking

Pressure Pnt PRESS_PT(1) Leave Blank (NULL) until after code linking

Envelope Stm Press(only appears ifEnvelope IncludesSteam is ON )

PRESS_PT(2) Leave Blank (NULL) until after code linking

Hi-Spec Solutions

Reid Vapor Pressure Calculation Point Configuration through Direct CDS Entry

Revision 3.0 33

Point Configuration through Direct CDS Entry

If the configuration graphic is not used, then the configuration data must be entereddirectly onto the point detail of the calculation point. The required calculation pointinformation and associated parameter are listed below.

Parameter Description Comments

TEMP_PT(1) Product Draw Temperature Point Leave Blank (NULL) until after codelinking

TEMP_PT(2) Leave Blank (NULL) until after codelinking

PRESS_PT(1) Product Draw Pressure Point Leave Blank (NULL) until after codelinking

PRESS_PT(2) Stripping Medium partial pressurecalculation point(Used only if the envelopeincludes a stripping media)

Leave Blank (NULL) until after codelinking

GRAV_PT Stream Gravity Point Enter the point name of the pointswhose PV is the product gravity.If the slope is a USER input, this pointis not needed, but for code linking avalid LCN point with a PV must beentered

WATK_PT Stream Watson K Point Enter the point name of the pointswhose PV is the product Watson K.If the slope is a USER input, this pointis not needed, but for code linking avalid LCN point with a PV must beentered

T_BIAS Temperature Bias Enter the bias to the input temperaturein the selected units

P_BIAS Pressure Bias Enter the bias to the input pressure inthe same units as the input units

ENGPAR(1) Atmospheric Press Enter the atmospheric pressure in inputunits.If a 0 or negative number is entered14.696 psi is assumed.If a positive number is enteredatmospheric pressure = this numbertimes the pressure conversion factor

Continued

Hi-Spec Solutions

Reid Vapor Pressure Calculation Point Configuration through Direct CDS Entry

Revision 3.0 34

Point Configuration through Direct CDS Entry (Continued)

Parameter Description Comments

ENGPAR(2) Users D86 Slope If the ASTM D86 slope at 10% is to beentered (automatically or manually)then enter then current slope value

ENGPAR(5) D86 Slope Type If the ASTM D86 slope is to becalculated from the processtemperature, pressure, andhydrocarbon characterization thenenter 0.00If the ASTM D86 slope at 10% is to beentered (automatically or manually)then enter 1.00

ENGPAR(6) Temperature Input Type If the PV of the temperature input is tobe used enter 0.00If the SP of the temperature input is tobe used enter 1.00

ENGPAR(7) Pressure Input Type If the PV of the pressure input is to beused enter 0.00If the SP of the pressure input is to beused enter 1.00

ENGPAR(10) Indicates if the envelope includesa stripping media

If a stripping media is present at thedraw tray (steam, nitrogen, Fuel gas)then enter 1.00Otherwise enter 0.00

ENGPAR(11) ASTM D86 Slope Bias Enter the additive bias term foradjusting the calculated slope.

CONV_FAC(1) Pressure Conversion Factor frominput units to psi

Enter a number for converting frominput units to psi

input units Conv Factorkg/cm2 14.223343psi 1.0000kPa 0.145038

CONV_FAC(2) RVP Conversion Factor from psiato the output units

Enter a number for converting frompsia to the desired output units

output units Conv Factorkg/cm2 0.070307psi 1.0000kPa 6.894757

CONV_FAC(3) Temperature Units For F input enter 0.00For C input enter 1.00

Hi-Spec Solutions

Reid Vapor Pressure Calculation Point Configuration through Direct CDS Entry

Revision 3.0 35

Point Configuration through Direct CDS Entry (Continued)

Parameter Description Comments

CONV_FAC(4) Gravity Units For API input enter 0.00For Specific gravity input

enter 1.00

FILTER(1) Temperature Filter Enter the filter time (in minutes) forfiltering of the input temperature

FILTER(2) Pressure Filter Enter the filter time (in minutes) forfiltering of the pressure inputs

FILTER(3) Gravity Point Filter Enter a first order filter time in minutesfor filtering the gravity input.

FILTER(4) Watson K Point Filter Enter a first order filter time in minutesfor filtering the Watson K input.

FILTER(5) Gain Filter Enter a first order filter time in minutesfor filtering the multiplicative biasterm.

FILTER(6) Additive Filter Enter a first order filter time in minutesfor filtering the multiplicative biasterm.

FILTER(7) D86 Slope Filter Enter a first order filter time in minutesfor filtering the slope additive biasterm.

LAB_BIAS(1) Gain on System Partial Pressure Enter the multiplicative bias term foradjusting the partial pressurecalculation.

LAB_BIAS(2) Additive Calculation Bias Enter the additive bias term foradjusting the raw RVP calculation.

Hi-Spec Solutions

Reid Vapor Pressure Calculation Link CL Programs

Revision 3.0 36

Link CL Programs

Step Action

Link REID_VP From the Command Processor Display:

LK $Fn>AO>REID_VP point_name [ENTER]

Hi-Spec Solutions

Reid Vapor Pressure Calculation Input Configuration Using Graphic RVP_CFG

Revision 3.0 37

Input Configuration Using Graphic RVP_CFG

Call up the schematic RVP_CFG.

Selection Port Parameter Description

Temperature Pnt TEMP_PT(1) Enter the point name of the draw temperature

Pressure Pnt PRESS_PT(1) Enter the Point name of the product draw pressure.

Envelope Stm Press(only appears ifEnvelope IncludesSteam is ON )

PRESS_PT(2) If used,Enter the point name whose PV is the strippingmedia partial pressure

Hi-Spec Solutions

Reid Vapor Pressure Calculation Input Configuration through Direct CDS Entry

Revision 3.0 38

Input Configuration through Direct CDS Entry

If the configuration graphic is not used, then entered the input point names directly ontothe point detail of the calculation point.

Parameter Description Comments

TEMP_PT(1) Product Draw Temperature Point Enter the point name of the drawtemperature

TEMP_PT(2) Leave Blank (NULL)

PRESS_PT(1) Product Draw Pressure Point Enter the Point name of the productdraw pressure.

PRESS_PT(2) Stripping Medium partial pressurecalculation point(Used only if the envelopeincludes a stripping media)

If used,Enter the point name whose PV is thestripping media partial pressure

Hi-Spec Solutions

Reid Vapor Pressure Calculation Activate Point

Revision 3.0 39

Activate Point

Step Action

Activate point Call up the point detail and activate the point, or activate from RVP_CFGgraphic.

Verify Operation Verify that REID_VP is running without any CL errors.

Hi-Spec Solutions

Reid Vapor Pressure Calculation Appendix A Engineer’s Detailed DescriptionRevision 3.0 40

Hi-Spec Solutions

Honeywell Hi-Spec Solutions • 16404 N. Black Canyon Hwy. • Phoenix, AZ 85023

Advanced Control Package

Temperature Corrected Specific Gravity

CONTROLLED

March 1995Revision 2.0

Hi-Spec Solutions

Temperature Corrected Specific Gravity Contents

Revision 2.0

Table of Contents

Overview.........................................................................................................................................1

Acronym List ..................................................................................................................................3

Hardware and Software Requirements ...........................................................................................4

Instrumentation (Process Inputs) ....................................................................................................5

Process Diagram .............................................................................................................................6

Detailed Description .......................................................................................................................7

Point Structure ..................................................................................................................8

Process Inputs ...................................................................................................................9

Configuration Inputs .......................................................................................................10

Calculation Outputs ........................................................................................................11

Error Codes ...................................................................................................................................12

Diagnostic Error Codes...................................................................................................13

Filter Subroutine Error Codes.........................................................................................14

Configuration and Tuning.............................................................................................................15

Biases in the Temperature Corrected Specific Gravity Program....................................16

Tuning Parameters ..........................................................................................................17

Algorithms ....................................................................................................................................18

Installation Procedure ...................................................................................................................20

Preparation for Installation .............................................................................................21

Custom Data Segment (CDS) and Parameter List (PL) Installation...............................22

Building Application Module Point................................................................................23

Configuration Graphics Installation................................................................................24

Configure Calculation Point .........................................................................................................25

Point Configuration Using Graphic ................................................................................26

Point Configuration through Direct CDS Entry..............................................................27

Link CL Programs...........................................................................................................................1

Hi-Spec Solutions

Temperature Corrected Specific Gravity Revision History

Revision 2.0

Hi-Spec Solutions

Temperature Corrected Specific Gravity Overview

Revision 2.0 1

Overview

Definition. The temperature corrected specific gravity is the specific gravity of a liquidhydrocarbon stream at the flowing or process temperature.

Application. The temperature corrected specific gravity of a liquid hydrocarbon streamis used to determine the stream’s mass flow.

Calculation. The temperature corrected specific gravity program calculates the flowingspecific gravity of a liquid hydrocarbon stream based on:

• Processinputs :

Temperature

• Characterizationinputs:

Watson K and gravity at 60 °F

• Calculatedvalues:

Temperature corrected specific gravity, andconvert input gravity to specific gravity.

Incentive. 1. To provide required information for calculating the mass flow of aliquid hydrocarbon stream.

2. To provide a real-time input for use in advanced control applications.

3. To provide physical property estimations.

Hi-Spec Solutions

Temperature Corrected Specific Gravity Overview

Revision 2.0 2

Temperature Corrected Gravity

0.7000

0.8000

0.9000

0 20 40 60 80 100 120 140 160 180 200

Temperature, Deg F

Sp

ecif

ic G

ravi

ty

Lab Grav

Temp Corr Grav

Figure 1

Figure 1 shows the relationship between a specific gravity at 60 °F (Lab Grav) and thetemperature corrected specific gravity. As would be expected the temperature correctedgravity is less than the lab gravity above 60 F and grater than the lab gravity below 60F. The ASTM D1289-85 Density, Relative Density (Specific Gravity), or API Gravityof Crude Petroleum and Liquid Petroleum Products by Hydrometer Method, or similarmethod is presumed to be the means of determining the lab gravity.

Hi-Spec Solutions

Temperature Corrected Specific Gravity Acronym List

Revision 2.0 3

Acronym List

Term Acronym

Application Module AM

Local Control Network LCN

Universal Station US

control language CL

process variable PV

custom data segment CDS

pounds per square inch psi

Parameter List PL

CL object code file extension AO

Hi-Spec Solutions

Temperature Corrected Specific Gravity Hardware and Software Requirements

Revision 2.0 4

Hardware and Software Requirements

Requirement Description

Hardware Platform TDC 3000 AM

Special Boards None

Other Computing Systems None

LCN Release Release 300 or later

AM Load Modules None

US Load Modules None

Other Packages None

Other Control Applications None

Software Inputs The gravity input and Watson K factor for the liquid hydrocarbonstream must exist as points on the LCN

Hi-Spec Solutions

Temperature Corrected Specific Gravity Instrumentation (Process Inputs)

Revision 2.0 5

Instrumentation (Process Inputs)

Process Input1 Required Recommended

Stream temperature X

1 Required inputs can sometimes be obtained by inference. However, calculations based upon inferred data can be less accurate than calculations based upon direct readings.

Hi-Spec Solutions

Temperature Corrected Specific Gravity Process Diagram

Revision 2.0 6

Process Diagram

TI

FC

FLOW

Typical Flow Controller

Hi-Spec Solutions

Temperature Corrected Specific Gravity Detailed Description

Revision 2.0 7

Detailed Description

The tables in this section describe the following specific gravity correction programarchitecture:

• Point Structure

• Process Inputs

• Configuration Inputs

• Calculation Outputs.

Hi-Spec Solutions

Temperature Corrected Specific Gravity Point Structure

Revision 2.0 8

Point Structure

Point Structure

Point Type Application Module Regulatory

PV_Type FLOWCOMP

CTL_Type Any

Custom Data Segment SG_CDS.CL

Algorithm SG_CORR.CL

Insertion Point PRE_GI

Slot 5

Output The temperature corrected specific gravity is stored to the CDSCALC_VAL(1)

Hi-Spec Solutions

Temperature Corrected Specific Gravity Process Inputs

Revision 2.0 9

Process Inputs

Process Inputs

Critical2

Parameter Description Units Yes No

GRAV_PT Tagname of source for the liquidhydrocarbon stream’s gravity

°API or none (S.G.)X

TEMP_PT Tagname of source for the liquidhydrocarbon stream’s temperature at theflow meter

°F or °CX

WATK_PT Tagname of source for the liquidhydrocarbon stream’s Watson K factor

NoneX

.

2 Critical indicates that a bad input causes the output of the calculation to be set BAD.

Hi-Spec Solutions

Temperature Corrected Specific Gravity Configuration Inputs

Revision 2.0 10

Configuration Inputs

Configuration Inputs

Parameter Description Units

CONV_FAC(1) Input temperature unit flag; 0 => °F;1 => °C

N/A

CONV_FAC(2) Input gravity type flag:0 => API;1 => Specific gravity

N/A

ENGPAR Flag to force calculation BAD( 0 => Do not set BAD; 1 => Set calculation BAD)

N/A

FILTER(1) Filter time for the liquid hydrocarbon stream’s gravity Minutes

FILTER(2) Filter time for the liquid hydrocarbon stream’s temperatureat the flow meter

Minutes

FILTER(3) Filter time for the liquid hydrocarbon stream’s Watson Kfactor

Minutes

T_BIAS Additive bias to the liquid hydrocarbon stream’stemperature at the flow meter

Same units asTEMP_PT

Hi-Spec Solutions

Temperature Corrected Specific Gravity Calculation Outputs

Revision 2.0 11

Calculation Outputs

Calculation Outputs

Parameter Description Units

CALC_VAL(1) Liquid hydrocarbon stream’s temperature corrected specificgravity

N/A

CALC_VAL(2) Input gravity converted to a specific gravity N/A

CALC_VAL(3) The liquid hydrocarbon stream’s temperature at the flowmeter plus additive temperature bias

°F

FILT_VAL(1) Filtered value of the liquid hydrocarbon stream’s gravity Input units

FILT_VAL(2) Filtered value of the liquid hydrocarbon stream’stemperature at the flow meter

Input units

FILT_VAL(3) Filtered value of the liquid hydrocarbon stream’s Watson Kfactor

Input units

REV_NO Program revision number N/A

STATUS(1) Diagnostic error location indication N/A

STATUS(2) Diagnostic indication of subroutine error N/A

Hi-Spec Solutions

Temperature Corrected Specific Gravity Error Codes

Revision 2.0 12

Error Codes

The tables in this section describe the following program error codes:

• Diagnostic error codes

• Filter subroutine error codes.

Hi-Spec Solutions

Temperature Corrected Specific Gravity Diagnostic Error Codes

Revision 2.0 13

Diagnostic Error Codes

Diagnostic Error Codes

Parameter Value Meaning

STATUS(1)3 0.0 No errors

1.0 TEMP_PT has a null point entered or has a bad PV

2.0 GRAV_PT has a null point entered or has a bad PV

3.0 WATK_PT has a null point entered or has a bad PV

4.0 The filtering subroutine has detected a BAD value for the currenttemperature input plus bias

5.0 The filtering subroutine has detected a BAD value for the currentgravity input

6.0 The filtering subroutine has detected a BAD value for the currentWatson K factor input

7.0 The liquid hydrocarbon stream’s temperature at the flow meterplus additive bias is ≤ 0.0

8.0 The liquid hydrocarbon stream’s Watson K factor input is ≤ 0.0

9.0 The liquid hydrocarbon stream’s gravity input is < 0.495

10.0 The liquid hydrocarbon stream’s gravity input is > 1.200

11.0 The absolute difference between the liquid hydrocarbon streamsWatson K factor and 8.5 is < 0.0

12.0 The temperature corrected specific gravity has a BAD value

3 STATUS(1) indicates errors in the calculation.

Hi-Spec Solutions

Temperature Corrected Specific Gravity Filter Subroutine Error Codes

Revision 2.0 14

Filter Subroutine Error Codes

Filter Subroutine Error Codes

Parameter Value Meaning

STATUS(2)4 0.0 No errors

1.0 The filtering subroutine current value input has a BAD value

4 STATUS(2) indicates errors returned by the filtering subroutine.

Hi-Spec Solutions

Temperature Corrected Specific Gravity Configuration and Tuning

Revision 2.0 15

Configuration and Tuning

This section describes the parameters and values used to configure and tune the packageto a specific application.

Biases

• Temperature Bias

Tuning

• None.

Hi-Spec Solutions

Temperature Corrected Specific Gravity Biases in Temperature Corrected Specific Gravity Program

Revision 2.0 16

Biases in the Temperature Corrected Specific Gravity Program

The temperature corrected specific gravity program is equipped with the followingadditive biases:

• Temperature at the flow meter input.

Bias Parameters

Parameter Description

T_BIAS Additive bias to the liquid hydrocarbon stream’s temperature at the flowmeter input, TEMP_PT

Temperature Bias. The temperature bias (T_BIAS) is added to the input valuesbefore performance of the unit conversions and should be entered in the same units asthe input temperature.

The T_BIAS parameter is used when there is a known error in either the liquidhydrocarbon stream’s temperature at the flow meter indication.

Hi-Spec Solutions

Temperature Corrected Specific Gravity Tuning Parameters

Revision 2.0 17

Tuning Parameters

There are no tuning parameters associated with liquid hydrocarbon stream’stemperature corrected specific gravity program.

Hi-Spec Solutions

Temperature Corrected Specific Gravity Algorithms

Revision 2.0 18

Algorithms

Conversion of Engineering Units. The input process temperature can be in Fahrenheitor Centigrade. However, temperatures in °C are converted to °F for internal use asshown in Equation 1:

temp = (TEMP_PT.PV + T_BIAS) * 1.8 + 32

Where:

temp = Process temperature converted to °F for internal useT_BIAS = Temperature input bias in °CTEMP_PT.PV = Input process temperature in °C

Equation 1

The gravity input can be in °API or specific gravity. However, °API inputs areconverted to specific gravity for internal use as shown in Equation 2:

f_grav = 141.5 / (GRAV_PT.PV + 131.5)

Where:

f_grav = Gravity input converted to specific gravity for internal useGRAV_PT.PV = Input gravity in °API

Equation 2

Continued

Hi-Spec Solutions

Temperature Corrected Specific Gravity Algorithms

Revision 2.0 19

Algorithms (Continued)

Temperature Corrected Specific Gravity. The temperature corrected specific gravityis calculated from process inputs using the calculation as shown in Equation 3:

corr_spgr = Function[stream_spgr, stream_watk, stream _t]

Where:

corr_spgr = Liquid hydrocarbon stream’s temperature corrected specificgravity

stream_spgr = Liquid hydrocarbon stream’s specific gravity @60 °Fstream_watk = Liquid hydrocarbon stream’s Watson K factorstream_t = Liquid hydrocarbon stream’s temperature at the flow meter

Equation 3

Note: The liquid hydrocarbon stream’s base specific (stream_spgr) gravity is presumedto be the specific gravity at 60 °F. For a base gravity at a different temperature, thebase gravity must be converted to a gravity at 60 °F before being provided to thetemperature corrected specific gravity procedure.

Hi-Spec Solutions

Temperature Corrected Specific Gravity Installation Procedure

Revision 2.0 20

Installation Procedure

This document describes the installation procedure for SG_CORR on the TDC 3000System AM.

This section covers the following topics:

• Preparation for Installation

• Custom Data Segment (CDS) and Parameter List (PL) Installation

• Building Application Module Point

• Configuration Graphics Installation.

Hi-Spec Solutions

Temperature Corrected Specific Gravity Preparation for Installation

Revision 2.0 21

Preparation for Installation

Step Action

Gather media Gather the following items:

• Removable media containing the directory GRAV

Make media backup Make a backup copy of media/directory on a US with drives n and mconfigured as follows:

Media:

FCOPY $Fn $Fm

Directory only:

CD $Fm>CALC> GRAV (PICTURE FILE)

CD $Fm>CALC> CDS (CDS FILE)

CD $Fm>CALC> AO (PROGRAM FILE)

CD $Fm>CALC> EB (PROGRAM FILE)

COPY $Fn>GRAV>*.* $Fm>GRAV>= -V -D

COPY $Fn>CDS>*.* $Fm>CDS>= -V -D

COPY $Fn>AO>*.* $Fm>AO>= -V -D

COPY $Fn>EB>*.* $Fm>AO>= -V -D

Where $Fn is the drive with the source media and $Fm is the drive withthe target media.

Hi-Spec Solutions

Temperature Corrected Specific Gravity CDS and PL Installation

Revision 2.0 22

Custom Data Segment (CDS) and Parameter List (PL) Installation

This procedure must be done once per LCN installation.

Step Action

Set volumepathnames

From Modify Volume Paths display:

CL CUSTOM GDF: NET>CDSG>

USER DEFLT PATH: $Fn>CDS

Compile SG_CDS.CL From the Command Processor Display, compile the CDS file, SG_CDS:

CL $Fn>CDS>SG_CDS.CL -UL

If it is necessary to change the CDS due to a software revision, refer to the CData Control Language/Application Module Data Entry

Parameter list There is no parameter list for the standard temperature corrected specificgravity package

Hi-Spec Solutions

Temperature Corrected Specific Gravity Building Application Module Point

Revision 2.0 23

Building Application Module Point

An AM point is required for each temperature corrected specific gravity. The AM pointthat does the temperature corrected specific gravity also calculates the liquidhydrocarbon stream’s mass flow. The PV algorithm of the AM point is flowcompensation (FLOWCOMP) using Equation A and the point’s parameters areconfigured as indicated below:

C = Scaling factorC1 = Design specific gravity @60 °FC2 = Set to default value, 1.0F = The flow inputG = Temperature corrected specific gravityRG = Design specific gravity at flowing temperature.

The temperature corrected specific gravity is transfers from CDS to the flowcompensation parameter via a general input. Build the AM point as follows:

Step Action

Modify ExceptionBuild file,SG_CORR.EB

From the Command Processor Display:

ED $Fn>EB>SG_CORR.EB [ENTER]

Edit template as follows:

&N point name

UNIT = unit number

PTDESC ="point descriptor text"

KEYWORD = "keyword"

PERIOD = as required

Load EB file. From the Builder Commands Display:

Select the EXCEPTION BUILD target.

Fill in ports as:

REFERENCE PATH NAME: $Fn>EB

Load Entities (select target)

Pathname for SOURCE file: SG_CORR.EB

Pathname for IDF file: SG_CORR.DB

[ENTER]

Verify load When the load is complete, verify point loading by calling the point detailfrom the [DETAIL] button.

Hi-Spec Solutions

Temperature Corrected Specific Gravity Configure Graphics Installation

Revision 2.0 24

Configuration Graphics Installation

There is no configuration graphic for the temperature corrected specific gravity.

Hi-Spec Solutions

Temperature Corrected Specific Gravity Configure Calculation Point

Revision 2.0 25

Configure Calculation Point

Configuration of the temperature corrected specific gravity point must be done throughdirect entry to the CDS ports on the Point Detail display.

• Non Graphic Configuration of Temperature Corrected Specific Gravity Point

• Linking CL Program.

Hi-Spec Solutions

Temperature Corrected Specific Gravity Point Configuration Using Graphic

Revision 2.0 26

Point Configuration Using Graphic

There is no configuration graphic for the temperature corrected specific gravity.

Hi-Spec Solutions

Temperature Corrected Specific Gravity Point Configuration through Direct CDS Entry

Revision 2.0 27

Point Configuration through Direct CDS Entry

The required calculation point information and associated parameters are listed below.

Parameter Description Comments

CONV_FAC(1) Input temperature unit flag: 0 =>°F ;1 => °C

Default is 0 (°F).

CONV_FAC(2) Input gravity type flag0 => API ;1 => Specific gravity

Default is 0 (API).

FILTER(1) Filter time for the liquidhydrocarbon stream’s gravity

Minutes

FILTER(2) Filter time for the liquidhydrocarbon stream’s temperature

Minutes

FILTER(3) Filter time for the liquidhydrocarbon stream’s Watson Kfactor

Minutes

GRAV_PT Tagname of source for the liquidhydrocarbon stream’s gravity

This is the lab gravity at @60 °F.

TEMP_PT Tagname of source for the liquidhydrocarbon stream’s temperature

The temperature must be the liquidhydrocarbon stream’s temperaturewhere the flow is measured.

T_BIAS Additive bias to the liquidhydrocarbon stream’s temperature

Same units as TEMP_PT.

WATK_PT Tagname of source for the liquidhydrocarbon stream’s Watson Kfactor

Build an AM numeric point to hold amanually input value.

Or the Watson K can be calculatedusing the stream’s ASTM D8610%;50%; & 90% points and gravity.This requires an AM REG_PV pointand the Watson K CL code.

Hi-Spec Solutions

Temperature Corrected Specific Gravity Appendix A Engineer’s Detailed Description

Revision 2.0 A-1

Link CL Programs

Step Action

Link SG_CORR From the Command Processor Display:

LK $Fn>AO>SG_CORR point_name [ENTER]

Activate point Call up the point detail and activate the point.

Verify Operation Verify that SG_CORR is running without any CL errors.

Hi-Spec Solutions

Honeywell Hi-Spec Solutions • 16404 N. Black Canyon Hwy. • Phoenix, AZ 85023

Advanced Control Package

Watson K Calculation

CONTROLLED

March 1995Revision 3.0

Hi-Spec Solutions

Watson K Calculation Revision History

Revision 2.0

Hi-Spec Solutions

Watson K Calculation Contents

Revision 2.0

Table of Contents

Overview.........................................................................................................................................1

Acronym List ..................................................................................................................................2

Hardware and Software Requirements ...........................................................................................3

Laboratory Inputs............................................................................................................................4

Detailed Description .......................................................................................................................5

Point Structure ..................................................................................................................6

Process Inputs ...................................................................................................................7

Configuration Inputs .........................................................................................................8

Calculation Outputs ..........................................................................................................9

Diagnostic Error Codes.................................................................................................................10

Configuration and Tuning.............................................................................................................11

Biases in the Watson K Program ....................................................................................12

Algorithms ....................................................................................................................................13

Installation Procedure ...................................................................................................................15

Preparation for Installation .............................................................................................16

Custom Data Segment (CDS) Installation ......................................................................17

Building Watson K Calculation Point ............................................................................18

Configure Calculation Point .........................................................................................................19

Point Configuration through Direct CDS Entry..............................................................20

Link CL Programs.........................................................................................................................21

References.....................................................................................................................................22

Hi-Spec Solutions

Watson K Calculation Overview

Revision 2.0 1

Overview

Definition. The Watson characterization factor, K, is the quotient of the cube root ofthe mean average boiling point and the specific gravity of a hydrocarbon mixture. It isan indication of the paraffinicity of a hydrocarbon mixture and its value is directlyrelated to the degree of saturation.

Application. This program calculates the Watson K of a petroleum stream. It is afundamental characterization parameter used in many calculations. Other Honeywellroutines using Watson K include L&V Gen, Flash, and D86.

Calculation. The Watson K calculation program calculates the inferential Watson K ofa petroleum stream based on:

• Processinputs :

None

• Labinputs:

ViscositySpecific Gravity 60/60°FASTM D86 Temperatures

• Calculatedvalues:

Internally calculated mean average boiling point,and kinematic viscosity.

Incentive. 1. To indicate how closely a hydrocarbon stream is meeting the Watson Kspecification.

2. To eliminate dead time associated with laboratory analysis and on-lineanalyzers.

3. To provide a real-time input for use in advanced control applications.

Hi-Spec Solutions

Watson K Calculation Acronym List

Revision 2.0 2

Acronym List

Term Acronym

Application Module AM

Local Control Network LCN

Universal Station US

control language CL

process variable PV

custom data segment CDS

pounds per square inch psi

Parameter List PL

CL object code file extension AO

Universal Control Network UCN

Hi-Spec Solutions

Watson K Calculation Hardware and Software Requirements

Revision 2.0 3

Hardware and Software Requirements

Requirement Description

Hardware Platform TDC 3000 AM

Special Boards None

Other Computing Systems None

LCN Release Release 300 or later

AM Load Modules None

US Load Modules None

Other Packages None

Other Control Applications None

Software Inputs Specific gravities and viscosity (optional) must exist as points on theUCN

Hi-Spec Solutions

Watson K Calculation Laboratory Inputs

Revision 2.0 4

Laboratory Inputs

Process Input1 Required Recommended

Gravity (API or Specific) X

Viscosity X23

ASTM D86 10% X3

ASTM D86 50T X3

ASTM D86 90% X3

1 Required inputs can sometimes be obtained by inference. However, calculations based upon inferred data can be less accurate than calculations based upon direct readings.2 Prediction accuracy is reduced if this variable is established.3 D86 values or viscosity is required.

Hi-Spec Solutions

Watson K Calculation Detailed Description

Revision 2.0 5

Detailed Description

The tables in this section describe the following Watson K program architecture:

• Point Structure

• Process Inputs

• Configuration Inputs

• Calculation Outputs.

Hi-Spec Solutions

Watson K Calculation Point Structure

Revision 2.0 6

Point Structure

Point Structure

Point Type Application Module Regulatory, CL

PV_Type CL

CTL_Type Any

Custom Data Segment WATK_CDS.CL

Algorithm WATK.CL

Insertion Point PV_ALG

Slot 3

Output The calculated Watson K is displayed as the point’s PV

Hi-Spec Solutions

Watson K Calculation Process Inputs

Revision 2.0 7

Process Inputs

Process Inputs

Critical4

Parameter Description Units Yes No

GRAV_PT Tagname of source for gravity °API or none (S.G.)X

VISC_PT(1) Tagname of source for process viscosity Any valid units ofviscosity

X

VISC_PT(2) Required for CL link None X

.

4 Critical indicates that a bad input causes the output of the calculation to be set BAD.

Hi-Spec Solutions

Watson K Calculation Configuration Inputs

Revision 2.0 8

Configuration Inputs

Configuration Inputs

Parameter Description Units

ENGPAR(1) The ASTM D86 distillation temperature at 10% volumepercent distilled

°F or °C

ENGPAR(2) The ASTM D86 distillation temperature at 50% volumepercent distilled

°F or °C

ENGPAR(3) The ASTM D86 distillation temperature at 90% volumepercent distilled

°F or °C

ENGPAR(4) Mean average boiling point bias °F or °C

ENGPAR(5) Spare

CONV_FAC(1) Input temperature units( 0 => °F; 1 => °C)

N/A

CONV_FAC(2) Input gravity units( 0 => API, 1 => SPGR )

N/A

CONV_FAC(3) Input viscosity units can be absolute or kinematic.( 0 => Cp, 1 => Cs)

N/A

CONV_FAC(4) Conversion factor for an input viscosity that is not in Cp orCs

Cp or CS per unitof input viscosity

CONV_FAC(5) Spare N/A

Hi-Spec Solutions

Watson K Calculation Calculation Outputs

Revision 2.0 9

Calculation Outputs

Calculation Outputs

Parameter Description Units

PVCALC Calculated Watson K None

CALC_VAL(1) Calculated Watson K None

CALC_VAL(2) Mean average boiling point °F or °C

CALC_VAL(3) Calculated kinematic viscosity Cs

CALC_VAL(4) Spare

STATUS Diagnostic error codes giving location and possible causes ofprogram error

N/A

REV_NO Program revision number N/A

Hi-Spec Solutions

Watson K Calculation Diagnostic Error Codes

Revision 2.0 10

Diagnostic Error Codes

This table describes program error codes found in the CDS parameter STATUS(1):

Diagnostic Error Codes

Parameter Value Meaning

STATUS(1)5 0.0 No errors

1.0 GRAV_PT is null or has a bad PV

2.0 The D86 10% temperature is bad

3.0 The D86 50% temperature is bad

4.0 The D86 90% temperature is bad

5.0 The 10% temperature is greater than the 90% temperature.

6.0 The 50% temperature is greater than the 90% temperature

7.0 GRAV_PT has a bad PV

8.0 VISC_PT(1) has a bad PV

9.0 Iterative to estimate Watson K using API 11a4.1-3 did notconverge

10.0 Iterative estimate of flowing specific gravity did not converge

5 STATUS(1) indicates errors in the calculation.

Hi-Spec Solutions

Watson K Calculation Configuration and Tuning

Revision 2.0 11

Configuration and Tuning

This section describes the parameters and values used to configure and tune the packageto a specific application.

Biases

• Mean Average Boiling Point Bias

Tuning

• No adjustable tuning parameters are provided.

Hi-Spec Solutions

Watson K Calculation Biases in the Watson K Program

Revision 2.0 12

Biases in the Watson K Program

The Watson K program is equipped with a mean Average Boiling Point Bias.

Bias Parameters

Parameter Description

ENGPAR(4) An additive bias on the result of the mean average boiling pointcalculation, in degrees Fahrenheit.

Hi-Spec Solutions

Watson K Calculation Algorithms

Revision 2.0 13

Algorithms

The calculations are preceded by engineering unit conversions.

Engineering Unit Conversions

Unit Format

Temperature The mean average boiling point calculation uses temperature inFahrenheit and converts the result to degrees Rankine.

Gravity The algorithm uses both API gravity and specific gravity. The missinggravity is obtained from the definition of API gravity.

API gravity = 141.5/specific gravity (60F/60F) - 131.5

Viscosity If an absolute viscosity is entered, a flowing specific gravity at 210°F iscalculated and used in the conversion to kinematic viscosity.

Watson K Calculation

When the user provides the ASTM D86 distillation temperatures at the 10%, 50%, and90% volume distilled points, a mean average boiling point can be calculated by APIProcedure 2B1.1. The Watson K is then calculated directly from API 2-0.8.

KMeABP

spgr= ( ) /1 3

Where:

K = Calculated Watson KMeABP = Mean Average Boiling Pointspgr = Specific Gravity, 60F / 60F

Equation 1

Hi-Spec Solutions

Watson K Calculation Algorithms

Revision 2.0 14

Watson K Calculation (Continued)

When the user does not provide distillation temperatures, but uses measured viscosity,the Watson K is calculated iteratively. The convergence criteria is based on thedifference between measured and calculated viscosities. API equation 11A4.1-3 and itsfirst derivative are used to update the Watson K estimate on each iteration.

watson watsonvisc visc calc

visc prime= + −( _ )

_

Where:

Watson = Estimated Watson Kvisc = Measured kinematic viscosity, Cs.visc_calc = Kinematic viscosity calculated from API 11A4.1-3visc_prime = First derivative of API 11A4.1-3 evaluated using

estimated Watson K

Equation 2

Flowing Specific Gravity Calculation

If the user provides an absolute viscosity, the current estimate of the Watson K and thespecific gravity are used to determine a flowing specific gravity at 210°F. A measuredkinematic viscosity is then based on this flowing specific gravity.

The flowing specific gravity equation is a polynomial fit to a nomograph by Ritter et aland it is solved by iteration. The Watson K iteration described above is nested withinthe specific gravity iteration. The difference between the current and previous WatsonK values must be less than 0.05 for the flowing specific gravity iteration to converge.

Hi-Spec Solutions

Watson K Calculation Installation Procedure

Revision 2.0 15

Installation Procedure

This document describes the installation procedure for WATK on the TDC 3000System AM.

This section covers the following topics:

• Preparation for Installation

• Custom Data Segment (CDS) Installation

• Building a Watson K Calculation Point.

Hi-Spec Solutions

Watson K Calculation Preparation for Installation

Revision 2.0 16

Preparation for Installation

Step Action

Gather media Gather the following items:

• Removable media containing the directory WATK

• Commissioning Worksheet

Make media backup Make a backup copy of media/directory on a US with drives n and mconfigured as follows:

Media:

FCOPY $Fn $Fm

Directory only:

CD $Fm>vol_dir> WATK

CD $Fm>vol_dir> CDS

CD $Fm>vol_dir> AO

CD $Fm>vol_dir> EB

COPY $Fn>WATK>*.* $Fm>WATK>= -V -D

COPY $Fn>CDS>*.* $Fm>CDS>= -V -D

COPY $Fn>AO>*.* $Fm>AO>= -V -D

COPY $Fn>EB>*.* $Fm>EB>= -V -D

Where $Fn is the drive with the source media and $Fm is the drive withthe target media.

Hi-Spec Solutions

Watson K Calculation CDS Installation

Revision 2.0 17

Custom Data Segment (CDS) Installation

This procedure must be done once per LCN installation.

Step Action

Set volumepathnames

From Modify Volume Paths display:

CL CUSTOM GDF: NET>CDSG>

USER DEFLT PATH: $Fn>CDS

CompileWATK_CDS.CL

From the Command Processor Display, compile the CDS file, WATK_CDS:

CL $Fn>CDS>WATK_CDS.CL -UL

If it is necessary to change the CDS due to a software revision, refer to theApplication Module Data Control Language/Application Module Data Entry

Hi-Spec Solutions

Watson K Calculation Building Watson K Calculation Point

Revision 2.0 18

Building Watson K Calculation Point

A calculation point is required for each hydrocarbon Watson K calculated.

Step Action

Modify ExceptionBuild file,WATK_PNT.EB

From the Command Processor Display:

ED $Fn>EB>WATK_PNT.EB [ENTER]

Edit template as follows:

&N point name

UNIT = unit number

PTDESC ="point descriptor text"

KEYWORD = "keyword"

PERIOD = as required

Load EB file. From the Builder Commands Display:

Select the EXCEPTION BUILD target.

Fill in ports as:

REFERENCE PATH NAME: $Fn>EB

Load Entities (select target)

Pathname for SOURCE file: WATK_PNT.EB

Pathname for IDF file: WATK_PNT.DB

[ENTER]

Verify load When the load is complete, verify point loading by calling the point detailfrom the [DETAIL] button.

Hi-Spec Solutions

Watson K Calculation Configure Calculation Point

Revision 2.0 19

Configure Calculation Point

Configuration of the calculation point must be done through direct entry to the CDSports on the Point Detail display. Configuration consists of the following steps.

• Non Graphic Configuration of Watson K Calculation Point

• Linking CL Program.

Hi-Spec Solutions

Watson K Calculation Point Configuration through Direct CDS Entry

Revision 2.0 20

Point Configuration through Direct CDS Entry

The required calculation point information and associated parameter are listed below.

Parameter Description Comments

GRAV_PT Tagname of point for lab gravity Usually a lab entry point

VISC_PT(1) Tagname of point for lab viscosity Usually a lab entry point

ENGPAR(1) ASME D86 dist. temp. at 10%volume distilled.

Units must be consistent with others andit must be the lowest temperature.

ENGPAR(2) ASME D86 dist. temp. at 50%volume distilled.

Units must be consistent with others andit must be between the othertemperatures.

ENGPAR(3) ASME D86 dist. temp. at 90%volume distilled.

Units must be consistent with others andit must be the highest temperature.

ENGPAR(4) Mean average boiling pointadditive bias.

Bias is in Celsius or Fahrenheit. It isadded to the MeABP before it isconverted to Rankine.

ENGPAR(5) Spare

CONV_FAC(1) Input temperature units flag 0 = Fahrenheit

1 = Celsius

CONV_FAC(2) Flag to indicate type of inputgravity

0 = API

1 = Specific Gravity (60F / 60 F)

CONV_FAC(3) Flag to indicate absolute orkinematic viscosity

0 = Absolute

1 = Kinematic

CONV_FAC(4) Conversion factor for an inputviscosity that is not in Cp or Cs.Default to 1.0 if input in Cp or Cs.

Example:If input viscosity = lbs-sec/in2

And CONV_FAC(3) = 0 (Cp)Then CONV_FAC(4) = 6.897×10-4.

CONV_FAC(5) Spare

Hi-Spec Solutions

Watson K Calculation Link CL Programs

Revision 2.0 21

Link CL Programs

Step Action

Link WATK From the Command Processor Display:

LK $Fn>AO>WATK point_name [ENTER]

Activate point Call up the point detail and activate the point.

Verify Operation Verify that WATK is running without any CL errors.

Hi-Spec Solutions

Watson K Calculation References

Revision 2.0 22

References

Find Specific Gravities by Nomograph, Ritter, Lenoir and Scheppe, Petroleum Refiner,37 [11] 225, 1958.

API Technical Data Book Petroleum Refining, Volume 1 Chapter 2, Procedure 2B1.1,4th Edition, 1982.

API Technical Data Book Petroleum Refining, Volume 1 Chapter 4, Procedure 11A4.1,4th Edition, 1982.

API Technical Data Book Petroleum Refining, Volume 1 Chapter 2, Characterization ofHydrocarbons, 4th Edition, 1982.