fractals and geometric measure theory 2012math.bme.hu › ~simonk › vf › lecture_1.pdf ·...

45
Fractals and geometric measure theory 2012 Károly Simon Department of Stochastics Institute of Mathematics Technical University of Budapest www.math.bme.hu/~simonk 1st week Introduction Károly Simon (TU Budapest) Fractals 2012 first talk 1 / 45

Upload: others

Post on 29-Jun-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Fractals and geometric measure theory 2012math.bme.hu › ~simonk › vf › lecture_1.pdf · Outline 1 Self-similarfractals 2 Self-affinesets 3 JuliaandMandelbrotsets 4 Dragons 5

Fractals and geometric measure theory2012

Károly Simon

Department of StochasticsInstitute of Mathematics

Technical University of Budapestwww.math.bme.hu/~simonk

1st weekIntroduction

Károly Simon (TU Budapest) Fractals 2012 first talk 1 / 45

Page 2: Fractals and geometric measure theory 2012math.bme.hu › ~simonk › vf › lecture_1.pdf · Outline 1 Self-similarfractals 2 Self-affinesets 3 JuliaandMandelbrotsets 4 Dragons 5

Outline1 Self-similar fractals2 Self-affine sets3 Julia and Mandelbrot sets4 Dragons5 Fractal percolation6 Brownian motion7 Blaschke selection theorem8 References

Károly Simon (TU Budapest) Fractals 2012 first talk 2 / 45

Page 3: Fractals and geometric measure theory 2012math.bme.hu › ~simonk › vf › lecture_1.pdf · Outline 1 Self-similarfractals 2 Self-affinesets 3 JuliaandMandelbrotsets 4 Dragons 5

An application of fractals in Numb3rs

Click here to see a way how to apply fractals.

Károly Simon (TU Budapest) Fractals 2012 first talk 3 / 45

Page 4: Fractals and geometric measure theory 2012math.bme.hu › ~simonk › vf › lecture_1.pdf · Outline 1 Self-similarfractals 2 Self-affinesets 3 JuliaandMandelbrotsets 4 Dragons 5

Application of fractals

We use fractals to describe objects or phenomena inwhich some sort of scale invariance exists.Fractals appear physics, astronomy, biology, chemistry,market fluctuation analysis, and so on.At the conferencePractical Applications of Fractals17 - 19 November 2004Miramare, Trieste, Italy the following main applicationswere discussed:

Károly Simon (TU Budapest) Fractals 2012 first talk 4 / 45

Page 5: Fractals and geometric measure theory 2012math.bme.hu › ~simonk › vf › lecture_1.pdf · Outline 1 Self-similarfractals 2 Self-affinesets 3 JuliaandMandelbrotsets 4 Dragons 5

Fractals in industry and man-madefractals:

Fractal antennae,Fractal sound barriers,Use of fractal polymeric surfaces,Fractal reactor design,Fractal studies of heterogeneous catalysis,Petroleum research.

Károly Simon (TU Budapest) Fractals 2012 first talk 5 / 45

Page 6: Fractals and geometric measure theory 2012math.bme.hu › ~simonk › vf › lecture_1.pdf · Outline 1 Self-similarfractals 2 Self-affinesets 3 JuliaandMandelbrotsets 4 Dragons 5

Natural fractal objects:

Fractal bronchial trees in mammals,Growth of fractal trees in nature,Optimal fractal distribution,Absolute limitations of tree distributive structures,River Networks,Fractals and allometry (relative growth of a part inrelation to an entire organism or to a standard; also:the measure and study of such growth).

Károly Simon (TU Budapest) Fractals 2012 first talk 6 / 45

Page 7: Fractals and geometric measure theory 2012math.bme.hu › ~simonk › vf › lecture_1.pdf · Outline 1 Self-similarfractals 2 Self-affinesets 3 JuliaandMandelbrotsets 4 Dragons 5

Applications of fractal concepts to thestudy of complex systems:

Image analysis and compressionMultifractal signal analysisScaling topology of the internet and the wwwFractal aviation communication network

Károly Simon (TU Budapest) Fractals 2012 first talk 7 / 45

Page 8: Fractals and geometric measure theory 2012math.bme.hu › ~simonk › vf › lecture_1.pdf · Outline 1 Self-similarfractals 2 Self-affinesets 3 JuliaandMandelbrotsets 4 Dragons 5

How long is the coast of Britain?

Figure: Britain coastline, 200km: 2400km, 100km, 50 km:3400kmKároly Simon (TU Budapest) Fractals 2012 first talk 8 / 45

Page 9: Fractals and geometric measure theory 2012math.bme.hu › ~simonk › vf › lecture_1.pdf · Outline 1 Self-similarfractals 2 Self-affinesets 3 JuliaandMandelbrotsets 4 Dragons 5

Figure: Lewis R.Richardson 1881-1953

Richardson conjectured: Themeasured length L(G) of ageographic boarder is

L(G) ≈ M · G1−D,

M is a constant and D is thedimension . Namely:

L(G) = N(G) · G

logN(G)

logG−1 ≈ D =⇒ L(G) ≈ G1−D.

Britain: D = 1.25, Germany:D = 1.14, South Africa D = 1.02.

Károly Simon (TU Budapest) Fractals 2012 first talk 9 / 45

Page 10: Fractals and geometric measure theory 2012math.bme.hu › ~simonk › vf › lecture_1.pdf · Outline 1 Self-similarfractals 2 Self-affinesets 3 JuliaandMandelbrotsets 4 Dragons 5

Figure: The famous Mandelbrot set (we do not learn much about iton this course).

Károly Simon (TU Budapest) Fractals 2012 first talk 10 / 45

Page 11: Fractals and geometric measure theory 2012math.bme.hu › ~simonk › vf › lecture_1.pdf · Outline 1 Self-similarfractals 2 Self-affinesets 3 JuliaandMandelbrotsets 4 Dragons 5

Beniot Mandelbrot

Figure: The father of fractalgeometry

In École Polytechnique,student of Julia, Lévy.Later post. doc.working with J.Neumann at Princeton.Worked for IBM for 35years. Then moved toYale. Books:Fractals: Form, Chanceand Dimension 1975.The Fractal Geometryof Nature, 1982.

Károly Simon (TU Budapest) Fractals 2012 first talk 11 / 45

Page 12: Fractals and geometric measure theory 2012math.bme.hu › ~simonk › vf › lecture_1.pdf · Outline 1 Self-similarfractals 2 Self-affinesets 3 JuliaandMandelbrotsets 4 Dragons 5

Figure: Waclaw Sierpinski

Born in Warsaw 1882.Ph.D. in 1908 at Univ.of Krakkow (Poland).1919-1969 worked atthe Univ of Warsaw,died: 1969A GREATmathematician. Veryimportant results in:set theory, real analysisand topology.

Károly Simon (TU Budapest) Fractals 2012 first talk 12 / 45

Page 13: Fractals and geometric measure theory 2012math.bme.hu › ~simonk › vf › lecture_1.pdf · Outline 1 Self-similarfractals 2 Self-affinesets 3 JuliaandMandelbrotsets 4 Dragons 5

Figure: The third approximation of the Sierpinski gasket

Károly Simon (TU Budapest) Fractals 2012 first talk 13 / 45

Page 14: Fractals and geometric measure theory 2012math.bme.hu › ~simonk › vf › lecture_1.pdf · Outline 1 Self-similarfractals 2 Self-affinesets 3 JuliaandMandelbrotsets 4 Dragons 5

S1(T ) S2(T )

S3(T )

S31(T )

S12(T )

S312(T )

S123(T )

A B

C

A1

C1

B1 B1

U

V

Figure: S312(x) := S3 ◦ S1 ◦ S2(x) = S3(S1(S2(x)))

Si are translations of the appropriatehomothety-transformatons of the form:

Si(x) = 12x + ti .

Károly Simon (TU Budapest) Fractals 2012 first talk 14 / 45

Page 15: Fractals and geometric measure theory 2012math.bme.hu › ~simonk › vf › lecture_1.pdf · Outline 1 Self-similarfractals 2 Self-affinesets 3 JuliaandMandelbrotsets 4 Dragons 5

S1(Q) S2(Q) S3(Q)

S4(Q)

S5(Q)S6(Q)S7(Q)

S8(Q)

S86(Q)

S15(Q)

S867(Q)

S152(Q)

Figure: The third approximation of the Sierpinski carpet

Károly Simon (TU Budapest) Fractals 2012 first talk 15 / 45

Page 16: Fractals and geometric measure theory 2012math.bme.hu › ~simonk › vf › lecture_1.pdf · Outline 1 Self-similarfractals 2 Self-affinesets 3 JuliaandMandelbrotsets 4 Dragons 5

A B

C

D E A B

C

D E

U

VW

Figure: von Koch snowflake (from Wikipedia)

Károly Simon (TU Budapest) Fractals 2012 first talk 16 / 45

Page 17: Fractals and geometric measure theory 2012math.bme.hu › ~simonk › vf › lecture_1.pdf · Outline 1 Self-similarfractals 2 Self-affinesets 3 JuliaandMandelbrotsets 4 Dragons 5

Figure: von Koch snowflake (from Wikipedia)Károly Simon (TU Budapest) Fractals 2012 first talk 17 / 45

Page 18: Fractals and geometric measure theory 2012math.bme.hu › ~simonk › vf › lecture_1.pdf · Outline 1 Self-similarfractals 2 Self-affinesets 3 JuliaandMandelbrotsets 4 Dragons 5

S1(T ) S2(T )

S3(T )

A B

C

A2B2

C2

A3B3

C3 A B

C

A2B2

C2

A3B3

C3

A1

A4

B1

B4

C1 C4

PQ

R

PQ

R

Figure: The third approximation of the golden gasket

Károly Simon (TU Budapest) Fractals 2012 first talk 18 / 45

Page 19: Fractals and geometric measure theory 2012math.bme.hu › ~simonk › vf › lecture_1.pdf · Outline 1 Self-similarfractals 2 Self-affinesets 3 JuliaandMandelbrotsets 4 Dragons 5

Figure: Menger Sponge (from Wikipedia)

Károly Simon (TU Budapest) Fractals 2012 first talk 19 / 45

Page 20: Fractals and geometric measure theory 2012math.bme.hu › ~simonk › vf › lecture_1.pdf · Outline 1 Self-similarfractals 2 Self-affinesets 3 JuliaandMandelbrotsets 4 Dragons 5

1

1/2

11/3 2/3

1

1/2

11/3 2/3

1

1/2

11/3 2/3

f1(Q) f2(Q)

f3(Q)

f31(Q)f213(Q)

Figure: The Hironika curve

Károly Simon (TU Budapest) Fractals 2012 first talk 20 / 45

Page 21: Fractals and geometric measure theory 2012math.bme.hu › ~simonk › vf › lecture_1.pdf · Outline 1 Self-similarfractals 2 Self-affinesets 3 JuliaandMandelbrotsets 4 Dragons 5

f1(Q)

λ

f2(Q)

λ

λ

f3(Q)

(0, 0) a b

(1, 1)

I1I2

I3

h

h

h

I

Figure: The generator of a self-affine setKároly Simon (TU Budapest) Fractals 2012 first talk 21 / 45

Page 22: Fractals and geometric measure theory 2012math.bme.hu › ~simonk › vf › lecture_1.pdf · Outline 1 Self-similarfractals 2 Self-affinesets 3 JuliaandMandelbrotsets 4 Dragons 5

A1 :=

0.3464101616 −0.12500000000.2 0.2165063510

,

A2 :=

0.2 0.2165063510−0.3464101616 0.1250000000

t1 := [0.5196152, 0.3], t2 := [−0.4688749, 0.5721152]

Let f1(x) := A1x + t1 and f2(x) := A2x + t2 and

Di1...in := fi1 ◦ · · · ◦ fin(D),

where D is the unit disk.

Károly Simon (TU Budapest) Fractals 2012 first talk 22 / 45

Page 23: Fractals and geometric measure theory 2012math.bme.hu › ~simonk › vf › lecture_1.pdf · Outline 1 Self-similarfractals 2 Self-affinesets 3 JuliaandMandelbrotsets 4 Dragons 5

1

1

D222D211

D111

Figure: The third approximation of the attractor of the self affineIFS.

Károly Simon (TU Budapest) Fractals 2012 first talk 23 / 45

Page 24: Fractals and geometric measure theory 2012math.bme.hu › ~simonk › vf › lecture_1.pdf · Outline 1 Self-similarfractals 2 Self-affinesets 3 JuliaandMandelbrotsets 4 Dragons 5

Figure: The Barnsly’s fern

Károly Simon (TU Budapest) Fractals 2012 first talk 24 / 45

Page 25: Fractals and geometric measure theory 2012math.bme.hu › ~simonk › vf › lecture_1.pdf · Outline 1 Self-similarfractals 2 Self-affinesets 3 JuliaandMandelbrotsets 4 Dragons 5

Julia sets: the definition

Let f (z) = p(z)/q(z), where p(z), q(z) complexpolynomials. A point z0 is a periodic point of f withperiod n ≥ 1 if f n(z0) = z0 but f k(z0) 6= z0 for0 < k < n. We say that such a z0 is repelling if|f ′(z0)| > 1.

Definition (Julia set of f )The Julia set of f denoted by J(f ) , is the closure ofthe repelling periodic points of f .

Károly Simon (TU Budapest) Fractals 2012 first talk 25 / 45

Page 26: Fractals and geometric measure theory 2012math.bme.hu › ~simonk › vf › lecture_1.pdf · Outline 1 Self-similarfractals 2 Self-affinesets 3 JuliaandMandelbrotsets 4 Dragons 5

Julia sets: properties(a) f −1(J(f )) = f (J(f )) = J(f )

(b) ∀z ,w ∈ J(f ), we have|f (z)− f (w)| > |z − w | if w is close enoughto z .

(c) For all but at most two z , J(f ) is the set oflimit points of ∪nf −nz .

If f is a polynomial then1 J(f ) is the boundary of the set of points whose

orbit (the sequence {f n}∞n=1 ) tend to infinity.2 J(f ) is the boundary of the set of points whose

orbit is bounded. (We call this set filled Julia set.)Next three pictures are from the Wikipedia.Károly Simon (TU Budapest) Fractals 2012 first talk 26 / 45

Page 27: Fractals and geometric measure theory 2012math.bme.hu › ~simonk › vf › lecture_1.pdf · Outline 1 Self-similarfractals 2 Self-affinesets 3 JuliaandMandelbrotsets 4 Dragons 5

J(fc) for fc = z2 + c , c = −0.80.156i

Figure: Menger Sponge (from Wikipedia)

Károly Simon (TU Budapest) Fractals 2012 first talk 27 / 45

Page 28: Fractals and geometric measure theory 2012math.bme.hu › ~simonk › vf › lecture_1.pdf · Outline 1 Self-similarfractals 2 Self-affinesets 3 JuliaandMandelbrotsets 4 Dragons 5

J(fc) for fc = z2 + c ,c = −0.70176− 0.3842i

Figure: Menger Sponge (from Wikipedia)

Károly Simon (TU Budapest) Fractals 2012 first talk 28 / 45

Page 29: Fractals and geometric measure theory 2012math.bme.hu › ~simonk › vf › lecture_1.pdf · Outline 1 Self-similarfractals 2 Self-affinesets 3 JuliaandMandelbrotsets 4 Dragons 5

Mandelbrot set

M := {c ∈ Z| {f nc (0)}∞n=0 is bounded.} ,

where fc(z) = z2 + c . E.g. 1 6∈ M but i ∈M.Equivalently,

M := {c ∈ Z : |{f nc (0)}∞n=0| ≤ 2, ∀n} .

Equivalently:

M := {c : J(fc) is a connected set. }

Károly Simon (TU Budapest) Fractals 2012 first talk 29 / 45

Page 30: Fractals and geometric measure theory 2012math.bme.hu › ~simonk › vf › lecture_1.pdf · Outline 1 Self-similarfractals 2 Self-affinesets 3 JuliaandMandelbrotsets 4 Dragons 5

Figure: Menger Sponge (from Wikipedia)

Károly Simon (TU Budapest) Fractals 2012 first talk 30 / 45

Page 31: Fractals and geometric measure theory 2012math.bme.hu › ~simonk › vf › lecture_1.pdf · Outline 1 Self-similarfractals 2 Self-affinesets 3 JuliaandMandelbrotsets 4 Dragons 5

The main cardioid consists of c ∈M for which fc has anattracting fixed point.For (p, q) = 1, there is a bulb tangent to the maincardioid at

c pq

=e2πi p

q

2

1− e2πi pq

2

which bulb consists of those c ∈M for which fc has anattracting periodic orbit of period q.click here for further information about the Mandelbrotset.To see the corresponding Julia set for a c ∈M click hereclick here

Károly Simon (TU Budapest) Fractals 2012 first talk 31 / 45

Page 32: Fractals and geometric measure theory 2012math.bme.hu › ~simonk › vf › lecture_1.pdf · Outline 1 Self-similarfractals 2 Self-affinesets 3 JuliaandMandelbrotsets 4 Dragons 5

Heighway Dragon I

Click here to see a vidio on youtube how the Heighwaydragon fractal builds up.

Károly Simon (TU Budapest) Fractals 2012 first talk 32 / 45

Page 33: Fractals and geometric measure theory 2012math.bme.hu › ~simonk › vf › lecture_1.pdf · Outline 1 Self-similarfractals 2 Self-affinesets 3 JuliaandMandelbrotsets 4 Dragons 5

Heighway Dragon II

S1(x) =

12 −

121

212

· xS2(x) =

−12 −

121

2 −12

· x +

10

.SH := {S1(x), S2(x)} . (1)

Károly Simon (TU Budapest) Fractals 2012 first talk 33 / 45

Page 34: Fractals and geometric measure theory 2012math.bme.hu › ~simonk › vf › lecture_1.pdf · Outline 1 Self-similarfractals 2 Self-affinesets 3 JuliaandMandelbrotsets 4 Dragons 5

Heighway Dragon III

A A

A A

B B

B B

C C

C C

D

D D

E

E E

S1(AC) S2(BC)

S21(AC)

Figure: The first four approximations of the Heighway dragon.

Károly Simon (TU Budapest) Fractals 2012 first talk 34 / 45

Page 35: Fractals and geometric measure theory 2012math.bme.hu › ~simonk › vf › lecture_1.pdf · Outline 1 Self-similarfractals 2 Self-affinesets 3 JuliaandMandelbrotsets 4 Dragons 5

Heighway Dragon IV

Let Pn the broken line that we obtain after n steps. Then{Pn}∞n=1 is a Cauchy sequence of compact sets in theHausdorff metric (defined later). It converges to a set Λ(the attractor) which is called Heighway dragon .

The interior of Λ is non-emptyThe plane can be tiled with congruent copies of Λ.The Hausdorff dimension (to be defined later) ofthe boundary is 2 log λ/ log 2 = 1.5236270862 . . .,where λ is the largest real zero of λ3 − λ2 − 2.

Károly Simon (TU Budapest) Fractals 2012 first talk 35 / 45

Page 36: Fractals and geometric measure theory 2012math.bme.hu › ~simonk › vf › lecture_1.pdf · Outline 1 Self-similarfractals 2 Self-affinesets 3 JuliaandMandelbrotsets 4 Dragons 5

Figure: Fractal percolationKároly Simon (TU Budapest) Fractals 2012 first talk 36 / 45

Page 37: Fractals and geometric measure theory 2012math.bme.hu › ~simonk › vf › lecture_1.pdf · Outline 1 Self-similarfractals 2 Self-affinesets 3 JuliaandMandelbrotsets 4 Dragons 5

Brown mozgás

Figure: Brownian motion

Károly Simon (TU Budapest) Fractals 2012 first talk 37 / 45

Page 38: Fractals and geometric measure theory 2012math.bme.hu › ~simonk › vf › lecture_1.pdf · Outline 1 Self-similarfractals 2 Self-affinesets 3 JuliaandMandelbrotsets 4 Dragons 5

Hausdorff metricLet E ⊂ Rd be a bounded set. The δ-parallel body of Eis

[E ]δ :=

{x ∈ Rd : inf

y∈E|x − y |

}

The Hausdorff metric distH is defined for the non-emptycompact sets E ,F ⊂ Rd as follows:

distH(E ,F ) := inf {δ : F ⊂ [E ]δ and E ⊂ [F ]δ}

Let Q ⊂ Rd be a compact set and let CQ be the spaceof compact sets of Rd which are contained in Q. ThendistH is a metric on CQ.

Károly Simon (TU Budapest) Fractals 2012 first talk 38 / 45

Page 39: Fractals and geometric measure theory 2012math.bme.hu › ~simonk › vf › lecture_1.pdf · Outline 1 Self-similarfractals 2 Self-affinesets 3 JuliaandMandelbrotsets 4 Dragons 5

Blaschke selection theoremGiven a Q ⊂ Rd non-empty compact set.

(a) Let {Ei}∞i=1 be a Cauchy sequence in themetric space (CQ, distH). Set

E :=∞⋂

n=1

∞⋃k=n

Ei , (2)

where bar denotes the closure. ThenEi → E in Hausdorff metric. (In particular,(CQ, distH) is a complete metric space.)Moreover,

(b) (CQ, distH) is a compact metric space.

Károly Simon (TU Budapest) Fractals 2012 first talk 39 / 45

Page 40: Fractals and geometric measure theory 2012math.bme.hu › ~simonk › vf › lecture_1.pdf · Outline 1 Self-similarfractals 2 Self-affinesets 3 JuliaandMandelbrotsets 4 Dragons 5

Proof of part (a) first slide

Fix an arbitrary ε > 0 and choose N such that

∀n > N , distH(Ei ,Ej) < ε/3. (3)

It is enough to prove that

∀k > N , E ⊂ [Ek ]ε (4)

and∀k > N , Ek ⊂ [E ]ε . (5)

Károly Simon (TU Budapest) Fractals 2012 first talk 40 / 45

Page 41: Fractals and geometric measure theory 2012math.bme.hu › ~simonk › vf › lecture_1.pdf · Outline 1 Self-similarfractals 2 Self-affinesets 3 JuliaandMandelbrotsets 4 Dragons 5

Proof of (4)Fix an arbitrary x ∈ E . By the definition of E , we canfind an i > N such that

B(x , ε/3) ∩ Ei 6= ∅.

Choose ei ∈ B(x , ε/3) ∩ Ei . Then for every k > N thereis an ek such that |ei − ek | < ε/3 (since Ei ⊂ [Ek ]ε/3).Thus

|x − ek | < 2ε/3.This completes the proof of (4).

Károly Simon (TU Budapest) Fractals 2012 first talk 41 / 45

Page 42: Fractals and geometric measure theory 2012math.bme.hu › ~simonk › vf › lecture_1.pdf · Outline 1 Self-similarfractals 2 Self-affinesets 3 JuliaandMandelbrotsets 4 Dragons 5

Proof of (5)

Fix an y ∈ Ek It follows from (3) that

∀j > N , ∃ej ∈ Ej such that |y − ej | < ε/3.

Clearly, ej ∈ Q for all j . So, there exists an e ∈ Q and{jk}∞k=1 such that ejk → e.It is immediate that e ∈ E and |y − e| ≤ ε/3. Thiscompletes the proof of (5).

Károly Simon (TU Budapest) Fractals 2012 first talk 42 / 45

Page 43: Fractals and geometric measure theory 2012math.bme.hu › ~simonk › vf › lecture_1.pdf · Outline 1 Self-similarfractals 2 Self-affinesets 3 JuliaandMandelbrotsets 4 Dragons 5

Proof of (b) first slideIt is well known that a metric space is compact if everyinfinite subset has an accumulation point contained inthe metric space. (See [1, p. 112].)Let D ⊂ CQ be an infinite subset and let {E1,i}∞i=1 be anarbitrary sequence of distinct elements of D. For eachk > 1 we define a subsequence of distinct elements{Ek,i}∞i=1 of {Ek−1,i}∞i=1 as follows:Cover Q with finitely many balls of diameter 1/k in anyparticular way. Let B be the finite collection of theseballs. Let {Ek,i}∞i=1 be an infinite subsequence of{Ek−1,i}∞i=1 such that for every i , j :{B ∈ B : B ∩ Ek,i 6= ∅} = {B ∈ B : B ∩ Ek,j 6= ∅} .

Károly Simon (TU Budapest) Fractals 2012 first talk 43 / 45

Page 44: Fractals and geometric measure theory 2012math.bme.hu › ~simonk › vf › lecture_1.pdf · Outline 1 Self-similarfractals 2 Self-affinesets 3 JuliaandMandelbrotsets 4 Dragons 5

Proof of (b) second slideLet

F :=⋃

B∈BB.

Then∀i , Ek,i ⊂ F ⊂ [Ek,i ]1/k .

Hence

∀i , distH(F ,Ek,i) < 1/k =⇒ ∀i , j , distH(Ek,i ,Ek,j) < 1/k .

This implies that the sequence Ei := Ei ,i is a Cauchysequence in (CQ, distH), which tends to a compact setE ⊂ Q according to part (a).

Károly Simon (TU Budapest) Fractals 2012 first talk 44 / 45

Page 45: Fractals and geometric measure theory 2012math.bme.hu › ~simonk › vf › lecture_1.pdf · Outline 1 Self-similarfractals 2 Self-affinesets 3 JuliaandMandelbrotsets 4 Dragons 5

A.N. Kolmogorov, Sz.V. FominA függvényelmélet és a funkcionálanalízis elemeiMûszaki Könykiadó, 1981.

Károly Simon (TU Budapest) Fractals 2012 first talk 45 / 45