fouriertransform...

40
FOURIER TRANSFORM APPLICATION TO SIGNAL PROCESSING Pawel A. Penczek The University of Texas – Houston Medical School, Department of Biochemistry Wednesday, August 24, 2011

Upload: ngoduong

Post on 11-Mar-2018

225 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: FOURIERTRANSFORM APPLICATION’TO’SIGNAL’PROCESSINGtemimps.nysbc.org/TemimpsWorkshopMaterials/FT_short.pdf · Fourier cosine transform and Fourier sine ... The set of functions

FOURIER  TRANSFORM

APPLICATION  TO  SIGNAL  PROCESSING

Pawel  A.  Penczek

The  University  of  Texas  –  Houston  Medical  School,  Department  of  Biochemistry

Wednesday, August 24, 2011

Page 2: FOURIERTRANSFORM APPLICATION’TO’SIGNAL’PROCESSINGtemimps.nysbc.org/TemimpsWorkshopMaterials/FT_short.pdf · Fourier cosine transform and Fourier sine ... The set of functions

FOURIER TRANSFORMS

1.Fourier Transform

2.Fourier Series

3.Discrete Fourier Transform (DFT)

Wednesday, August 24, 2011

Page 3: FOURIERTRANSFORM APPLICATION’TO’SIGNAL’PROCESSINGtemimps.nysbc.org/TemimpsWorkshopMaterials/FT_short.pdf · Fourier cosine transform and Fourier sine ... The set of functions

FOURIER TRANSFORMSThe Fourier transform is a generalization of the complex Fourier series in the limit of .L→∞

F s( ) = f x( )e−2π isx dx−∞

+∞

f x( ) = F s( )e2π isx ds−∞

+∞

Wednesday, August 24, 2011

Page 4: FOURIERTRANSFORM APPLICATION’TO’SIGNAL’PROCESSINGtemimps.nysbc.org/TemimpsWorkshopMaterials/FT_short.pdf · Fourier cosine transform and Fourier sine ... The set of functions

FOURIER TRANSFORMSF s( ) = f x( )e−2π isx dx

−∞

+∞

f x( ) = F s( )e2π isx ds−∞

+∞

∫Euler's formula: eix = cos x + i sin x

Since any function can be split into even and off portions:fE x( ) = 1

2f x( ) + f −x( )⎡⎣ ⎤⎦ fO x( ) = 1

2f x( ) − f −x( )⎡⎣ ⎤⎦

f x( ) = fE x( ) + fO x( )

a Fourier transform can always be expressed in terms of the Fourier cosine transform and Fourier sine transform as

F s( ) = fE x( )cos 2πisx( )dx−∞

+∞

∫ − i fO x( )sin 2π sx( )dx−∞

+∞

∫Wednesday, August 24, 2011

Page 5: FOURIERTRANSFORM APPLICATION’TO’SIGNAL’PROCESSINGtemimps.nysbc.org/TemimpsWorkshopMaterials/FT_short.pdf · Fourier cosine transform and Fourier sine ... The set of functions

COMPLEX ALGEBRA

i2 = −1z,u ∈a,b ∈z = a + ibz∗ = a − ib

z 2 = a2 + b2

zu = ?zu* = ?z / u = ?

Complex numbers versus vectors

Wednesday, August 24, 2011

Page 6: FOURIERTRANSFORM APPLICATION’TO’SIGNAL’PROCESSINGtemimps.nysbc.org/TemimpsWorkshopMaterials/FT_short.pdf · Fourier cosine transform and Fourier sine ... The set of functions

DIRAC (DELTA) FUNCTION*

*a misnomer, Dirac's delta is not a function, it is a distribution!

The Dirac delta function as the limit (in the sense of distributions) of the sequence of Gaussians:

δa x( ) =a→0

1a π

e− x

2

a2

The Dirac delta function, or δ function, is (informally) a generalized function depending on a real parameter such that it is zero for all values of the parameter except when the parameter is zero, and its integral over the parameter from −∞ to ∞ is equal to one. It is also known as unit impulse function.

Fourier transform of a delta function

δ x( )e−2π isx dx−∞

+∞

∫ = 1

e2π isx ds−∞

+∞

∫ = δ x( )

Wednesday, August 24, 2011

Page 7: FOURIERTRANSFORM APPLICATION’TO’SIGNAL’PROCESSINGtemimps.nysbc.org/TemimpsWorkshopMaterials/FT_short.pdf · Fourier cosine transform and Fourier sine ... The set of functions

FOURIER PAIRS

Gaussian function top-hat function

Wednesday, August 24, 2011

Page 8: FOURIERTRANSFORM APPLICATION’TO’SIGNAL’PROCESSINGtemimps.nysbc.org/TemimpsWorkshopMaterials/FT_short.pdf · Fourier cosine transform and Fourier sine ... The set of functions

FOURIER PAIRS

cosine function

sine function

Wednesday, August 24, 2011

Page 9: FOURIERTRANSFORM APPLICATION’TO’SIGNAL’PROCESSINGtemimps.nysbc.org/TemimpsWorkshopMaterials/FT_short.pdf · Fourier cosine transform and Fourier sine ... The set of functions

PROPERTIES OF FOURIER TRANSFORM

Linearity

Rotation

Translation

Scaling

Conjugation

Parseval's theorem

If h x( ) = af x( ) + bg x( ), then H s( ) = aF s( ) + bG s( )

If R is a rotation matrix, FT f Rx( )( ) = H Rs( )

If h x( ) = f x − t( ), then H s( ) = e− i2π tsF s( )

If h x( ) = f ax( ), a ≠ 0, then H s( ) = 1aF s

a⎛⎝⎜

⎞⎠⎟

f x( ) 2 dx−∞

∫ = F s( ) 2 ds−∞

FT −1 H ∗ s( )( ) = f −x( )

Density scaling

Rotation of FT,of power spectrum

Lossless shift

Scaling

1D - mirror2D - rotation by 180o

Preservation of energy,power spectrum

Wednesday, August 24, 2011

Page 10: FOURIERTRANSFORM APPLICATION’TO’SIGNAL’PROCESSINGtemimps.nysbc.org/TemimpsWorkshopMaterials/FT_short.pdf · Fourier cosine transform and Fourier sine ... The set of functions

CROSS-CORRELATION THEOREM

c t( ) = f x( )g x + t( )dx−∞

∫ = FT −1 F∗ s( )G s( )( )

SPECIAL CASE OF CCF, AUTOCORRELATION FUNCTION

a t( ) = f x( ) f x + t( )dx−∞

∫ = FT −1 F∗ s( )F s( )( ) = FT −1 F s( ) 2( )

CONVOLUTION THEOREM

h = f ∗ g

h t( ) = f x( )g x − t( )dx−∞

+∞

∫ = FT −1 F s( )G s( )( )

Wednesday, August 24, 2011

Page 11: FOURIERTRANSFORM APPLICATION’TO’SIGNAL’PROCESSINGtemimps.nysbc.org/TemimpsWorkshopMaterials/FT_short.pdf · Fourier cosine transform and Fourier sine ... The set of functions

CROSS-CORRELATION THEOREM

c t( ) = f x( )g x + t( )dx−∞

∫ = FT −1 F∗ s( )G s( )( )

SPECIAL CASE OF CCF, AUTOCORRELATION FUNCTION

a t( ) = f x( ) f x + t( )dx−∞

∫ = FT −1 F∗ s( )F s( )( ) = FT −1 F s( ) 2( )

CONVOLUTION THEOREM

h = f ∗ g

h t( ) = f x( )g x − t( )dx−∞

+∞

∫ = FT −1 F s( )G s( )( )

Wednesday, August 24, 2011

Page 12: FOURIERTRANSFORM APPLICATION’TO’SIGNAL’PROCESSINGtemimps.nysbc.org/TemimpsWorkshopMaterials/FT_short.pdf · Fourier cosine transform and Fourier sine ... The set of functions

FOURIER SERIESA Fourier series is an expansion of a periodic function in terms of an infinite sum of sines and cosines.

Fourier series make use of the orthogonality relationships of the sine and cosine functions.

f x( ) = 12a0 + an cos nx( )

n=1

∑ + bn sin nx( )n=1

∑-π period +π

a0 =1π

f x( )dx−π

π

an =1π

f x( )cos nx( )dx−π

π

bn =1π

f x( )sin nx( )dx−π

π

Wednesday, August 24, 2011

Page 13: FOURIERTRANSFORM APPLICATION’TO’SIGNAL’PROCESSINGtemimps.nysbc.org/TemimpsWorkshopMaterials/FT_short.pdf · Fourier cosine transform and Fourier sine ... The set of functions

FOURIER SERIESGIBBS PHENOMENON

Ringing artifact near sharp edges that is due to truncation of Fourier series. Note the amplitude of oscillation is constant, does not depend on the number of Fourier coefficients included. Often observed when filter is incorrect (too sharp). Ringing can be reduced by making filter "smooth" - an extreme is a Gaussian filter. Regrettably, the cut-off frequency of a Gaussian filter is poorly defined and much noise in high frequencies passes through. There are many filters designed that offer a trade-off between sharpness (and thus artifacts) and smoothness (fewer artifacts but more noise): Butterworth, tangent..

Wednesday, August 24, 2011

Page 14: FOURIERTRANSFORM APPLICATION’TO’SIGNAL’PROCESSINGtemimps.nysbc.org/TemimpsWorkshopMaterials/FT_short.pdf · Fourier cosine transform and Fourier sine ... The set of functions

Effects of top-hat, Gaussian, and Butterworth filters on a step function. Comparison of Gaussian and Butterworth filters.

Digital filters.

Wednesday, August 24, 2011

Page 15: FOURIERTRANSFORM APPLICATION’TO’SIGNAL’PROCESSINGtemimps.nysbc.org/TemimpsWorkshopMaterials/FT_short.pdf · Fourier cosine transform and Fourier sine ... The set of functions

FOURIER SERIESAS AN EXPANSION IN AN ORTHONORMAL BASIS

Using Euler's formula

f x( ) = 12a0 + an cos nx( )

n=1

∑ + bn sin nx( )n=1

einx = cosnx + i sinnx

f x( ) = cneinx

n=−∞

∑ with Fourier coefficients(complex!) given by

cn =12π

f x( )e− inx dx−π

π

an = cn + c−n , n = 0,1,2,…bn = i cn − c−n( ), n = 1,2,…

The set of functions forms an orthonormal basis for the Hilbert space

(of squared integrable functions on ) with an inner product

Indeed,

en = einx , n ∈{ } L2 −π ,π[ ]

−π ,π[ ] f ,g =def 12π

f x( )g∗ x( )dx−π

π

∫ .

en ,em =12π

einxe− imx dx−π

π

∫ =12π

ei n−m( )x dx−π

π

∫ = δnm .

Wednesday, August 24, 2011

Page 16: FOURIERTRANSFORM APPLICATION’TO’SIGNAL’PROCESSINGtemimps.nysbc.org/TemimpsWorkshopMaterials/FT_short.pdf · Fourier cosine transform and Fourier sine ... The set of functions

DISCRETE FOURIER TRANSFORM (DFT)AS A REPRESENTATION IN AN ORTHONORMAL BASIS

DFT is a transformation of a finite (and presumably periodic) sequence of real or complex number into a finite space whose orthonormal basis is spanned by complex exponentials (discretized).

Xk = xne−

2π iN

kn

n=0

N

∑ k = 0,…,N −1

xk =1N

Xke2π iN

kn

k=0

N

∑ n = 0,…,N −1

xn

Re X0( ) 0 Re X1( ) Im X1( ) Re X2( ) Im X3( ) Re X3( ) Im X3( ) Re X4( ) 0⎡⎣⎢

⎤⎦⎥

Wednesday, August 24, 2011

Page 17: FOURIERTRANSFORM APPLICATION’TO’SIGNAL’PROCESSINGtemimps.nysbc.org/TemimpsWorkshopMaterials/FT_short.pdf · Fourier cosine transform and Fourier sine ... The set of functions

DISCRETE FOURIER TRANSFORM (DFT)AS A REPRESENTATION IN AN ORTHONORMAL BASIS

DFT is a transformation of a finite (and presumably periodic) sequence of real or complex number into a finite space whose orthonormal basis is spanned by complex exponentials (discretized).

Xk = xne−

2π iN

kn

n=0

N

∑ k = 0,…,N −1

xk =1N

Xke2π iN

kn

k=0

N

∑ n = 0,…,N −1

xn

Re X0( ) 0 Re X1( ) Im X1( ) Re X2( ) Im X3( ) Re X3( ) Im X3( ) Re X4( ) 0⎡⎣⎢

⎤⎦⎥

Wednesday, August 24, 2011

Page 18: FOURIERTRANSFORM APPLICATION’TO’SIGNAL’PROCESSINGtemimps.nysbc.org/TemimpsWorkshopMaterials/FT_short.pdf · Fourier cosine transform and Fourier sine ... The set of functions

DISCRETE FOURIER TRANSFORM (DFT)AS A REPRESENTATION IN AN ORTHONORMAL BASIS

DFT is a transformation of a finite (and presumably periodic) sequence of real or complex number into a finite space whose orthonormal basis is spanned by complex exponentials (discretized).

Xk = xne−

2π iN

kn

n=0

N

∑ k = 0,…,N −1

xk =1N

Xke2π iN

kn

k=0

N

∑ n = 0,…,N −1

xn

Re X0( ) 0 Re X1( ) Im X1( ) Re X2( ) Im X3( ) Re X3( ) Im X3( ) Re X4( ) 0⎡⎣⎢

⎤⎦⎥

Wednesday, August 24, 2011

Page 19: FOURIERTRANSFORM APPLICATION’TO’SIGNAL’PROCESSINGtemimps.nysbc.org/TemimpsWorkshopMaterials/FT_short.pdf · Fourier cosine transform and Fourier sine ... The set of functions

DISCRETE FOURIER TRANSFORM (DFT)AS A REPRESENTATION IN AN ORTHONORMAL BASIS

DFT is a transformation of a finite (and presumably periodic) sequence of real or complex number into a finite space whose orthonormal basis is spanned by complex exponentials (discretized).

Xk = xne−

2π iN

kn

n=0

N

∑ k = 0,…,N −1

xk =1N

Xke2π iN

kn

k=0

N

∑ n = 0,…,N −1

xn

Re X0( ) 0 Re X1( ) Im X1( ) Re X2( ) Im X3( ) Re X3( ) Im X3( ) Re X4( ) 0⎡⎣⎢

⎤⎦⎥

X0X1

XN −1

⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥

=

wN0i0 wN

0i1 wN0i(N −1)

wN1i0 wN

1i1 wN1i(N −1)

wN(N −1)i0 wN

(N −1)i1 wN(N −1)i(N −1)

⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥

x0x1xN −1

⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥

wN = e−2π i

N

Wednesday, August 24, 2011

Page 20: FOURIERTRANSFORM APPLICATION’TO’SIGNAL’PROCESSINGtemimps.nysbc.org/TemimpsWorkshopMaterials/FT_short.pdf · Fourier cosine transform and Fourier sine ... The set of functions

FAST FOURIER TRANSFORM (FFT) ALGORITHM FOR DFTRADIX-2

Cooley, James W., and John W. Tukey, "An algorithm for the machine calculation of complex Fourier series," Math. Comput. 19, 297–301 (1965)Gauss, Carl Friedrich, "Nachlass: Theoria interpolationis methodo nova tractata", Werke, Band 3, 265–327 (Königliche Gesellschaft der Wissenschaften, Göttingen, 1866) (1805)

X0X1

XN −1

⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥

=

wN0i0 wN

0i1 wN0i(N −1)

wN1i0 wN

1i1 wN1i(N −1)

wN(N −1)i0 wN

(N −1)i1 wN(N −1)i(N −1)

⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥

x0x1xN −1

⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥

wN = e−2π i

N

FN - N2 fps

Wednesday, August 24, 2011

Page 21: FOURIERTRANSFORM APPLICATION’TO’SIGNAL’PROCESSINGtemimps.nysbc.org/TemimpsWorkshopMaterials/FT_short.pdf · Fourier cosine transform and Fourier sine ... The set of functions

FAST FOURIER TRANSFORM (FFT) ALGORITHM FOR DFTRADIX-2

Cooley, James W., and John W. Tukey, "An algorithm for the machine calculation of complex Fourier series," Math. Comput. 19, 297–301 (1965)Gauss, Carl Friedrich, "Nachlass: Theoria interpolationis methodo nova tractata", Werke, Band 3, 265–327 (Königliche Gesellschaft der Wissenschaften, Göttingen, 1866) (1805)

X0X1

XN −1

⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥

=

wN0i0 wN

0i1 wN0i(N −1)

wN1i0 wN

1i1 wN1i(N −1)

wN(N −1)i0 wN

(N −1)i1 wN(N −1)i(N −1)

⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥

x0x1xN −1

⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥

wN = e−2π i

N

FN - N2 fps

F8=

w w 0 0 0 0 0 00 0 w w 0 0 0 00 0 0 0 w −w 0 00 0 0 0 0 0 w −ww −w 0 0 0 0 0 00 0 w −w 0 0 0 00 0 0 0 w w 0 00 0 0 0 0 0 w w

⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥⎥⎥⎥⎥

w 0 w 0 0 0 0 00 w 0 w 0 0 0 00 0 0 0 w 0 −w 00 0 0 0 0 w 0 −ww 0 −w 0 0 0 0 00 w 0 −w 0 0 0 00 0 0 0 w 0 w 00 0 0 0 0 w 0 w

⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥⎥⎥⎥⎥

w 0 0 0 w 0 0 00 w 0 0 0 w 0 00 0 w 0 0 0 w 00 0 0 w 0 0 0 ww 0 0 0 −w 0 0 00 w 0 0 0 −w 0 00 0 w 0 0 0 −w 00 0 0 w 0 0 0 −w

⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥⎥⎥⎥⎥

Wednesday, August 24, 2011

Page 22: FOURIERTRANSFORM APPLICATION’TO’SIGNAL’PROCESSINGtemimps.nysbc.org/TemimpsWorkshopMaterials/FT_short.pdf · Fourier cosine transform and Fourier sine ... The set of functions

FAST FOURIER TRANSFORM (FFT) ALGORITHM FOR DFTRADIX-2

Cooley, James W., and John W. Tukey, "An algorithm for the machine calculation of complex Fourier series," Math. Comput. 19, 297–301 (1965)Gauss, Carl Friedrich, "Nachlass: Theoria interpolationis methodo nova tractata", Werke, Band 3, 265–327 (Königliche Gesellschaft der Wissenschaften, Göttingen, 1866) (1805)

X0X1

XN −1

⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥

=

wN0i0 wN

0i1 wN0i(N −1)

wN1i0 wN

1i1 wN1i(N −1)

wN(N −1)i0 wN

(N −1)i1 wN(N −1)i(N −1)

⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥

x0x1xN −1

⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥

wN = e−2π i

N

FN - N2 fps

F8=

w w 0 0 0 0 0 00 0 w w 0 0 0 00 0 0 0 w −w 0 00 0 0 0 0 0 w −ww −w 0 0 0 0 0 00 0 w −w 0 0 0 00 0 0 0 w w 0 00 0 0 0 0 0 w w

⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥⎥⎥⎥⎥

w 0 w 0 0 0 0 00 w 0 w 0 0 0 00 0 0 0 w 0 −w 00 0 0 0 0 w 0 −ww 0 −w 0 0 0 0 00 w 0 −w 0 0 0 00 0 0 0 w 0 w 00 0 0 0 0 w 0 w

⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥⎥⎥⎥⎥

w 0 0 0 w 0 0 00 w 0 0 0 w 0 00 0 w 0 0 0 w 00 0 0 w 0 0 0 ww 0 0 0 −w 0 0 00 w 0 0 0 −w 0 00 0 w 0 0 0 −w 00 0 0 w 0 0 0 −w

⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥⎥⎥⎥⎥

FFT - 2N log2N fps!Wednesday, August 24, 2011

Page 23: FOURIERTRANSFORM APPLICATION’TO’SIGNAL’PROCESSINGtemimps.nysbc.org/TemimpsWorkshopMaterials/FT_short.pdf · Fourier cosine transform and Fourier sine ... The set of functions

FAST FOURIER TRANSFORM (FFT) ALGORITHM FOR DFTRADIX-2

Cooley, James W., and John W. Tukey, "An algorithm for the machine calculation of complex Fourier series," Math. Comput. 19, 297–301 (1965)Gauss, Carl Friedrich, "Nachlass: Theoria interpolationis methodo nova tractata", Werke, Band 3, 265–327 (Königliche Gesellschaft der Wissenschaften, Göttingen, 1866) (1805)

X0X1

XN −1

⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥

=

wN0i0 wN

0i1 wN0i(N −1)

wN1i0 wN

1i1 wN1i(N −1)

wN(N −1)i0 wN

(N −1)i1 wN(N −1)i(N −1)

⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥

x0x1xN −1

⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥

wN = e−2π i

N

FN - N2 fps

FFT - 2N log2N fps!Wednesday, August 24, 2011

Page 24: FOURIERTRANSFORM APPLICATION’TO’SIGNAL’PROCESSINGtemimps.nysbc.org/TemimpsWorkshopMaterials/FT_short.pdf · Fourier cosine transform and Fourier sine ... The set of functions

FOURIER

DECOMPOSITION SYNTHESIS

Amplitudes

8.2

3.1

2.1

1.0

1.5

2.0

0.6

1.0

Wednesday, August 24, 2011

Page 25: FOURIERTRANSFORM APPLICATION’TO’SIGNAL’PROCESSINGtemimps.nysbc.org/TemimpsWorkshopMaterials/FT_short.pdf · Fourier cosine transform and Fourier sine ... The set of functions

2D FT

c0,0 c0,1 c0,2 c0,3 c0,4 c0,5 c0,6 c0,7c1,0 c1,1 c1,2

c2,0

c3,0

c4,0

c5,0

c6,0

c7,0 c7,1 c7,7

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

=

amplitude: Ai, j = ci, j = Re ci, j( )2+ Im ci, j( )2

phase: ϕ i, j = atan2 Im ci, j( ),Re ci, j( )( )Wednesday, August 24, 2011

Page 26: FOURIERTRANSFORM APPLICATION’TO’SIGNAL’PROCESSINGtemimps.nysbc.org/TemimpsWorkshopMaterials/FT_short.pdf · Fourier cosine transform and Fourier sine ... The set of functions

DFT CASE STUDY:POWER SPECTRUM (PS)

Stationary random process (signal + noise): f(x)

The power spectrum S(f) is the Fourier transform of the autocorrelation function of the process.

Sf s( ) = a τ( )e−2π isτ dτ−∞

Periodogram is the squared amplitude of the Fourier transform of the process.

Periodogram is a very poor estimator of the power spectrum: its relative error is 100% and it is biased. Finally, it does not converge to the true power spectrum with increased window size.

Pf s( ) = f x( )e−2π isx dx−∞

∫2

Ansemble average (expected value) of periodogram approximates power spectrum.

E Pf s( )⎡⎣ ⎤⎦→ Sf s( )Wednesday, August 24, 2011

Page 27: FOURIERTRANSFORM APPLICATION’TO’SIGNAL’PROCESSINGtemimps.nysbc.org/TemimpsWorkshopMaterials/FT_short.pdf · Fourier cosine transform and Fourier sine ... The set of functions

DFT CASE STUDY:POWER SPECTRUM (PS) ESTIMATION

AVERAGING OF PERIODOGRAMS - WELCH METHOD

.

.

.

+

Zhu, J., Penczek, P.A., Schröder, R., and Frank, J. (1997). Three-dimensional reconstruction with contrast transfer function correction from energy-filtered cryoelectron micrographs: procedure and application to the 70S Escherichia coli ribosome. Journal of Structural Biology 118, 197-219.

Average of periodogramsreduced variance

50% overlap

Rotational average

Wednesday, August 24, 2011

Page 28: FOURIERTRANSFORM APPLICATION’TO’SIGNAL’PROCESSINGtemimps.nysbc.org/TemimpsWorkshopMaterials/FT_short.pdf · Fourier cosine transform and Fourier sine ... The set of functions

DFT CASE STUDY:CROSS-CORRELATION

c t( ) = f x( )g x + t( )dx−∞

+∞

∫ = FT −1 F∗ s( )G s( )( )

ck = flgl+ k−∞

∑ = FT −1 F∗G( )

Wednesday, August 24, 2011

Page 29: FOURIERTRANSFORM APPLICATION’TO’SIGNAL’PROCESSINGtemimps.nysbc.org/TemimpsWorkshopMaterials/FT_short.pdf · Fourier cosine transform and Fourier sine ... The set of functions

DFT CASE STUDY:CROSS-CORRELATION

c t( ) = f x( )g x + t( )dx−∞

+∞

∫ = FT −1 F∗ s( )G s( )( )

ck = flgl+ k−∞

∑ = FT −1 F∗G( )

Wednesday, August 24, 2011

Page 30: FOURIERTRANSFORM APPLICATION’TO’SIGNAL’PROCESSINGtemimps.nysbc.org/TemimpsWorkshopMaterials/FT_short.pdf · Fourier cosine transform and Fourier sine ... The set of functions

DFT CASE STUDY:CROSS-CORRELATION

c t( ) = f x( )g x + t( )dx−∞

+∞

∫ = FT −1 F∗ s( )G s( )( )

ck = flgl+ k−∞

∑ = FT −1 F∗G( )

Wednesday, August 24, 2011

Page 31: FOURIERTRANSFORM APPLICATION’TO’SIGNAL’PROCESSINGtemimps.nysbc.org/TemimpsWorkshopMaterials/FT_short.pdf · Fourier cosine transform and Fourier sine ... The set of functions

DFT CASE STUDY:CROSS-CORRELATION

Discrete FT is periodic, thus it "sees" a single image as periodic.

wrap-around effect

... ...

ck = flg l+ k( )mod N0

N −1

∑ = FT −1 F∗G( )k = −N

2,…,N 2

Wednesday, August 24, 2011

Page 32: FOURIERTRANSFORM APPLICATION’TO’SIGNAL’PROCESSINGtemimps.nysbc.org/TemimpsWorkshopMaterials/FT_short.pdf · Fourier cosine transform and Fourier sine ... The set of functions

DFT CASE STUDY:CROSS-CORRELATION

Discrete FT is periodic, thus it "sees" a single image as periodic.

wrap-around effect

... ...

ck = flg l+ k( )mod N0

N −1

∑ = FT −1 F∗G( )k = −N

2,…,N 2

Wednesday, August 24, 2011

Page 33: FOURIERTRANSFORM APPLICATION’TO’SIGNAL’PROCESSINGtemimps.nysbc.org/TemimpsWorkshopMaterials/FT_short.pdf · Fourier cosine transform and Fourier sine ... The set of functions

DFT CASE STUDY:CROSS-CORRELATION

To avoid wrap-around effect, pad image with zeroes (or something else??).

ck = flpadgl+ k

pad

l=0

N −1

∑ = FT −1 F pad∗Gpad( )k = −N

2,…,N 2Each ccf coefficient is computed using

different number of image points!Wednesday, August 24, 2011

Page 34: FOURIERTRANSFORM APPLICATION’TO’SIGNAL’PROCESSINGtemimps.nysbc.org/TemimpsWorkshopMaterials/FT_short.pdf · Fourier cosine transform and Fourier sine ... The set of functions

DFT CASE STUDY:CROSS-CORRELATION

To avoid wrap-around effect, pad image with zeroes (or something else??).

ck = flpadgl+ k

pad

l=0

N −1

∑ = FT −1 F pad∗Gpad( )k = −N

2,…,N 2Each ccf coefficient is computed using

different number of image points!Wednesday, August 24, 2011

Page 35: FOURIERTRANSFORM APPLICATION’TO’SIGNAL’PROCESSINGtemimps.nysbc.org/TemimpsWorkshopMaterials/FT_short.pdf · Fourier cosine transform and Fourier sine ... The set of functions

DFT CASE STUDY:CROSS-CORRELATION

To avoid wrap-around effect, pad image with zeroes (or something else??).

ck = flpadgl+ k

pad

l=0

N −1

∑ = FT −1 F pad∗Gpad( )k = −N

2,…,N 2Each ccf coefficient is computed using

different number of image points!Wednesday, August 24, 2011

Page 36: FOURIERTRANSFORM APPLICATION’TO’SIGNAL’PROCESSINGtemimps.nysbc.org/TemimpsWorkshopMaterials/FT_short.pdf · Fourier cosine transform and Fourier sine ... The set of functions

DFT CASE STUDY:CROSS-CORRELATION

To avoid uneven normalization problem, normalize by lag padded ccf.

ck =1

N − kflpadgl+ k

pad

l=0

N −1

∑ =1

N − kFT −1 F pad∗Gpad( )

k = −N2,…,N 2

The variance of ccf coefficients increases with lags!

Wednesday, August 24, 2011

Page 37: FOURIERTRANSFORM APPLICATION’TO’SIGNAL’PROCESSINGtemimps.nysbc.org/TemimpsWorkshopMaterials/FT_short.pdf · Fourier cosine transform and Fourier sine ... The set of functions

DFT CASE STUDY:CROSS-CORRELATION

To avoid uneven normalization problem, normalize by lag padded ccf.

ck =1

N − kflpadgl+ k

pad

l=0

N −1

∑ =1

N − kFT −1 F pad∗Gpad( )

k = −N2,…,N 2

The variance of ccf coefficients increases with lags!

Wednesday, August 24, 2011

Page 38: FOURIERTRANSFORM APPLICATION’TO’SIGNAL’PROCESSINGtemimps.nysbc.org/TemimpsWorkshopMaterials/FT_short.pdf · Fourier cosine transform and Fourier sine ... The set of functions

DFT CASE STUDY:CROSS-CORRELATION

To avoid uneven normalization problem, normalize by lag padded ccf.

ck =1

N − kflpadgl+ k

pad

l=0

N −1

∑ =1

N − kFT −1 F pad∗Gpad( )

k = −N2,…,N 2

The variance of ccf coefficients increases with lags!

Wednesday, August 24, 2011

Page 39: FOURIERTRANSFORM APPLICATION’TO’SIGNAL’PROCESSINGtemimps.nysbc.org/TemimpsWorkshopMaterials/FT_short.pdf · Fourier cosine transform and Fourier sine ... The set of functions

DFT CASE STUDY:CROSS-CORRELATION

Which ccf should I use?

ck = flg l+ k( )mod N0

N −1

∑ = FT −1 F∗G( )

ck = flpadgl+ k

pad

l=0

N −1

∑ = FT −1 F pad∗Gpad( )

ck =1

N − kflpadgl+ k

pad

l=0

N −1

∑ =1

N − kFT −1 F pad∗Gpad( )

Wednesday, August 24, 2011

Page 40: FOURIERTRANSFORM APPLICATION’TO’SIGNAL’PROCESSINGtemimps.nysbc.org/TemimpsWorkshopMaterials/FT_short.pdf · Fourier cosine transform and Fourier sine ... The set of functions

Tomographyhistorical background

1956 - Bracewell reconstructed sun spots from multiple projection views of the Sun from the Earth.

1967 - Medical Research Council Laboratory, Cambridge, England: Aaron Klug and grad student David DeRosier reconstructed three-dimensional structures of viruses.

1969 – W. Hoppe (Germany) proposed three-dimensional high resolution electron microscopy of non-periodic biological structures.

1972 - British engineer Godfrey Hounsfield of EMI Laboratories, England, and independently South African born physicist Allan Cormack of Tufts University, Massachusetts, invented CAT (Computed Axial Tomography) scanner. Tomography is from the Greek word τοµή meaning "slice" or "section" and graphia meaning "describing".

Wednesday, August 24, 2011