fourier transform ppt

49

Click here to load reader

Upload: sai-kiran

Post on 17-Jul-2016

625 views

Category:

Documents


82 download

TRANSCRIPT

Page 1: Fourier transform ppt

11

Fourier TransformationFourier Transformation

FourierTransformasjon

f(x) F(u)

Page 2: Fourier transform ppt

22

Continuous Fourier TransformContinuous Fourier TransformDefDef

The Fourier transform of a one-dimentional function f(x)

dxexfuf uxj 2)()(ˆ

The Inverse Fourier Transform

dueufxf uxj 2)(ˆ)(

Page 3: Fourier transform ppt

33

Continuous Fourier TransformContinuous Fourier TransformDef - NotationDef - Notation

The Fourier transform of a one-dimentional function f(x)

dxxfexfFxfeuFuf uxjuxj )()()()()(ˆ 22

The inverse Fourier Transform of F(u)

duufeufFufexf uxjuxj )(ˆ)(ˆ)(ˆ)( 212

Page 4: Fourier transform ppt

44

Continuous Fourier TransformContinuous Fourier TransformAlternative DefAlternative Def

dxexfxfFF xj )()()(

deufFFxf xj)(ˆ21)()( 1

dxexfxfFuF uxj 2)()()(

dueufuFFxf uxj 21 )(ˆ)()(

dxexfxfFF xj

)(

21)()(

deufFFxf xj)(ˆ21)()( 1

Page 5: Fourier transform ppt

55

Continuous Fourier TransformContinuous Fourier TransformExample - cos(2Example - cos(2ft)ft)

Page 6: Fourier transform ppt

66

Continuous Fourier TransformContinuous Fourier TransformExample - cos(Example - cos(t)t)

Page 7: Fourier transform ppt

77

Continuous Fourier TransformContinuous Fourier TransformExample - sin(Example - sin(t)t)

Page 8: Fourier transform ppt

88

Continuous Fourier TransformContinuous Fourier TransformExample - Delta-functionExample - Delta-function

Page 9: Fourier transform ppt

99

Continuous Fourier TransformContinuous Fourier TransformExample - Gauss functionExample - Gauss function

Page 10: Fourier transform ppt

1010

Signals and Fourier TransformSignals and Fourier TransformFrequency InformationFrequency Information

)sin( 11 ty

)sin( 22 ty

)sin()sin( 213 tty

FT

FT

FT

Page 11: Fourier transform ppt

1111

Stationary / Non-stationary signalsStationary / Non-stationary signals

60 hvis )sin(60 hvis )sin(

2

14 tt

tty

)sin()sin( 213 tty

FT

FT

Stationary

Non stationary

The stationary and the non-stationary signal both have the same FT.FT is not suitable to take care of non-stationary signals to give information about time.

Page 12: Fourier transform ppt

1212

Constant function in [-3,3].Dominating frequency = 0and some freequency because of edges.

Transient signalresulting in extra frequencies > 0.

Narrower transient signalresulting in extra higher frequenciespushed away from origin.

Transient SignalTransient SignalFrequency InformationFrequency Information

Page 13: Fourier transform ppt

1313

Transient SignalTransient SignalNo Information about PositionNo Information about Position

Moving the transient part of the signal to a new position does not resultin any change in the transformed signal.

Conclusion: The Fourier transformationcontains information of a transient partof a signal, but only the frequencynot the position.

Page 14: Fourier transform ppt

1414

Inverse Fourier Transform [1/3]Inverse Fourier Transform [1/3]

0 4

2

2

edtee tjt

4

44

4)

2(

2

2

2

2

2

22

22

1

)(

edtee

jy

edtee

dtedtedteeyf

tjt

yt

y

yytyttytt

Theorem:

Proof:

dxexfuf uxj 2)()(ˆ

dueufxf uxj 2)(ˆ)(

Page 15: Fourier transform ppt

1515

Inverse Fourier Transform [2/3]Inverse Fourier Transform [2/3]

)(, ˆˆ 1 RLgf(ay)g(y)dyf(ay)dygf(y)--

Theorem:

Proof:

dxexfuf uxj 2)()(ˆ

dueufxf uxj 2)(ˆ)(

dyygayf

dxxgaxf

dxxgdyeyf

dxdyexgyf

dydxexgyf

dydxexgf(y)(ay)dygf(y)

ayxj

ayxj

ayxj

-

ayxj

-

)()(ˆ

)()(ˆ

)()(

)()(

)()(

)(ˆ

2

2

2

2

Page 16: Fourier transform ppt

1616

Inverse Fourier Transform [3/3]Inverse Fourier Transform [3/3]

1)(

)(ˆ2

1)(

2

2

)2(

4

dxxg

eug

exg

u

x

dxexfuf uxj 2)()(ˆ

dueufxf uxj 2)(ˆ)(

)2(21

21

21)(ˆ

21)(

4)2(

)2(

2

2

2

2

2

yxge

dtee

dteeeyg

eetg

xy

txyjt

ytjtjtx

tjtx

)](ˆ[

)(ˆ221

21

21lim

)(2

ˆlim

2ˆ)(lim

)(*)(lim )()(lim

)0()(

1

2

0

0

0

00

2

xfF

dyeyf

dyeyf

dyeeyf

dyygyf

dyygyf

xgxfdyyxgyf

xfxf

yxj

jyx

yjyx

Page 17: Fourier transform ppt

1717

PropertiesProperties

0

1)(1

)(

11

11111

)(][ )]([ )]([

)]([1 ))](([

)]([ )]([

][)( ][

][)( ][

][)( ][

][ ][

][][ ][][ ][

][][ ][][ ][

dtetffLjfLfF

atfF

aatfF

tfFeatfF

fFjtfF

fFjfF

fFdtdjfF

fFddjftF

fcFcfFgFfFgfF

fcFcfFgFfFgfF

ts

aj

nn

nn

n

nnn

n

nnn

Page 18: Fourier transform ppt

1818

Fourier Transforms of Fourier Transforms of Harmonic and Constant FunctionHarmonic and Constant Function

)()(2

)2sin(

)(1 )()(21)2cos(

- )2sin(2 )2cos(2

)()(

)()()()()(

000

000

0

022

20

20

20000

1

uuuujxuF

uFuuuxuF

xujxu

ee

dueuudueuu

dueuuuuuuuuFxf

uxjuxj

uxjuxj

uxj

Page 19: Fourier transform ppt

1919

Fourier Transforms of Fourier Transforms of Some Common FunctionsSome Common Functions

22

0

)(21 )(

)()(sin )(

)(sin )(

1 )(

2 x)u(2sin

)()(21 x)u(2cos

)( )(

2

2

2

02

000

000

ux

xuj

ee

ujuxu

uux

uux

δ(x)uue

)uδ(u)uδ(uj

uuuu

uFxf

Page 20: Fourier transform ppt

2020

)( )()( )(

tftftftf

oddodd

eveneven

)()(21 )(

)()(21 )(

)()( )(

tftftf

tftftf

tftftf

odd

even

oddeven

)()(

)()( )()( )(

,,

,,

tftf

tftftftftf

imagoddimageven

realoddrealeven

oddeven

Even and Odd Functions [1/Even and Odd Functions [1/3]3]

Def

Every function can be splitin an even and an odd part

Every function can be splitin an even and an odd partand each of this can in turn be split in a real and an imaginary part

Page 21: Fourier transform ppt

2121

)()(

)2sin()()2cos()(

)2sin()()2sin()()2cos()()2cos()(

)2sin()()2cos()(

)()( 2

ujFuF

dxuxxfjdxuxxf

dxuxxfjdxuxxfjdxuxxfdxuxxf

dxuxtfjdxuxxf

dxexfuF

oddeven

oddeven

oddevenoddeven

uxj

Even and Odd Functions [2/Even and Odd Functions [2/33]]

1. Even component in f produces an even component in F2. Odd component in f produces an odd component in F3. Odd component in f produces an coefficient -j

Page 22: Fourier transform ppt

2222

Even and Odd Functions [Even and Odd Functions [33/3]/3]

Imag Even Imag plus Odd RealReal Odd Imag plusEven RealHermite Real

Odd Complex Odd Complex Even Complex Even Complex

Even Imag Even ImagOdd Imag Odd Real

Even Real Even RealOdd OddEven Even

)F( f(t)

u

)()(

Hermite* uFuF

Page 23: Fourier transform ppt

2323

The Shift TheoremThe Shift Theorem

)(

)(

)(

)(

)()(

2

2

22

)(2

2

uFe

xfFe

dxexfe

dxexf

dxeaxfaxfF

uaj

uaj

uxjuaj

axuj

uxj

)(

)()(2

2

uFe

xfFeaxfFuaj

uaj

Page 24: Fourier transform ppt

2424

The Similarity TheoremThe Similarity Theorem

1

)(1

)()(

2

2

auF

a

dxexfa

dxeaxfaxfF

xj

uxj

au

auF

aaxfF 1)(

Page 25: Fourier transform ppt

2525

The Convolution TheoremThe Convolution Theorem

gfuGuF

uGdyeyfdyuGeyf

dydteyxgyf

dxexgxfxgxfF

duutguftgtf

uyjuyj

uxj

uxj

ˆˆ)()(

)()()()(

)()(

)(*)()(*)(

)()()(*)(

22

2

2

gfgfF

gfgfF

*ˆˆ

ˆˆ*

1

Page 26: Fourier transform ppt

2626

ConvolutionConvolutionEdge detectionEdge detection

Page 27: Fourier transform ppt

2727

The Adjoint of the Fourier TransformThe Adjoint of the Fourier Transform

221

LLgFfgfF

2

2

1

1

2

2

)()(

)()(

)()(

)()(ˆ

L

uxj

uxj

L

gFf

dxxgFxf

dxdueugxf

duugdtexf

duugufgfF

Theorem: Suppose f and g er are square integrable. Then:

Proof:

Page 28: Fourier transform ppt

2828

Plancherel Formel - The Parselval’s TheoremPlancherel Formel - The Parselval’s Theorem

22

2222

paricular In 11

LL

LLLL

gfgFfF

f F[f]gfgFfF

Theorem: Suppose f and g are square integrable. Then:

Proof: 222

222

111

1

LLL

LLL

gfgfFFgFfF

gfgFFfgFfF

Page 29: Fourier transform ppt

2929

dxxf 2)(energy

duuFdxxf 22 )()(

dxxfxfdxxf )()()( *2

22

22

LL

LL

f F[f]

gfgFfF

The Rayleigh’s TheoremThe Rayleigh’s TheoremConConsservation of Energyervation of Energy

The energy of a signal in the time domain

is the same as the energy in the frequency domain

2Lf

Lf

Page 30: Fourier transform ppt

3030

The Fourier Series ExpansionThe Fourier Series Expansionu a discrete variable - Forward transformu a discrete variable - Forward transform

Tudxexfunff

dxexfdxexfuf

T

T

ujnnn

T

T

uxjuxj

1 )()(ˆˆ

)()()(ˆ

2/

2/

2

2/

2/

22

Suppose f(t) is a transient function that is zero outside the interval [-T/2,T/2] or is considered to be one cycle of a periodic function.We can obtain a sequence of coefficients by making a discrete variableand integrating only over the interval.

Page 31: Fourier transform ppt

3131

The Fourier Series ExpansionThe Fourier Series Expansionu a discrete variable - Inverse transformu a discrete variable - Inverse transform

The inverse transform becomes:

n

xT

jn

nn

xT

jn

nn

uxjnn

uxj

efTT

efueunf

duexfxf

222

2

ˆ11ˆ)(ˆ

)(ˆ)(

Tudxexfunff

T

T

ujnnn

1 )()(ˆˆ2/

2/

2

Page 32: Fourier transform ppt

3232

The Fourier Series ExpansionThe Fourier Series Expansionccnn coefficients coefficients

n

xT

jn

nn

xT

jn

nuxj ecef

Tduexfxf

222 ˆ1)(ˆ)(

2/

2/

2

2

)(1

)(

T

T

xTnj

n

n

xT

jn

n

dxexfT

c

ecxf

Tudxexfunff

T

T

ujnnn

1 )()(ˆˆ2/

2/

2

Page 33: Fourier transform ppt

3333

The Fourier Series ExpansionThe Fourier Series Expansionzznn, a, ann, b, bnn coefficients coefficients

2/

2/

2

2

)(1

)(

T

T

xTnj

n

n

xT

jn

n

exfT

c

ecxf

2/

2/

2

2222/

2/

222/

2/

2

1

0

1

22/

2/

222/

2/

20

0

22/

2/

20

22/

2/

22

)(2

)()(21)()(1

2)()(1

2

)(12

)(1)(

T

T

Txnj

nn

Txnj

nnT

xnj

nn

xTnj

T

T

tTnjx

Tnj

T

T

xTnj

n

nn

n

xTnj

T

T

xTnjx

Tnj

T

T

xTnj

nn

xTnj

T

T

xTnj

n

xTnj

T

T

xTnj

n

xT

jn

n

etfT

iba

eibaeibaedxexfedxexfT

z

zaedxexfedxexfT

a

edxexfT

a

edxexfT

ecxf

Page 34: Fourier transform ppt

3434

The Fourier Series ExpansionThe Fourier Series Expansionaann,b,bnn coefficients coefficients

2/

2/

2

22

1

0

)(2

)()(21

2)(

T

T

Txnj

nn

Txnj

nnT

xnj

nnn

nn

etfT

iba

eibaeibaz

zatf

2/

2/

2/

2/

1

0

2sin)(2

2cos)(2

2sin2cos2

)(

T

Tn

T

Tn

nnn

dxT

xnxfT

b

dxT

xnxfT

a

Txnb

Txnaaxf

Page 35: Fourier transform ppt

3535

Fourier SeriesFourier SeriesPulse trainPulse train

N = 1

N

i

xii

xf1

2)12(sin12

14)(

N = 2

N = 5

N = 10

Pulse train approximated by Fourier Serie

Page 36: Fourier transform ppt

3636

Fourier SeriesFourier SeriesPulse trainPulse train – Java program – Java program

Page 37: Fourier transform ppt

3737

Pulse Train approximated by Fourier SeriePulse Train approximated by Fourier Serie

f(x) square wave (T=2)

N=2

N=10

1

1

0

])12sin[(12

14

2sin2cos2

)(

n

nnn

xnn

Txnb

Txnaaxf

N

n

xnn

xf1

])12sin[(12

14)(

N=1

Page 38: Fourier transform ppt

3838

2 )sin(1)1(2)(

1

1

kikxik

xfN

i

i

N = 1

N = 2

N = 5

N = 10

Zig tag approximated by Fourier Serie

Fourier SeriesFourier SeriesZig tagZig tag

Page 39: Fourier transform ppt

3939

2 cos(ikx)

)((-1)4

231)(

N

1i2

i2

kik

xf

N = 1

N = 2

N = 5

N = 10

Negative sinus function approximated by Fourier Serie

Fourier SeriesFourier SeriesNegative sinus functionNegative sinus function

Page 40: Fourier transform ppt

4040

2 cos(2ikx)

1)2(12)sin(

211)(

N

1i2

ki

kxxf

N = 1

N = 2

N = 5

N = 10

Truncated sinus function approximated by Fourier Serie

Fourier SeriesFourier SeriesTruncated sinus functionTruncated sinus function

Page 41: Fourier transform ppt

4141

L

Lj

L

Lj

N

j

N

j

dxjkxxfL

b

LdxjkxxfL

a

Lkjkxjkxaxf

)sin()(1

)cos()(1

)sin(b)cos(a2

)(0

j0

j0

N = 1

N = 2

N = 5

N = 10 N = 50

Lineapproximated by Fourier Serie

Fourier SeriesFourier SeriesLineLine

Page 42: Fourier transform ppt

4242

Approximate functions by adjusting Fourier coefficients (Java program)

Fourier SeriesFourier SeriesJava program for approximating Fourier coefficientsJava program for approximating Fourier coefficients

Page 43: Fourier transform ppt

4343

The Discrete Fourier Transform - DFTThe Discrete Fourier Transform - DFTDiscrete Fourier Transform - Discretize both time and frequencyDiscrete Fourier Transform - Discretize both time and frequency

dueufxf uxj 2)(ˆ)(

ContinuousFourier transform

n

xT

jn

nefT

xf2

ˆ1)(

2/

2/

2)()(ˆT

T

uxj dxexfuf

Tunu 1u

NTttit

n

nNij

ni efT

xiff2ˆ1)(

2/

2/

2)()(ˆˆT

T

ujnn dxexfunff

iNnjN

Niin ef

NTunff

22/

2/

)(ˆˆ

Discrete frequencyFourier Serie

Discrete frequency and timeDiscrete Fourier Transform

Page 44: Fourier transform ppt

4444

The Discrete Fourier Transform - DFTThe Discrete Fourier Transform - DFTDiscrete Fourier Transform - Discretize both time and frequencyDiscrete Fourier Transform - Discretize both time and frequency

n

nNij

ni efT

xiff2ˆ1)(

iNnjN

Niin ef

NTunff

22/

2/

)(ˆˆ

{ fi } sequence of length N, taking samples of a continuous function at equal intervals

iNnjN

iin ef

Nf

21

0

nNijN

nni ef

Nf

21

0

ˆ1

Page 45: Fourier transform ppt

4545

Continuous Fourier Transform in two DimensionsContinuous Fourier Transform in two DimensionsDefDef

The Fourier transform of a two-dimentional function f(x,y)

dydxeyxfvuf vyuxj )(2),(),(ˆ

The Inverse Fourier Transform

dvduevufyxf vyuxj )(2),(ˆ),(

Page 46: Fourier transform ppt

4646

The Two-Dimensional DFT and Its InverseThe Two-Dimensional DFT and Its Inverse

1

0

1

0

)(2),(1),(ˆ

M

x

N

y

yNvx

Muj

eyxfMN

vuf

1

0

1

0

)(2),(ˆ1),(

M

x

N

y

yNvx

Muj

evufMN

yxf

Page 47: Fourier transform ppt

4747

Fourier Transform in Fourier Transform in TTwo Dimensionswo DimensionsExample 1Example 1

Page 48: Fourier transform ppt

4848

Fourier Transform in Two DimensionsFourier Transform in Two DimensionsExample 2Example 2

Page 49: Fourier transform ppt

4949

End