for gcemetric variational problems · rigidity of first variation in 150 perimetry alexandrovthm if...

22
STABILITY THEOREMS FOR GCEMETRIC VARIATIONAL PROBLEMS FRANCESCO MAGGI INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS TRIESTE MATHEMATICS COLLOQUIUM COURANT INSTITUTE NYU 2/2/2017

Upload: others

Post on 03-Jul-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: FOR GCEMETRIC VARIATIONAL PROBLEMS · rigidity of first variation in 150 perimetry alexandrovthm if e open bounded set with smooth boundary hehe such * that is constant then £ =

STABILITY THEOREMS

FOR GCEMETRIC VARIATIONAL PROBLEMS

FRANCESCO MAGGI

INTERNATIONAL CENTRE

FOR THEORETICAL PHYSICS TRIESTE

MATHEMATICS COLLOQUIUM

COURANT INSTITUTE NYU

2/2/2017

Page 2: FOR GCEMETRIC VARIATIONAL PROBLEMS · rigidity of first variation in 150 perimetry alexandrovthm if e open bounded set with smooth boundary hehe such * that is constant then £ =

THE EUCLIDEAN ISOPERIMETRIC INQ

xiIF EEIRYO(lE÷ -

Hen PCE)znwFiEi¥XiIF = HOLDS THEN E = Brlx ) FOR Some NER "

r >oXIF E 15 NOT A BALL,

WHAT INFORMATION 15 ENCODED

INTO THE SMALNESS OF

SCE ) =MEIWIHIEFIT

- 1.

Page 3: FOR GCEMETRIC VARIATIONAL PROBLEMS · rigidity of first variation in 150 perimetry alexandrovthm if e open bounded set with smooth boundary hehe such * that is constant then £ =

ALMOST ISOPCRIMETRIC SETS

SCE )=Pn!hE÷eF←In -1£80*1

Diana. Tentacles

ROUGH BOUNDARY g-'

"" . /! ,

↳ :{ ÷ =.

a÷÷¥€÷%I SMALL COMPONENTSSMALL HolesIn

, . . pm .

SHARP SPIKES

Page 4: FOR GCEMETRIC VARIATIONAL PROBLEMS · rigidity of first variation in 150 perimetry alexandrovthm if e open bounded set with smooth boundary hehe such * that is constant then £ =

THM ( FUSOM.

PRATELLIANNMATH 08 ) 7 Cln ) > o S.

T.

IF EEIRYOCIEI< A THEN FNEIR ?rso

st. MetznwFiEi¥{stein , (

EOBRKTFZ}

IEI

OR,

EQUIVALENTLY,

8 (E) 2 an ) a ( EP

lsoperlmemlc→ SCE ) = nP¥g÷eFnIn - 1

DEFICIT

Asymmetry → LCEI

=inf{#9BgKT: NEIR ?rso }

Page 5: FOR GCEMETRIC VARIATIONAL PROBLEMS · rigidity of first variation in 150 perimetry alexandrovthm if e open bounded set with smooth boundary hehe such * that is constant then £ =

THMCFUSOM .PRATELLIANNMATH 08 ) 8( E) 2 an ) & ( E )2

*EXPONENT 2 IS SHARP

SOBOLEV INEQUALITYXCONSTANT Cln ) NOT EXPLICIT

'× PROOF BY QUANTITATIVE symmetry , zqy ,o ,

) GAUSSIAN ISOPERIM .

FRACIIONAL ISOPCRIM .X.IDEA SYMMETRIZE E→E*

THEN or (E)

>_ggEµbTof| RKSZ INEQUALITY

✓UNNATURAL BY VARIOUS AUTHORS

LCE ) 2 &lE* ) >_ ccn )a( E)xIDEA SYMMETRIZC VERY GRADUALLY

1- CHOOSE RIGHT SYMMETRIES t DIMENSION INDUCTION

Page 6: FOR GCEMETRIC VARIATIONAL PROBLEMS · rigidity of first variation in 150 perimetry alexandrovthm if e open bounded set with smooth boundary hehe such * that is constant then £ =

THE WULFF INEQUALITY

xIF EEIRYO(lE÷ -

HENBCE)znlk'TlEl¥BCE )=§g4w£)dH"

y :$ " -46 ,a ) WITH convex 1- tom.

EXTENSION

K=M{ ni NNEYIV ) } =Ky OPEN BOUNDED convex set

VE 8 " ixIF = HOLDS THEN

E=xtrkFOR Some NER "

r >oxcrystalline case

¥66196'[¥⇒ x isotropic case(tBz¥€€h€E¥*

Page 7: FOR GCEMETRIC VARIATIONAL PROBLEMS · rigidity of first variation in 150 perimetry alexandrovthm if e open bounded set with smooth boundary hehe such * that is constant then £ =

THMCFIGALHM .PRATELLI WVMAT#11 )

8y(E) > an )2( E ,K )

'

where 8ytI=*¥- r & alektzn.fr IEOKTRKIn1khIEl¥ IEI

.XAGAIN EXPONENT 2 15 SHARP x.Clh ) EXPLICIT

,POLYNOMIAL IN n

×OPTIMAL MASS TRANSPORT FlfCONVEX S.

T.TV/e#tIg==.1gBReN1eR- MCCANN

Tio±

Page 8: FOR GCEMETRIC VARIATIONAL PROBLEMS · rigidity of first variation in 150 perimetry alexandrovthm if e open bounded set with smooth boundary hehe such * that is constant then £ =

THM ( FIGALHM . PRATELLIWVMATELI )

fy(E) > an ) 2 ( E ,k )

?

where attn,¥yEpg,¥ - r & Netting! lEo,k¥ktX.AGAIN EXPONENT 2 15 SHARP X.Clh ) EXPLICIT,

POLYNOMIAL IN nx.STITH

.TT#wrnFEortF4convexstty*tE==Yy

,

Eq

K Y⇐¥¥*a###""

IIIIEIIII

Page 9: FOR GCEMETRIC VARIATIONAL PROBLEMS · rigidity of first variation in 150 perimetry alexandrovthm if e open bounded set with smooth boundary hehe such * that is constant then £ =

THMCFIGALHM .PRATELLI WVMAT#11 )

fy(E) > an )2( E ,k )

"

XiOPTIMAL MASS TRANSPORT

FlfCoNVeXS.T.detD3f-lkHEgBReN1eR-MCCANNTl1MiXKNOTHe-GROM0VARcrUmenTnlklHeFtinfddettyMefoy-feuy.ueEqkEfgyludqlJyjEIlEIE@FEHTiNFtIIasx.fexy.aeHek.xTHus8ylE12f0n1.1dettiyFxf.t

iy - Idp ( IKHIED

Page 10: FOR GCEMETRIC VARIATIONAL PROBLEMS · rigidity of first variation in 150 perimetry alexandrovthm if e open bounded set with smooth boundary hehe such * that is constant then £ =

THM ( FIGALHM .PRATELLI WVMAT#11 )fy( E) > an ) 2 ( E ,k )

"

X.OPTIMAL MASS TRANSPORT FlfCONVEX S .T . detDZ= IKHE ,

BREMER - MCCANN TIM

ixoyktz§ lot -Idiz going.to/5elapialpzlEoH2

C l E ) =0 f÷ C E)zccn )Poincare Poincare

t.DE#do:tsE:0EiE:TRIMMING DOWN

LEMMA

SE

Page 11: FOR GCEMETRIC VARIATIONAL PROBLEMS · rigidity of first variation in 150 perimetry alexandrovthm if e open bounded set with smooth boundary hehe such * that is constant then £ =

A DETOUR : PLATEAU PROBLEM

€614,meNn's

am

xiNYMKHIMT whenever an.org#tM&X.Does HYK ) - NYM ) control IEI where 2E=M - Mt ?xNONUNIQUENESS j€+ §Mz€

Page 12: FOR GCEMETRIC VARIATIONAL PROBLEMS · rigidity of first variation in 150 perimetry alexandrovthm if e open bounded set with smooth boundary hehe such * that is constant then £ =

THMCDEPHIUPPISM . JDG 14 ) M SMOOTH & UNQUCLYAREAMIMMIZ .

( AMONG CURRENTS )

Ttit HYMT - HTM )zk(m)min{ IEI ? IEI "htY tdM=FF OE=M - Av

0

F&onLYF AttuMciiskm)=inf{fnheifiyifyytn ,y=ooM } >o

X SHARP EXPONCNTS 2 & n÷z ( ISOPERIMETRIC REGIME )

X CONJECTURE : IF NMKO THEN 2→k,

KEN

× WHAT ABOUT SINGULARITIES ?

Page 13: FOR GCEMETRIC VARIATIONAL PROBLEMS · rigidity of first variation in 150 perimetry alexandrovthm if e open bounded set with smooth boundary hehe such * that is constant then £ =

LAWSON Cones Mke={ ( n ,y)ElRtxlRhiln¥=lY€ } ZEKEL

IF kth 29 OR (K ,h)=( 4,4),(3,5 ) THEN UNIQUELY AREA MINIMIZING

THMCDEPHIUPPISM . JDG 14 ) IF M~nBr=M£hnBp & OE=M•a - M

THEN HTTMBP ) - NYMrenBr)zC( KHR "(k¥+ . )"

UNLESS k=2 7ehE11 OR k=3 h=5

13/8

car ,a=¥tT¥I "

⇒x( manner )zzzHey%hM(h -11312 hkuwwh

THE STABILITY OF SIMONS ONES k=h INCREASES AS h→a

Page 14: FOR GCEMETRIC VARIATIONAL PROBLEMS · rigidity of first variation in 150 perimetry alexandrovthm if e open bounded set with smooth boundary hehe such * that is constant then £ =

RIGIDITY OF FIRST VARIATION IN 150 PERIMETRY

ALEXANDROVTHM IF E OPEN BOUNDED SET WITH SMOOTH BOUNDARY

SUCH THATHeIS CONSTANT THEN £ = BALL.*He= MEAN CURVATURE ( WRT OUTER UNIT NORMALU£)

CAPILLARITY THEORY

'X Mean CURVATURE Flow ⇒ E WITHHETCONSTANT

CMC FOLIATIONS FORGEDx.CMC DEFICIT

QMDEKHTIEE- Ylcqo ,

where

H°=nPl±£ E

£( nt1 )

IEIX.REMARK IF H = CONST . THEN CONST . =

tiC

Page 15: FOR GCEMETRIC VARIATIONAL PROBLEMS · rigidity of first variation in 150 perimetry alexandrovthm if e open bounded set with smooth boundary hehe such * that is constant then £ =

SLIGHTLY PERTURBED UNDULOIDS

mm.

E H=n=HE Be

=.

MiixUNDULOIDS ARE UNBOUNDED AXIALLY SYMM . CMC SURFACESXUNDULOIDS

CONVERGETO AN ARRAY of SPHERES WITH SAME RADI )X.A TRUNCATED UNDOLOID WITH Necks = 018 ) CAN Be

"Closed

"

WITH ERROR 8cµc=O( 8)Hunton,

←n#D: loglkr )

Page 16: FOR GCEMETRIC VARIATIONAL PROBLEMS · rigidity of first variation in 150 perimetry alexandrovthm if e open bounded set with smooth boundary hehe such * that is constant then £ =

THM CIRAOLO - MCPAM 17 H£=hPl¥=n BY SCALING( html El

E Open BOUNDED C }eT ST . { PIE ) e- ( Ltn - a )P( B ,) WHERE LEN

EE ) e- Joan ,L ,a )

At 6.1 )

THEN 7G=¥, Bzlzj ) DISJOINT UNIT BALLS NEL s .T .

x.IEOGHIPIE ) -

NPCBd1ECln1dcmlFP.2eOCri1jxhdloE.aG1eundmlF5.x-0lriY@EzfxVZjFzbS.T

Ilzj- Zwl - ZIECK ) dmlFP,

2=0154

INGREDIENTS ! TORSION POTENTIAL HINTZE - KARCHER INQ POHOZAEU ID£

GLOBAL ELLIPTIC ESTIMATES ALLARD CLOSURE THM

Page 17: FOR GCEMETRIC VARIATIONAL PROBLEMS · rigidity of first variation in 150 perimetry alexandrovthm if e open bounded set with smooth boundary hehe such * that is constant then £ =

THM CIRAOLO - M CPAM 17 Heo=hPl¥=n BY SCALING( html El

E Open BOUNDED d SET 5.T . { PIE ) e- ( Ltn - a )P( Be) WHERE LEN

EE ) e- Joan , L,

a )a €6,1 )

Moreover OE Is FOR THE MOST PART A C' 't GRAPH Over [

WHERE [ = OG \ SPHERICAL CAPS WITH DIAMETERE dcmlF)? a- 0152 )

& ue CMCE) st.

OE 2 (

idtuva) ( E )

[email protected]

;gnm ' '

Page 18: FOR GCEMETRIC VARIATIONAL PROBLEMS · rigidity of first variation in 150 perimetry alexandrovthm if e open bounded set with smooth boundary hehe such * that is constant then £ =

COROLLARY ALEXANDROUTHM IS MORALLY WRONG...

COROLLARY LOCAL MINIMIZERS OF PIE )+§g ( GAUSSCAPILLARIT 's )

WITH IEI = m SMALL Are Close To SINGLE SPHERES

- ..

i

. .

REMARK GLOBALMINIMIZERS✓B✓(a)

so

ON IR "→ FIGALLI M ARMAN ( ALSO CRYSTALS ) ~ '

'

'

i.

CONTAINER → M MIHAILA CALC VAR PDE 16-

↳ De PHILIPPIS M. ARMA 14

CICALESE LEONARDI M INDIANA UMJ 17

Page 19: FOR GCEMETRIC VARIATIONAL PROBLEMS · rigidity of first variation in 150 perimetry alexandrovthm if e open bounded set with smooth boundary hehe such * that is constant then £ =

QUEST FOR SHARPNESS : SINGLE SPHERE

THMKRUMMCL . M.

IF Hf÷n , 0<24 THEN dE=KdtuUBy( FBIPCE )eH+c)P( B , ) Hullo ,×EC1n2)8

,!nF)

9k¥10 .in , -4

IN ADDITION

sosiitiouieunufatteni

RELATED TO ALMGREN ISOPERIMETRIC PRINCIPLE

Page 20: FOR GCEMETRIC VARIATIONAL PROBLEMS · rigidity of first variation in 150 perimetry alexandrovthm if e open bounded set with smooth boundary hehe such * that is constant then £ =

ALMGREN ISOPERIMETRIC PRINCIPLE

( CODIMENSION 1 VERSION )

IF Hein THEN PCE )2P( Bs )

Page 21: FOR GCEMETRIC VARIATIONAL PROBLEMS · rigidity of first variation in 150 perimetry alexandrovthm if e open bounded set with smooth boundary hehe such * that is constant then £ =

ALMGREN ISOPERIMETRIC PRINCIPLE

IF Hein THEN PCE )2P( Bs )

PCB,)=M"Copy )=f ldettyl

oa€ =s¥oat÷n%

€Ia %Ie¥t¥nH⇒etiloanot ){ MYOEKPIE )

RMKI EQUALITY HOLDS RMKZ Yes ! IT REMINDS

E⇒ E=Bdn) A Lot ABP !

Page 22: FOR GCEMETRIC VARIATIONAL PROBLEMS · rigidity of first variation in 150 perimetry alexandrovthm if e open bounded set with smooth boundary hehe such * that is constant then £ =

THM Krummel . m IF HEIN & dt )=PlE ) - PC Bs ) I ddn ) SMALLA

E Then 2E=

[email protected]

OR CONNECTED

@ fixFR*2R WITH

nzHrxiQhn@I.xlrTr1tHYortidNeciniffEIx2rtilidtuiupnlloBdwHeRen-1nuiwntnutncoeumffEtollnHfclmfAfggEfgl.a

:o) rn=z

# TRUNCATING MEAN curvatureIF A 23

BY Free BOUNDARY THEORY