fm lecture notes 5

Upload: jack-jackson

Post on 06-Jul-2018

225 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/16/2019 FM Lecture Notes 5

    1/20

    CHAPTER 4

    EULER’S EQUATION

    Engineering Fluid Mechanics 8/E by Crowe, Elger, and Roberson

    Copyright © 2005 by John Wiley & Sons, Inc !ll rights reser"ed

    Dr . Ercan Kahya

    #l$id %echanics

  • 8/16/2019 FM Lecture Notes 5

    2/20

    Review of Definitions

    • Steady flow: velocity is constant with respect to time• Unsteady flow: velocity changes with respect to time

    • Uniform flow: velocity is constant with respect to position

    • Non-uniform flow: velocity changes with respect to position

    Local acceleration:

     – change of flow velocity with respect to time

     – occurs when flow is unsteady

    • Convective acceleration:

     – change of flow velocity with respect to position

     – occurs when flow is non uniform‐

  • 8/16/2019 FM Lecture Notes 5

    3/20

    EULER’S EQUATION

    'o predict pressure variation in moving fluid

    E$ler(s E)$ation is an e*tension o+ the hydrostatic e)$ation +or

    accelerations other than gra"itational

    RES-'E. #R/% !-1I3 EW'/ SEC/. -!W '/ ! #-I.

    E-E%E' I THE FLOW OF INOM!"E##I$LE% IN&I#I' FL(I'

     !ss$4e that the "isco$s +orces are ero

  • 8/16/2019 FM Lecture Notes 5

    4/20

    EULER’S EQUATION

    lρaγsinα

    Δl

    ΔP=−−

    l l    ma F   =Σ

    lρaγz)(   =+

    ∂−   p

    n the ! direction"

    for e!ample# !ρaγz)(   =+∆

    −   p x

    !$% ρaγz)(γz)(   x p p   ∆−=+−+

    &%' and &$' refer to the location with respect to the direction l (hen l ! direction" then &%' is theright*most point+ hen l z direction" &%' is the highest point+)

    ,a-ing the limit of the two terms at left side at a given time as Δl . /

    When “a = ! " #uler e$uation reduces to hydrostatic e$uation%

    ACCELERATION IS IN THE DIRECTION OF

    DECREASING PIEZOMETRIC PRESSURE!!!

  • 8/16/2019 FM Lecture Notes 5

    5/20

    EULER’S EQUATION

      /pen tan6 is accelerated to the right at a rate a*

      #or this to occ$r 7 a net +orce 4$st act on the li)$id in the *8direction

      'o acco4plish this7 the li)$id redistrib$tes itsel+ in the tan6 9!(:(C.;

     –   ,he rise in fluid causes a greater hydrostatic force on the left than the right side

      . this is consistent with the re0uirement of &1 ma'

     – 2long the 3ottom of tan-" pressure variation is hydrostatic in the vertical direction

     !n e*a4ple o+ E$ler E)$ation is to the $ni+or4 acceleration o+ in a tan6

  • 8/16/2019 FM Lecture Notes 5

    6/20

    EULER’S EQUATION

    • &he component of acceleration in the l direction: a x

    cosα

    2pply the a3ove e0uation along 2454

    2pply the a3ove e0uation along 67

    lρaγz)(   =+∂

    ∂−   p

    α Cos ρadl 

    d  x=− γz)(

    α α 

    sin*   == g 

    Cosa

    dl 

    dz   x

     g 

    a x*tan   =α 

  • 8/16/2019 FM Lecture Notes 5

    7/20

    Ea"#$ 4.%& E'#$r’( $)'a*+,n

    'he tr$c6 carrying gasoline 9) * +,+- .N/m0 and is slo1ing do1n at a rate o+

    =05 4>s2

    ?; What is the press$re at point !@

    2; Where is the greatest press$re & at what "al$e in that point@

    lρaγz)(   =+

    ∂−   p

    Α

  • 8/16/2019 FM Lecture Notes 5

    8/20

    Solution:

     !pply E$ler(s e)$ation along the top o+ the tan67 so  is constant

     !ss$4e that deceleration is constant

    ress$re does not change with ti4elρaγz)(   =+−   p

    dl 

    lρa=−dl dp

    C l  p   +−= lρa

    )γz()γz( toptopbottombottom   p p   +=+

    ress$re "ariation is hydrostatic in the "ertical direction

     !long the top the tan6

    zρaγz)(   =+−   pdz 

    d E$ler(s e)$ation in "ertical direction<

      9ote that a A0;

  • 8/16/2019 FM Lecture Notes 5

    9/20

    Centripetal (Raial! A""eleration

    ar  A centripetal 9radial; acceleration, 4>s2

    Bt A tangential "elocity, 4>s

    r A radi$s o+ rotation, 4 A ang$lar "elocity, rad>s

    r r 

    V a t r 

    %%

    ϖ == #or a li)$id rotatingas a rigid body<

      - / r  

  • 8/16/2019 FM Lecture Notes 5

    10/20

    #ressure Distri$ution in Rotatin% &low

    When +low is rotating, +l$id le"el will rise away +ro4 the direction o+ net acceleration

    C  g r  z  p =−+

    %

    %%

    ω 

    γ  

     Pressure variation in

    rotating flow

     ! co44on type o+ rotating +low is the +low in which the +l$id rotates as a

    rigid body

     !pplying E$ler E)$ation in the direction nor4al to strea4lines and o$tward+ro4 the center o+ rotation 9O" I'E3R!'I3 E-ER ED!'I/ I 'E

    R!.I!- .IREC'I/ #/R ! R/'!'I3 #-/W; res$lts in

    ote that this is not the :erno$lli e)$ation

  • 8/16/2019 FM Lecture Notes 5

    11/20

    E'aple )*):

     g 

     z 

     p

     g 

     z 

     p

    %%

    %

    %

    %

    %%

    %

    $

    %

    $$   ω 

    γ  

    ω 

    γ   −+=−+

    #ind the ele"ation di++erencebetween point ? and 2

    p? A p2 A 0 and r ? A 0 , r 2A 0254 then F  g 

     z  z  %

    %

    %

    %

    %$

    ω 

    −=

    2 G ?A 005?4 & ote that the s$r+ace pro+ile is parabolic

  • 8/16/2019 FM Lecture Notes 5

    12/20

    #ressure Distri$ution in Rotatin% &low

     g 

    r  z 

     p

     g 

    r  z 

     p

    %%

    %

    %

    %

    %%

    %

    $

    %

    $$

      ω 

    γ  

    ω 

    γ   −+=−+

     p = pressure, Pa

    γ = specific weight, !m" z = elevation, m

    # = rotational rate, radians!second 

    r = distance from the axis of rotation

     $nother independent e%uation&

    The sum of water heights in left and

    right arms should remain unchanged 

  • 8/16/2019 FM Lecture Notes 5

    13/20

    +ernoulli E,uation

    Integrating E$ler(s e)$ation along a strea4line in a steady +low o+ an

    incompressi2le% inviscid +l$id yields t he :erno$lli e)$ation<

    C  z 

     P 

     g 

    =++ γ  %

    %

    z# Position

     p8H# Pressure head9%8%g# 9elocity head

    7# ntegral constant

  • 8/16/2019 FM Lecture Notes 5

    14/20

    Appli"ation of +ernoulli E,uation

    'ernoulli #$uation:

     ( )ie*ometric pressure :  p + γz  ( +inetic pressure :  ρV 2 /2

     ,or the steady flow of incompressile fluid inviscid fluid

    the sum of these is constant along a streamline

  • 8/16/2019 FM Lecture Notes 5

    15/20

    A""#+ca*+,n ,0 1$rn,'##+ E)'a*+,n& S*a2na*+,n T'3$

    γ 

    +=

    γ 

    + %%%$

    %$  p

    g%

    9 p

    g%

    9

    )(%

    $%

    %

    $   P  P V    −= ρ 

    )(P  %$   d l d  P    +==   γ  γ  

    ))((%%

    $   d d l V    γ  γ  

     ρ 

    −+=

     gl V  %$  =

  • 8/16/2019 FM Lecture Notes 5

    16/20

    Sta%nation Tu$e

     

     p$ 8 γ  

     p%8γ  

    ∆h)9% 8%g

    $ %

    γ +=

    γ + %

    %%$

    %$  p

    g%

    9 p

    g%

    9

    hg% p p

    g%9   $%$   ∆=   

      

     γ −

    =

    9%/ : z$  z%

  • 8/16/2019 FM Lecture Notes 5

    17/20

    Appli"ation of +ernoulli E,uation: #itot Tu$e

     

    %

    $

    h$

  • 8/16/2019 FM Lecture Notes 5

    18/20

    -ENTURI .ETER

    'he Bent$ri 4eter de"ice 4eas$res the +low rate or "elocity o+ a +l$id thro$gh a pipe 'he

    e)$ation is based on the :erno$lli e)$ation, conser"ation o+ energy, and the contin$ity

    e)$ation

    S,#$ 0,r 0#,5 ra*$

    S,#$ 0,r "r$(('r$ 6+00$r$n*+a#

    http://www.ajdesigner.com/venturi/venturiflow.phphttp://www.ajdesigner.com/venturi/venturi_pressure_differential.php

  • 8/16/2019 FM Lecture Notes 5

    19/20

    Class E'er"ises: 9roble4 2;

  • 8/16/2019 FM Lecture Notes 5

    20/20

    Class E'er"ises: 9roble4 5;