fluoride-free synthesis of anatase tio2 crystals rich in (001) facets in the presence of cationic...

4
Chinese Journal of Catalysis 34 (2013) 2004–2008 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/chnjc Communication (Dedicated to Professor Yi Chen on the occasion of his 80th birthday) Fluoridefree synthesis of anatase TiO 2 crystals rich in (001) facets in the presence of cationic polymer Weiwei Chang, Yan Liu, Qi Sun, Xiangju Meng *, Feng‐Shou Xiao # Department of Chemistry, Zhejiang University, Hangzhou 310028, Zhejiang, China ARTICLE INFO ABSTRACT Article history: Received 14 June 2013 Accepted 16 August 2013 Published 20 November 2013 Controllable syntheses of anatase TiO2 rich in (001) facets have attracted much attention because of the excellent photocatalytic activity of this material in dye degradation. These syntheses are nor‐ mally performed in the presence of fluoride, which is environmentally unfriendly. In this study, anatase TiO2 crystals rich in (001) facets were successfully synthesized in the presence of a cationic polymer and characterized using X‐ray diffraction, scanning electron and transmission electron microscopies, and ultraviolet‐visible spectroscopy. Photocatalytic tests showed that this material is very active in the degradation of methyl orange compared with conventional anatase TiO2 crystals and a commercial P25 photocatalyst. The high activity is attributed to the rich (001) facets transla‐ tion. © 2013, Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved. Keywords: Anatase titanium (001) facets Solvothermal synthesis Cationic polymer High photocatalytic activity Anatase TiO2 crystals have been extensively studied because of their wide range of applications in photocatalysis [1], solar energy conversion [2], photonic devices [3], and sensors [4]. Generally, the (001) facets of anatase TiO2 crystals are consid‐ ered to be very active in photocatalysis [5]. However, it is very difficult to synthesize anatase TiO2 crystals rich in (001) facets because of the high surface energy. The most exposed surface of anatase TiO2 crystals is the thermodynamically stable (101) facet, which can account for more than 94% of the total crystal surface in conventional anatase TiO2 crystals [6]. There is therefore great interest in the development of controllable syntheses of anatase TiO2 crystals rich in (001) facets. Since a breakthrough in synthesizing anatase TiO2 crystals with a large percentage of (001) facets in the presence of fluo‐ ride species was made [7], much effort has been devoted to developing new routes for preparing anatase TiO2 crystals rich in (001) facets in the presence of fluoride species [8–13]. For example, Alivov et al. [8] reported transformation of TiO2 nanotubes to pyramid‐shaped TiO2 nanoparticles with a high percentage of (001) facets in the presence of fluoride species, and Han et al. [13] successfully synthesized TiO2 nanosheets with a high percentage of exposed (001) facets in the presence of a highly concentrated HF solution. Despite much encourag‐ ing progress in recent years, the synthesis of anatase TiO2 crystals rich in (001) facets still requires the presence of fluo‐ ride species; these are highly toxic and corrosive in the gas or liquid state. It is therefore highly desirable to develop a new synthetic strategy for the fluoride‐free synthesis of anatase TiO2 crystals rich in (001) facets. In this paper, we report a new fluoride‐free synthesis of an‐ atase TiO2 crystals rich in (001) facets in the presence of a cat‐ ionic polymer (poly(diallyldimethylammonium chloride), * Corresponding author. Tel: +86‐571‐88273698; E‐mail: [email protected] # Corresponding author. Tel: +86‐571‐88273282; E‐mail: [email protected] This work was supported by the National Natural Science Foundation of China (U1162201 and 21003107), the National High Technology Research and Development Program of China (2013AA065301), the Science and Technology Innovative Team of Zhejiang Province (2012R10014‐01), and the Fundamental Research Funds for the Central Universities (2013XZZX001). DOI: 10.1016/S1872‐2067(12)60679‐2 | http://www.sciencedirect.com/science/journal/18722067 | Chin. J. Catal., Vol. 34, No. 11, November 2013

Upload: feng-shou

Post on 30-Dec-2016

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Fluoride-free synthesis of anatase TiO2 crystals rich in (001) facets in the presence of cationic polymer

ChineseJournalofCatalysis34(2013)2004–2008 

a v a i l a b l e   a t  www . s c i e n c e d i r e c t . c om  

j o u r n a l   h omep a g e :  www . e l s e v i e r . c om / l o c a t e / c h n j c

Communication (Dedicated to Professor Yi Chen on the occasion of his 80th birthday) 

Fluoride‐freesynthesisofanataseTiO2crystalsrichin(001)facetsinthepresenceofcationicpolymer

WeiweiChang,YanLiu,QiSun,XiangjuMeng*,Feng‐ShouXiao#DepartmentofChemistry,ZhejiangUniversity,Hangzhou310028,Zhejiang,China

A R T I C L E I N F O  

A B S T R A C T

Articlehistory:Received14June2013Accepted16August2013Published20November2013

ControllablesynthesesofanataseTiO2richin(001)facetshaveattractedmuchattentionbecauseoftheexcellentphotocatalyticactivityof thismaterial indyedegradation.Thesesynthesesarenor‐mally performed in the presence of fluoride,which is environmentally unfriendly. In this study,anataseTiO2crystalsrichin(001)facetsweresuccessfullysynthesizedinthepresenceofacationicpolymer and characterized using X‐ray diffraction, scanning electron and transmission electronmicroscopies,andultraviolet‐visiblespectroscopy.PhotocatalytictestsshowedthatthismaterialisveryactiveinthedegradationofmethylorangecomparedwithconventionalanataseTiO2crystalsandacommercialP25photocatalyst.Thehighactivityisattributedtotherich(001)facetstransla‐tion.

©2013,DalianInstituteofChemicalPhysics,ChineseAcademyofSciences.PublishedbyElsevierB.V.Allrightsreserved.

Keywords:Anatasetitanium(001)facetsSolvothermalsynthesisCationicpolymerHighphotocatalyticactivity

 

AnataseTiO2crystalshavebeenextensivelystudiedbecauseof theirwiderangeofapplications inphotocatalysis [1], solarenergy conversion [2], photonic devices [3], and sensors [4].Generally,the(001)facetsofanataseTiO2crystalsareconsid‐eredtobeveryactiveinphotocatalysis[5].However,itisverydifficulttosynthesizeanataseTiO2crystalsrichin(001)facetsbecauseofthehighsurfaceenergy.ThemostexposedsurfaceofanataseTiO2crystalsisthethermodynamicallystable(101)facet,whichcanaccountformorethan94%ofthetotalcrystalsurface in conventional anatase TiO2 crystals [6]. There istherefore great interest in the development of controllablesynthesesofanataseTiO2crystalsrichin(001)facets.

Sinceabreakthrough in synthesizinganataseTiO2 crystalswithalargepercentageof(001)facetsinthepresenceoffluo‐ride species was made [7], much effort has been devoted todevelopingnewroutesforpreparinganataseTiO2crystalsrich

in (001) facets in thepresenceof fluoride species [8–13].Forexample, Alivov et al. [8] reported transformation of TiO2nanotubes to pyramid‐shaped TiO2 nanoparticleswith a highpercentageof (001) facets in thepresenceof fluoridespecies,and Han et al. [13] successfully synthesized TiO2 nanosheetswithahighpercentageofexposed(001)facetsinthepresenceofahighlyconcentratedHFsolution.Despitemuchencourag‐ing progress in recent years, the synthesis of anatase TiO2crystalsrichin(001)facetsstillrequiresthepresenceof fluo‐ridespecies;thesearehighlytoxicandcorrosiveinthegasorliquid state. It is therefore highly desirable to develop a newsynthetic strategy for the fluoride‐free synthesis of anataseTiO2crystalsrichin(001)facets.

Inthispaper,wereportanewfluoride‐freesynthesisofan‐ataseTiO2crystalsrichin(001)facetsinthepresenceofacat‐ionic polymer (poly(diallyldimethylammonium chloride),

*Correspondingauthor.Tel:+86‐571‐88273698;E‐mail:[email protected] #Correspondingauthor.Tel:+86‐571‐88273282;E‐mail:fsxiao@zju.edu.cnThisworkwassupportedbytheNationalNaturalScienceFoundationofChina(U1162201and21003107),theNationalHighTechnologyResearchandDevelopmentProgramofChina(2013AA065301),theScienceandTechnologyInnovativeTeamofZhejiangProvince(2012R10014‐01),andtheFundamentalResearchFundsfortheCentralUniversities(2013XZZX001). DOI:10.1016/S1872‐2067(12)60679‐2|http://www.sciencedirect.com/science/journal/18722067|Chin.J.Catal.,Vol.34,No.11,November2013

Page 2: Fluoride-free synthesis of anatase TiO2 crystals rich in (001) facets in the presence of cationic polymer

WeiweiChangetal./ChineseJournalofCatalysis34(2013)2004–2008

PDDA‐Cl).Interestingly,theobtainedmaterialisveryactiveinthe photocatalytic degradation of methyl orange (MO) com‐pared with conventional anatase TiO2 crystals and the com‐mercialP25photocatalyst.

InatypicalsynthesisofanataseTiO2crystalsrichin(001)facets,4mmolof titaniumtetrabutoxide(Aladin)wereaddeddropwise to 30mL of ethanol. After stirring for 4 h, 1.5 g ofPDDA‐Cl were added. Then the mixture was continuouslystirred overnight at room temperature and transferred to aTeflon‐lined stainless‐steel autoclave. After crystallization at160Cfor4d,theproductswereseparatedbycentrifugation,washedwithdeionizedwater,anddriedat100Cfor1h.Aftercalcinationat550C,anataseTiO2crystalsrichin(001)facetswerefinallyobtained;thiswasdesignatedTiO2‐P.

Figure1(a)showsX‐raydiffraction(XRD)patternsofsam‐ples synthesized in thepresenceorabsenceofPDDA‐Cl.BothsampleshavepeaksindexedtoanataseTiO2crystals(JCPDSNo.21‐1272). Interestingly, theultraviolet‐visible (UV‐Vis)diffusereflectance spectrumofTiO2‐P synthesized in thepresenceofPDDA‐ClshowsstrongerabsorptioninboththeUVandvisibleregionsthanthoseofTiO2crystalssynthesizedintheabsenceof PDDA‐Cl (Fig. 1(b)). This is in good agreementwith previ‐ouslyreportedresults[14–16]andisattributedtodifferencesamongthesamplemorphologies.

Figure 2 shows scanning electron microscopy (SEM) andtransmission electron microscopy (TEM) images of variousTiO2 samples. The SEM images of the TiO2‐P sample showwell‐defined rectangular crystals with side lengths of about1.2–1.5mandthicknessesofabout0.5m.AccordingtothesymmetryofanataseTiO2crystals,forasingletruncatedpyra‐midineachanataseTiO2crystal,thetopflatandsquaresurfaceshouldbe (001) facets, and the isosceles trapezoidal surfacesshouldbe(101)facets.Figure2(c)showsahigh‐magnification

TEMimageofTiO2‐Pviewedfromthetop(theinsetisthefastFouriertransform(FFT)pattern);theobservedsetsoflatticesoriented perpendicular to each other with an equal fringespacingof0.19nmareingoodagreementwiththe(200)and(020)planesofanataseTiO2[17,18].Thisimageshowsatypi‐caltopviewof(001)facetsonanataseTiO2.Basedontheabove

20 30 40 50 602/( o )

Inte

nsit

y

(1)

(2)

(101

)

(004

)

(200

)

(105

)(2

11)

(213

)

(a)

200 300 400 500 600 700 800

0.0

0.3

0.6

0.9

1.2

1.5

(1)

Wavelength (nm)

(2)

Abs

orba

nce

(b)(a)

Fig.1.XRDpatterns(a)andUV‐Visspectra(b)ofTiO2crystalssynthe‐sizedintheabsence(1)andpresence(2)ofPDDA‐Cl.

Fig.2.SEM(a,b)andTEM(c)imagesofTiO2‐Psample(insetisthecorrespondingFFTpatternof(c));SEM(d)andTEM(e,f)imagesofTiO2samplesynthesizedintheabsenceofPDDA‐Cl.

(d)

20 nm

50 nm

(e) (f)

(a) (b) (c)

Page 3: Fluoride-free synthesis of anatase TiO2 crystals rich in (001) facets in the presence of cationic polymer

WeiweiChangetal./ChineseJournalofCatalysis34(2013)2004–2008

structural information, the percentage of highly active (001)facetsintheTiO2‐Psamplewasestimatedtobeashighas72%.In contrast, the TiO2 sample synthesized in the absence ofPDDA‐Cl ismainlycomposedofsphericalcrystalsofdiameter3–5m(Fig.2(d)).TheTEMimageofthesampleshowsalat‐ticespacingofabout0.35nm,whichisconsistentwiththatofthe(101)facets(Fig.2(f)).

ThedegradationofMOwaschosenasamodeltodeterminethephotocatalyticactivityof theTiO2‐Psample;commerciallyavailableP25(averageparticlesize25nm)wasusedasaref‐erenceforcomparison.ThephotocatalyticactivityoftheTiO2‐PsampleismuchhigherthanthatofTiO2synthesizedintheab‐senceofPDDA‐Cl,andevenhigherthanthatofthecommercialP25 catalyst, as shown in Fig. 3(a). The anatase phase is thesame(Fig.1(a))andthesurfaceareasaresimilarfortheTiO2‐P(48m2/g)andconventionalTiO2(38m2/g),sothemuchhigheractivityofTiO2‐PthanthatofconventionalTiO2isattributedtothemuchlargernumberofexposed(001)facetsintheTiO2‐Pcrystals.TheTiO2 crystals rich in (001) facetsareveryactiveforMOdegradationcomparedwithconventionalTiO2.ItisalsoworthmentioningthattheTiO2‐Psamplehadverygoodrecy‐clability.Whenthesamplewasrecycledfourtimes,thesampleactivitywasstillcomparablewiththatofthefreshcatalyst(Fig.3(b)).

TheroleofPDDA‐ClinthesynthesisofTiO2crystalsrichin(001)facetscanbeexplainedbyinteractionsofsurfaceTispe‐cieswithPDDA‐Clasaresultofelectrostaticcoulombicforces,giving Ti4+‐Cl−‐PDDA+. Similar interactions have been widelyobservedintheassemblyofcationicsurfactants,chlorides,andinorganic cations in the synthesis of mesoporous materials[19–21].Because theamountof exposedTion the (001) sur‐face is twice that on the (101) surface, PDDA‐Cl species aremore likely to be adsorbed on the (001) surface, leading tosuppressionofgrowthinthe(001)crystaldirection[22].Asaresult, the TiO2‐P sample is rich in photocatalytically active(001)facets.

In summary, we successfully synthesized anatase TiO2‐Pcrystalsrichin(001) facets in thepresenceofPDDA‐ClunderF‐freeconditions.TheactivityoftheTiO2‐PinMOdegradation

ismuchhigher thanthoseofconventionalTiO2crystalsandacommercial P25 catalyst. The controllable synthesis of oxideswith preferred crystal facets usingPDDA‐Cl is potentially im‐portantforthefuturedesignandpreparationoffunctionalox‐idematerials.

References

[1] AsahiR,MorikawaT,OhwakiT,AokiK,TagaY.Science,2001,293:269

[2] ChenDH,HuangFZ,ChengYB,CarusoRA.AdvMater,2009,21:2206

[3] ChenJIL,VonFreymannG,ChoiSY,KitaevV,OzinGA.AdvMater,2006,18:1915

[4] TangH,PrasadK, SanjinésR, LévyF.SensorsActuatorsB, 1995,26:71

[5] LiuM,PiaoLY,ZhaoL,JuST,YanZJ,HeT,ZhouCL,WangWJ.ChemCommun,2010,46:1664

[6] DieboldU.SurfSciRep,2003,48:53[7] YangHG,SunCH,QiaoSZ,ZouJ,LiuG,SmithSC,ChengHM,Lu

GQ.Nature,2008,453:638[8] AlivovY,FanZY.JPhysChemC,2009,113:12954[9] LiuSW,YuJG,JaroniecM.JAmChemSoc,2010,132:11914[10] XiangQJ,YuJG.ChinJCatal,2011,32:525[11] LüKL,ChengB, Yu J G, LiuG.PhysChemChemPhys, 2012, 14:

5349[12] YangHG,LiuG,QiaoSZ,SunCH,JinYG,SmithSC,ZouJ,ChengH

M,LuGQ.JAmChemSoc,2009,131:4078[13] HanXG,KuangQ,JinMS,XieZX,ZhengLS.JAmChemSoc,2009,

131:3152[14] Wang C, Deng Z X, Zhang GH, Fan S S, Li Y D.PowderTechnol,

2002,125:39[15] GuoYG,HuJS,LiangHP,WanLJ,BaiCL.AdvFunctMater,2005,

15:196[16] WangYW,ZhangLZ,DengKJ,ChenXY,ZouZJ.JPhysChemC,

2007,111:2709[17] JungMH,ChuMJ,KangMG.ChemCommun,2012,48:5016[18] FangWQ,YangXH,ZhuHJ,LiZ,ZhaoHJ,YaoXD,YangHG.J

MaterChem,2012,22:22082[19] HuoQS,MargoleseDI,CleslaU,FengPY,GlerTE,SiegerP,Leon

R,PetroffPM,SchüthF,StuckyGD.Nature,1994,368:317[20] HuoQS,MargoleseDI,CieslaU,DemuthDG,FengPY,GierTE,

0 5 10 15 20 250.0

0.2

0.4

0.6

0.8

1.0

(4)

(3)

(2)

(1)

C/C

0

Time (min)

(a)

0 20 40 60 80 100 1200.0

0.2

0.4

0.6

0.8

1.0

cycle 5cycle 4cycle 3cycle 2

C/C

0

Time (min)

cycle 1

(b)

Fig.3.(a)PhotocatalyticpropertiesofvariousTiO2samplesinMOdegradationunderUVirradiation(MO,C0=10mg/L).(1)Blank;(2)TiO2synthe‐sizedintheabsenceofPDDA‐Cl;(3)P25;(4)TiO2‐P.(b)RecyclabilityoftheTiO2‐Psample.

Page 4: Fluoride-free synthesis of anatase TiO2 crystals rich in (001) facets in the presence of cationic polymer

WeiweiChangetal./ChineseJournalofCatalysis34(2013)2004–2008

SiegerP,FirouziA,ChmelkaBF,SchüthF,StuckyGD.ChemMater,1994,6:1176

[21] XiaoFS,WangLF,YinCY,LinKF,DiY,LiJX,XuRR,SuDS,Schl‐

glR,YokoiT,TatsumiT.AngewChemIntEd,2006,45:3090 [22] ZhaoWN,LinHX,LiY,ZhangYF,HuangX,ChenWK.JNatGas

Chem,2012,21:544

GraphicalAbstract

Chin.J.Catal.,2013,34:2004–2008 doi:10.1016/S1872‐2067(12)60679‐2

Fluoride‐freesynthesisofanataseTiO2crystalsrichin(001)facetsinthepresenceofcationicpolymer

WeiweiChang,YanLiu,QiSun,XiangjuMeng*,Feng‐ShouXiao*ZhejiangUniversity

AnataseTiO2 crystals rich in (001) facetswere successfully synthesized in thepresenceofacationicpolymerunder fluoride‐freeconditions.Thecrystalshadhighphotocatalyticactivityandgoodrecyclability.

TiO2-P rich in (001) facets

0 5 10 15 20 250.0

0.2

0.4

0.6

0.8

1.0

TiO2 -P P25

conventional TiO2C

/Co

T im e (m in)

0 5 10 15 20 250.0

0.2

0.4

0.6

0.8

1.0