fluidisation pneumatic/hydraulic conveying · fluid & particulate systems fluid &...

37
Fluid & Particulate Systems 424521 / 2010 Fluid & Particulate Systems ÅA 424521 / 2018 Fluid and Particulate Systems 424521 /2018 FLUIDISATION PNEUMATIC/HYDRAULIC CONVEYING Ron Zevenhoven ÅA Thermal and Flow Engineering [email protected] 6 Fluid & Particulate Systems 424521 / 2010 Fluid & Particulate Systems ÅA 424521 / 2018 6.1 Fluidised beds (FBs) : basic features Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland RoNz 2 april 2018

Upload: phungnhu

Post on 12-Sep-2018

225 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: FLUIDISATION PNEUMATIC/HYDRAULIC CONVEYING · Fluid & Particulate Systems Fluid & ParticulateSystems 424521 / 2010 ÅA 424521 / 2018 Fluidisation The individual particles in a fluidisedbed

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flu

id &

Par

ticu

late

Sys

tem

A 4

2452

1 /

201

8

Fluid and Particulate Systems 424521 /2018

FLUIDISATION

PNEUMATIC/HYDRAULIC CONVEYING

Ron ZevenhovenÅA Thermal and Flow Engineering

[email protected]

6F

luid

& P

artic

ulat

eS

yste

ms

4245

21 /

201

0F

luid

& P

arti

cula

teS

yste

ms

ÅA

424

521

/ 2

018

6.1 Fluidised beds (FBs) :basic features

Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

RoNz 2april 2018

Page 2: FLUIDISATION PNEUMATIC/HYDRAULIC CONVEYING · Fluid & Particulate Systems Fluid & ParticulateSystems 424521 / 2010 ÅA 424521 / 2018 Fluidisation The individual particles in a fluidisedbed

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flu

id &

Par

ticu

late

Sys

tem

A 4

2452

1 /

201

8

april 2018 Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

3

Fluidised beds: basics

Bubbling fluidised

bedBR98

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flu

id &

Par

ticu

late

Sys

tem

A 4

2452

1 /

201

8

FluidisationPhenomenon when solid particles are exposed to an up-going gas (or liquid) flow. When the gas velocity in a packed bed is increased to a level at which the pressure loss corresponds to the bed gravity, the bed expands and the particles will draw away from each other. The bed has then turned from a packed bed into a fluidised bed. The increased void fraction enables the gas to easier pass through, and a kind of equilibrium is attained.

A fluidised bed combustorapril 2018 RoNz 4Åbo Akademi University - Värme- och Strömningsteknik

Biskopsgatan 8, FI-20500 Åbo / Turku Finland

Page 3: FLUIDISATION PNEUMATIC/HYDRAULIC CONVEYING · Fluid & Particulate Systems Fluid & ParticulateSystems 424521 / 2010 ÅA 424521 / 2018 Fluidisation The individual particles in a fluidisedbed

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flu

id &

Par

ticu

late

Sys

tem

A 4

2452

1 /

201

8Fluidisation

The individual particles in a fluidised bed are in constant motion, colliding witheach other and with the walls of the vessel. Different flow types occur in fluidised beds and spouting beds.

spoutingbed

increasing gas velocity

april 2018 RoNz 5Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flu

id &

Par

ticu

late

Sys

tem

A 4

2452

1 /

201

8

Liquid-like behaviour

For visual purposes.

april 2018 RoNz 6Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

Page 4: FLUIDISATION PNEUMATIC/HYDRAULIC CONVEYING · Fluid & Particulate Systems Fluid & ParticulateSystems 424521 / 2010 ÅA 424521 / 2018 Fluidisation The individual particles in a fluidisedbed

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flu

id &

Par

ticu

late

Sys

tem

A 4

2452

1 /

201

8Fluidisation

Advantages:- good mixing of the particles → fairly uniform concentration and temperature- the vessel of well-mixed solids represents a large thermal flywheel that resists temperature changes- large contact surface between particles and gas → efficient heat and mass transfer, resulting in fast chemical reactions- constantly fresh particle surface due to abrasion- in certain cases, easy to handle due to the liquid like behavior of the gas-particle suspension

Disadvantages:- may need high fan power- particles may sometimes crumble too fast, sometimes get lumped together to an agglomerate, which can be difficult to fluidize- difficult to realize the principle of counter flow- erosion of the vessel and pipes can be big- expensive to regain particles (and powder)- inefficient contacting between gas and particles in bubbling beds of fine particles- rapid mixing cause non-uniform residence times of solids

april 2018 RoNz 7Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

Simplified model:Solid phase = perfectly mixedFluid phase = in plug flow

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flu

id &

Par

ticu

late

Sys

tem

A 4

2452

1 /

201

8

Fluidised beds: applicationIndustrial examples:- drying- synthesis reactors- cracking- metallurgical processes- gasification of hydrocarbon and coke- FBC: combustion of solid fuels

(with SO2-capturing limestone)- polymerisation

april 2018 RoNz 8Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

Page 5: FLUIDISATION PNEUMATIC/HYDRAULIC CONVEYING · Fluid & Particulate Systems Fluid & ParticulateSystems 424521 / 2010 ÅA 424521 / 2018 Fluidisation The individual particles in a fluidisedbed

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flu

id &

Par

ticu

late

Sys

tem

A 4

2452

1 /

201

8Design considerations

1. Can the fluidised bed process be realized?

2. Pressure loss in order to evaluate the needed fan power.

3. Porosity (voidage) from the measurement of the vertical pressure profile.

4. Minimum fluidisation velocity required to transform the packed bed into a fluidised bed.

5. Terminal velocity of the particles in order to clarify when significant entrainment occurs.

6. Dimensional analysis for evaluating experimental and industrial fluidisationConditions: scale-up

april 2018 RoNz 9Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flu

id &

Par

ticu

late

Sys

tem

A 4

2452

1 /

201

8

Geldart’s FB classificationThe first step in designing a fluidisation process is to clarify if it can be realizedwith the particles and gas in question. The particle diameter and density, as wellas the gas density, will tell what kind of fluidizing behavior can be expected.

Cohesive: difficult to fluidize due to cohesion

example: cement

Aeratable: bubble free velocity range exists

example: cracking catalyst

Sand-like: bubbles occur almostimmediately

example: construction sand

Spoutable: can be fluidised in aspouting bed, poormixing

example: coffee beans

Geldart’s classification of powders at room temperature and atmospheric pressure (derived for ambient air….)

april 2018 RoNz 10Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

Page 6: FLUIDISATION PNEUMATIC/HYDRAULIC CONVEYING · Fluid & Particulate Systems Fluid & ParticulateSystems 424521 / 2010 ÅA 424521 / 2018 Fluidisation The individual particles in a fluidisedbed

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flu

id &

Par

ticu

late

Sys

tem

A 4

2452

1 /

201

8

april 2018 Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

11

Fluidisation regimes

and Geldart’s

classification

KL91

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flu

id &

Par

ticu

late

Sys

tem

A 4

2452

1 /

201

8

april 2018 Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

12

Vertical particle concentration

(“density”) profiles for various

fluidisation regimes

KL91

Page 7: FLUIDISATION PNEUMATIC/HYDRAULIC CONVEYING · Fluid & Particulate Systems Fluid & ParticulateSystems 424521 / 2010 ÅA 424521 / 2018 Fluidisation The individual particles in a fluidisedbed

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flu

id &

Par

ticu

late

Sys

tem

A 4

2452

1 /

201

8

6.2 FB Pressure drop

Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

RoNz 13april 2018

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flu

id &

Par

ticu

late

Sys

tem

A 4

2452

1 /

201

8

Pressure drop

distributor (perforatedsupport plate)

bed

How much fan power will be needed? The amount can be calculated from the press loss of the air distributor and the bed: power ≈ flow * pressure drop.

air inlet distributoror ”windbox”

The pressure drop over the air distributor that is required for uniform fluidisation is of the order of 0.2-1 times the pressure drop over the bed. Usually lowest pressure drop in circulating fluidised beds; highest in bubbling beds.

april 2018 RoNz 14Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

Page 8: FLUIDISATION PNEUMATIC/HYDRAULIC CONVEYING · Fluid & Particulate Systems Fluid & ParticulateSystems 424521 / 2010 ÅA 424521 / 2018 Fluidisation The individual particles in a fluidisedbed

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flu

id &

Par

ticu

late

Sys

tem

A 4

2452

1 /

201

8Pressure loss in the distributor

2

2holeg

distrloss,

wp d

g

gholedRe

dw

d

The pressure loss in an distributor can be calculated with a similar theory as used for connections in parallel: one opening several / many

d

11.2

Red ζd

100 2.163

300 2.041

500 2.163

1000 2.441

2000 2.687

>3000 2.777

april 2018 RoNz 15Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flu

id &

Par

ticu

late

Sys

tem

A 4

2452

1 /

201

8

Pressure loss across the bed

The pressure loss in a packed bed is proportional to w1…2, but when the velocity is so high that the bed becomes fluidised, the pressure loss is more or less constant. The well aerated gas-solid suspension can then easily deform without appreciable resistance, like a liquid. The pressure required for injection of a gas at the bottom is roughly the static pressure of the gas-solid suspension, and is independent of the gas flow rate.

w is the superficialgas velocity

Pressure drop in a fluidised bed.

april 2018 RoNz 16Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

Useful for determining umf

Page 9: FLUIDISATION PNEUMATIC/HYDRAULIC CONVEYING · Fluid & Particulate Systems Fluid & ParticulateSystems 424521 / 2010 ÅA 424521 / 2018 Fluidisation The individual particles in a fluidisedbed

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flu

id &

Par

ticu

late

Sys

tem

A 4

2452

1 /

201

8

april 2018 Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

17

Pressure drop vs. velocity:

fixed fluidised bed

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flu

id &

Par

ticu

late

Sys

tem

A 4

2452

1 /

201

8

Pressure drop across the bed

buoyancygravitydrag FFF

gVgmF pgpdrag

gVgVF pgppdrag

The theoretical constant pressure loss in a fluidised bed can be derived whenbalancing the forces that act on a non-accelerating particle in equilibrium state.

Fdrag

Fbuoyancy

Fgravity

gVgVF )1()(1)( gpdrag

ghghA

F )1(1 gp

cs

drag

ghAghAF )1()(1)( csgcspdrag

gploss 1 hgpapril 2018 RoNz 18Åbo Akademi University - Värme- och Strömningsteknik

Biskopsgatan 8, FI-20500 Åbo / Turku Finland

Page 10: FLUIDISATION PNEUMATIC/HYDRAULIC CONVEYING · Fluid & Particulate Systems Fluid & ParticulateSystems 424521 / 2010 ÅA 424521 / 2018 Fluidisation The individual particles in a fluidisedbed

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flu

id &

Par

ticu

late

Sys

tem

A 4

2452

1 /

201

8Non-spherical particles

dpV

V

The bed is usually made up of non-spherical particles and for comparison it is most convenient to derive an equivalent spherical diameter dp, which is defined as the diameter of a equivalent sphere, which have the same volume as the non-spherical particle that the bed is made up of.

In empirical equations (e.g. Ergun equation) it is, however, the particle surface area that is important for evaluating the frictional resistance to gas flow and the heterogeneous chemical reactions. The form factor or shape factor 0 ≤ Ψ ≤ 1 is then used, and it is defined as the surface area of the equivalent sphere divided by the surface area of the actual particle that the bed is made up of.

april 2018 RoNz 19Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flu

id &

Par

ticu

late

Sys

tem

A 4

2452

1 /

201

8

Pressure loss across the bedThe buoyancy force Fbuoyancy can in practical cases be neglected and the pressure loss of the fluidised bed can be estimated if the weight of the particles is known.

The packed bed porosity ε is then needed and can be derived by an Experimental approximate formula or from a diagram,

376.0

42.0

where the shape factor, or sphericity Ψ is the surface area of an equivalent sphere (equal volume as the particle) divided by the surface of the actual particle that the bed is made up of (≤1).

Fluidisation Engineering, KL91

april 2018 RoNz 20Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

Page 11: FLUIDISATION PNEUMATIC/HYDRAULIC CONVEYING · Fluid & Particulate Systems Fluid & ParticulateSystems 424521 / 2010 ÅA 424521 / 2018 Fluidisation The individual particles in a fluidisedbed

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flu

id &

Par

ticu

late

Sys

tem

A 4

2452

1 /

201

8Pressure drop across the bed

Be aware of difference between pressure drop (or loss) and (static) pressure difference.

april 2018 RoNz 21Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

For gas fluidised beds: the gas flow in excess of what is needed for fluidisation forms bubbles

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flu

id &

Par

ticu

late

Sys

tem

A 4

2452

1 /

201

8

Pressure distribution (vertical)

loss1g10g0 pzgpzgp

The pressure balance for the fluid can be written (neglecting changes in the kinetic energy),

and combining it with the expression for the pressure loss in fluidised beds

gploss 1 hgp

gives the particle concentration (or gas concentration, i.e. porosity ε) at different heights in the fluidised bed when the pressure is measured.

11.3

Note that the fluid can in certain cases be a liquid, with a high density that affects the pressure balance

april 2018 RoNz 22Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

Page 12: FLUIDISATION PNEUMATIC/HYDRAULIC CONVEYING · Fluid & Particulate Systems Fluid & ParticulateSystems 424521 / 2010 ÅA 424521 / 2018 Fluidisation The individual particles in a fluidisedbed

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flu

id &

Par

ticu

late

Sys

tem

A 4

2452

1 /

201

8Minimum fluidisation velocity

p

2bedpackedloss,

2 d

wK

h

p

5.31

Re

3001

p3

K

wmf is the velocity when a packed bed is turned into a fluidised bed. It can be derived from the expression for pressure loss in packed beds,

and the expression for pressure loss in fluidised beds,

gpbedfluidizedloss, 1 hgp

These expressions are set equal and w is solved for. Both expressions canadditionally be utilized for evaluating the bed expansion (uniform porosity ε)at w > wmf.

11.4april 2018 RoNz 23Åbo Akademi University - Värme- och Strömningsteknik

Biskopsgatan 8, FI-20500 Åbo / Turku Finland

Ergun for packed bed:General:

Interesting:independentof particle size!

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flu

id &

Par

ticu

late

Sys

tem

A 4

2452

1 /

201

8

Terminal velocity

dt

dwmFFF buoyancydraggravity

02 pg

2Tg

Dprj

gVw

CAgm

Fdrag

Fbuoyancy

Fgravity

It can be derived from

If the particle is not accelerating, the equation can be written

Solving for wT results in

gDprj

pgT

)(2

CA

gVgmw

11.5

wT is the difference in velocity between the gas and the particle in fully developed flow conditions (no acceleration); the velocity of the gas when the particle is kept in place by the gas flow, or the falling velocity of a particle in a stagnant fluid. If the gas velocity around a particle exceeds the terminal velocity, the bed will loose the particle (entrainment).

april 2018 RoNz 24Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

Page 13: FLUIDISATION PNEUMATIC/HYDRAULIC CONVEYING · Fluid & Particulate Systems Fluid & ParticulateSystems 424521 / 2010 ÅA 424521 / 2018 Fluidisation The individual particles in a fluidisedbed

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flu

id &

Par

ticu

late

Sys

tem

A 4

2452

1 /

201

8Particles of different sizes

The bed has seldom uniform particles of the exact same size. A mean value ofthe diameter (Sauter mean diameter, SMD) can be derived from, (see course material #5)

i

i

d

X

d

1

from a mixture of particles having the mass fractions Xi with the diameters di.

This gives a mean diameter of the particles corresponding to “the rightparticle surface”, i.e. the particle diameter that has the same specific surface as that of the full distribution. The area can then be estimated from the weight.

11.1april 2018 RoNz 25Åbo Akademi University - Värme- och Strömningsteknik

Biskopsgatan 8, FI-20500 Åbo / Turku Finland

Taking into account a size distribution p(x): p(x)dx is the chance of particle size x being in size range x x+dx

p

2bedpackedloss,

2 d

wK

h

p

Δ , ·

ρ ·

2 ·Example:

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flu

id &

Par

ticu

late

Sys

tem

A 4

2452

1 /

201

8

Particle size distributions - general Particle size measurements give information on how

fractions of sizes are distributed according to number(d0), length (d), surface (d2) or volume ~ mass (d3).

In general:

or discrete:

For example Dsauter = D3,2

Volume mean diameter DVM = D4.3

april 2018 Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

RoNz 26

See

e.g.

http

://w

ww

.ther

mo

pedi

a.co

m/c

onte

nt/1

108/

Literature: A97!

Page 14: FLUIDISATION PNEUMATIC/HYDRAULIC CONVEYING · Fluid & Particulate Systems Fluid & ParticulateSystems 424521 / 2010 ÅA 424521 / 2018 Fluidisation The individual particles in a fluidisedbed

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flu

id &

Par

ticu

late

Sys

tem

A 4

2452

1 /

201

8

6.3 Fluidisation velocity, particle terminal velocity

Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

RoNz 27april 2018

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flu

id &

Par

ticu

late

Sys

tem

A 4

2452

1 /

201

8

Gas velocities

The superficial gas velocity is defined for the whole cross sectional area.

The real gas velocity between the particles is higher and can be estimated if the porosity ε is known.

april 2018 RoNz 28Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

In a bubbling bedthe gas volume

that exceeds the gas volume for

minimum fluidisationwill form bubbles

Page 15: FLUIDISATION PNEUMATIC/HYDRAULIC CONVEYING · Fluid & Particulate Systems Fluid & ParticulateSystems 424521 / 2010 ÅA 424521 / 2018 Fluidisation The individual particles in a fluidisedbed

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flu

id &

Par

ticu

late

Sys

tem

A 4

2452

1 /

201

8

april 2018 Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

29

Minimum fluidisation velocity umf /1

gH

pFSmf

mf

fb ))(1(

Pressure drop across a fluidised bed (at minimum fluidisation conditons):

Pressure drop across a packed bed (Ergun):

pressure drop p, bed height H,

porosity ,gravity g,

fluid density F, dynamic viscosity F, particle diameter dp, particle density

S,flow velocity u,

particle sphericity

p

F

p

Fpb

d

u

d

u

H

p

2

323

2 )1(75.1

)(

)1(150

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flu

id &

Par

ticu

late

Sys

tem

A 4

2452

1 /

201

8

april 2018 Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

30

Limiting cases: Remf small (“fine”), Remf large (“coarse”)

Minimum fluidisation velocity umf /2

Dimensionless groups: Remf, Ar

0 for large Remf 0 for small Remf

2

3p

2323

)(dAr Re

Re75.1

Re)1(150

F

FSF

F

Fmfpmf

mfmf

gud

Armf

mfmf

Page 16: FLUIDISATION PNEUMATIC/HYDRAULIC CONVEYING · Fluid & Particulate Systems Fluid & ParticulateSystems 424521 / 2010 ÅA 424521 / 2018 Fluidisation The individual particles in a fluidisedbed

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flu

id &

Par

ticu

late

Sys

tem

A 4

2452

1 /

201

8

april 2018 Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

31

Terminal particle (settling) velocity ut31

34

24

122

1

)1(

D

F

S

pt

ptFDFpp

C

g

du

duCgVgm

gravity - lift force (buoyancy) = drag force

mass mp, gravity g, volume Vp

fluid density F, dynamic

viscosity F, drag coefficient cD,

particle diameter dp, particle

density p, terminal velocity ut,

Reynolds number Re

)Re15.01(Re

241000Re2

Re

242Re if ;Re

678.0t

tDt

tDt

F

ptFt

Cif

Cdu

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flu

id &

Par

ticu

late

Sys

tem

A 4

2452

1 /

201

8

april 2018 Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

32/74

Terminal velocity Dimensionless particle size, d* and velocity, u*

Determining terminal velocity, ut:

calculate Ar = dp* Figure u* calculate ut

F

Fpp

p

FSF

2F*

2F

FSFp

*p

udRe

Ar

Re

g)(uu

g)(dArd

31

31

31

31

with

Page 17: FLUIDISATION PNEUMATIC/HYDRAULIC CONVEYING · Fluid & Particulate Systems Fluid & ParticulateSystems 424521 / 2010 ÅA 424521 / 2018 Fluidisation The individual particles in a fluidisedbed

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flu

id &

Par

ticu

late

Sys

tem

A 4

2452

1 /

201

8

april 2018 Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

33/74

Chart for the determination of particle terminal settling velocitythrough a fluid

KL91

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flu

id &

Par

ticu

late

Sys

tem

A 4

2452

1 /

201

8

april 2018 Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

34/74

Geldart’s classification and FB reactor types

F

Fpp

p

FSF

2F*

2F

FSFp

*p

udRe

Ar

Re

g)(uu

g)(d

Ard

31

31

31

31

with

KL91

Page 18: FLUIDISATION PNEUMATIC/HYDRAULIC CONVEYING · Fluid & Particulate Systems Fluid & ParticulateSystems 424521 / 2010 ÅA 424521 / 2018 Fluidisation The individual particles in a fluidisedbed

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flu

id &

Par

ticu

late

Sys

tem

A 4

2452

1 /

201

8

6.4 FB air distributors, non-mechanical valves

Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

RoNz 35april 2018

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flu

id &

Par

ticu

late

Sys

tem

A 4

2452

1 /

201

8

Air (gas) distributor

april 2018 RoNz 36Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

Page 19: FLUIDISATION PNEUMATIC/HYDRAULIC CONVEYING · Fluid & Particulate Systems Fluid & ParticulateSystems 424521 / 2010 ÅA 424521 / 2018 Fluidisation The individual particles in a fluidisedbed

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flu

id &

Par

ticu

late

Sys

tem

A 4

2452

1 /

201

8Air (gas) distributor

The pressure drop over the air distributor that is required for uniform fluidisation is in the order of 0.2-1 times the pressure drop over the bed.

april 2018 RoNz 37Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flu

id &

Par

ticu

late

Sys

tem

A 4

2452

1 /

201

8

april 2018 Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

38/74

Fluidisation: effect of gas distributor type

Ref: BR98

Page 20: FLUIDISATION PNEUMATIC/HYDRAULIC CONVEYING · Fluid & Particulate Systems Fluid & ParticulateSystems 424521 / 2010 ÅA 424521 / 2018 Fluidisation The individual particles in a fluidisedbed

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flu

id &

Par

ticu

late

Sys

tem

A 4

2452

1 /

201

8

april 2018 Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

39/74

Non-mechanical valvesF

luid

& P

artic

ulat

eS

yste

ms

4245

21 /

201

0F

luid

& P

arti

cula

teS

yste

ms

ÅA

424

521

/ 2

018

6.5 Fluidised bed modelling

Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

RoNz 40april 2018

Page 21: FLUIDISATION PNEUMATIC/HYDRAULIC CONVEYING · Fluid & Particulate Systems Fluid & ParticulateSystems 424521 / 2010 ÅA 424521 / 2018 Fluidisation The individual particles in a fluidisedbed

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flu

id &

Par

ticu

late

Sys

tem

A 4

2452

1 /

201

8

april 2018 Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

41/74

The Kunii-Levenspiel bubbling bed model /1

Gas flow = gas flow via emulsion + gas flow via bubbles

i.e., with bed area A, and superficial velocity uo :

flow (uo-umf)*A via bubbles

flow umf *A via emulsion

mfb

b

mfb

mf

bb

uu

uuδ

uu

uuδ

ε

)gd(.u

-1 :emulsion in bed of Fraction

:bubbles in bed of Fraction

0 u u u :solids of velocity Rise

u :gas emulsion of velocity rise lSuperficia

u u :phase emulsion of velocity Rise

:bubbles of velocity Rise

down s,up s,s

mf

mf

mfe

KL91

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flu

id &

Par

ticu

late

Sys

tem

A 4

2452

1 /

201

8

april 2018 Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

42/74

The Kunii-Levenspiel bubbling bed model /2

KL91

Page 22: FLUIDISATION PNEUMATIC/HYDRAULIC CONVEYING · Fluid & Particulate Systems Fluid & ParticulateSystems 424521 / 2010 ÅA 424521 / 2018 Fluidisation The individual particles in a fluidisedbed

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flu

id &

Par

ticu

late

Sys

tem

A 4

2452

1 /

201

8

april 2018 Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

43/74

Bed height and bubble sizeBed height vs. velocity :

Bubble diameter :(Ao ~ bottomdistributor plate area)

Bubble rise velocity:(Davidson & Harrison)

21

bmf0b

2.0

8.00

4.0mf0

b

b

mf0mf

)gd(711.0)uu(u

g

)A4h()uu(54.0d

u

uu

H

HH

http

://w

ww

.cd-

adap

co.c

om/p

ress

_roo

m/d

ynam

ics/

25/im

ages

/uav

_6.jp

g

KL91

Or: let a CFD calculationdetermine all thisbased on your input dataand your model selection

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flu

id &

Par

ticu

late

Sys

tem

A 4

2452

1 /

201

8

6.6 FB heat and mass transfer

Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

RoNz 44april 2018

Page 23: FLUIDISATION PNEUMATIC/HYDRAULIC CONVEYING · Fluid & Particulate Systems Fluid & ParticulateSystems 424521 / 2010 ÅA 424521 / 2018 Fluidisation The individual particles in a fluidisedbed

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flu

id &

Par

ticu

late

Sys

tem

A 4

2452

1 /

201

8

april 2018 Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

45/74

Particle fragmentation, attrition, abrasion, ...

BR98

attrition abrasion

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flu

id &

Par

ticu

late

Sys

tem

A 4

2452

1 /

201

8

april 2018 Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

46/74

Emulsion-to-wall heat transfer

a. large particles, short contact time

b. small particles,long contact time

GAK97

Page 24: FLUIDISATION PNEUMATIC/HYDRAULIC CONVEYING · Fluid & Particulate Systems Fluid & ParticulateSystems 424521 / 2010 ÅA 424521 / 2018 Fluidisation The individual particles in a fluidisedbed

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flu

id &

Par

ticu

late

Sys

tem

A 4

2452

1 /

201

8

april 2018 Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

47/74

Emulsion-to-wall heat transfer /2

radiationconductionconvectiongasconvectionparticle

radiationconductionconvection

hhfhf

hhh

/,,

/

)(1

Heat transfer coefficient, h (W/m2K) :

where ƒ = fraction of wall covered by particles

problem:particle-to-wall distance, δ ??particle/wall contact time,τ ??

wall coverage, ƒ ??

TKK (Aalto)

98/99

Refs: GAK97,ZKTLB99

particlepparticleparticlegasconvectionparticle ch ,,

1

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flu

id &

Par

ticu

late

Sys

tem

A 4

2452

1 /

201

8

april 2018 Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

48/74

Heat transfer in CFB combustion reactorsh ~ 100 … 1000 W/m2K

Ref: GAK97

Page 25: FLUIDISATION PNEUMATIC/HYDRAULIC CONVEYING · Fluid & Particulate Systems Fluid & ParticulateSystems 424521 / 2010 ÅA 424521 / 2018 Fluidisation The individual particles in a fluidisedbed

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flu

id &

Par

ticu

late

Sys

tem

A 4

2452

1 /

201

8

april 2018 Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

49/74

Single particle mass transfer in a CFBC riserNumin = 2 2

Compare with standard Ranz- Marshall equation (‘52):

Nu = 2 + 0.6 Re0.5Pr0.33

Imporant aspect consideringheat / mass transfer analogy :

inert, bed material particles areimportant from a heat transferpoint of view, not from a mass

transfer point of view.

Inert particles contribute to heat transfer, not to mass transfer !!

Ref: P98

Nusselt number

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flu

id &

Par

ticu

late

Sys

tem

A 4

2452

1 /

201

8

6.7 Exercises 11

april 2018 RoNz 50Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

Page 26: FLUIDISATION PNEUMATIC/HYDRAULIC CONVEYING · Fluid & Particulate Systems Fluid & ParticulateSystems 424521 / 2010 ÅA 424521 / 2018 Fluidisation The individual particles in a fluidisedbed

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flu

id &

Par

ticu

late

Sys

tem

A 4

2452

1 /

201

8Exercises 11

11.1 Calculate the mean diameter of a material with following distribution,

11.2 A laboratory scale fluidised bed is fed with air (20ºC) with the volumetric flow of 125 l/min. The distributor (1 mm thick) has 170 small holes, each with a diameter of 0.3 mm. Calculate the pressure loss in the distributor.

11.3 A fluidised bed reactor (h = 10 m, Acs = 2,5 m2) is fed with 12.5 m3/s air (g = 0,310 kg/m3 and g = 44,4·10-6 kg/ms). The bed is made up of particles with a diameter dp of 0,320 mm with a density ρp of 2600 kg/m3. The static pressure has been measured at different heights,

Calculate the porosity, which is supposed to be constant, in the area between 0 m 0.2 m and 7 m 10 m.

april 2018 Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

RoNz 51

Cumulative weight of a 360 g sample [g]

dp smaller than [μm]

0 50 60 75 150 100 270 125 330 150 360 175

h (m) p (kPa) 0 120 0.2 118 7 112

10 111.8

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flu

id &

Par

ticu

late

Sys

tem

A 4

2452

1 /

201

8

Exercises 11 11.4 Calculate the minimum fluidisation velocity wmf for a bed of sharp sand particles (

=160 μm, ψ=0.67, ρp=2600 kg/m3) when the fluidizing gas is ambient air (ρg=1.2 kg/m3, ηg=18·10-6 kg/(m s). The porosity of the packed bed is 0.55.

11.5 Can the particlesa) be retained in the bed although the gas velocity is higher that the terminal velocity?b) be lost from the bed although the gas velocity is less than terminal velocity?

11.6 An industrial fluidised bed reactor is going to use particles with dp=1.50 mm and ρp=2600 kg/m3. The fluidizing gas (ρg=0.45 kg/m3, ηg=4.3·10-5 kg/ms) has a planned superficial velocity of 5 m/s. The porosity need to be known before the actual process can be started, but because the particles and the gas are very expensive, air (ρg=1.2 kg/m3, ηg=1.9·10-5 kg/ms) and particles of a cheaper test material are used instead. Calculate by means of dimensional analysis the values for the test material, dp and ρp, as well as the superficial velocity of the air in the porosity evaluation experiment. Can the industrial fluidised bed reactor be utilized in the test?

april 2018 Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

RoNz 52

Page 27: FLUIDISATION PNEUMATIC/HYDRAULIC CONVEYING · Fluid & Particulate Systems Fluid & ParticulateSystems 424521 / 2010 ÅA 424521 / 2018 Fluidisation The individual particles in a fluidisedbed

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flu

id &

Par

ticu

late

Sys

tem

A 4

2452

1 /

201

8

6.8 Pneumatic conveying

april 2018 RoNz 53Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flu

id &

Par

ticu

late

Sys

tem

A 4

2452

1 /

201

8

Solids transport methodsSuspended particles

Pneumatic (hydraulic) conveying Gravity chutes Air slides

Supported particles Belt conveyors Screw conveyors Bucket elevators Vibratory conveyors

april 2018 Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

RoNz 54

Page 28: FLUIDISATION PNEUMATIC/HYDRAULIC CONVEYING · Fluid & Particulate Systems Fluid & ParticulateSystems 424521 / 2010 ÅA 424521 / 2018 Fluidisation The individual particles in a fluidisedbed

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flu

id &

Par

ticu

late

Sys

tem

A 4

2452

1 /

201

8Pneumatic conveying

Negative (a) (i.e. ”vacuum” ~ 0.4 atm) and positive (b) pressure conveying, also combined (pushand pull) exists

(a) Dust free feeding, no leakage, toxic / hazardous solids

(b) Large distances, large loadings

Separation by cyclone, usually

april 2018 RoNz 55Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flu

id &

Par

ticu

late

Sys

tem

A 4

2452

1 /

201

8

Pneumatic conveying

Physical properties of typical solids for pneumatic conveying

april 2018 RoNz 56Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

Page 29: FLUIDISATION PNEUMATIC/HYDRAULIC CONVEYING · Fluid & Particulate Systems Fluid & ParticulateSystems 424521 / 2010 ÅA 424521 / 2018 Fluidisation The individual particles in a fluidisedbed

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flu

id &

Par

ticu

late

Sys

tem

A 4

2452

1 /

201

8Pneumatic conveying: classification

april 2018 Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

RoNz 57

C06

kg solids / kg gas

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flu

id &

Par

ticu

late

Sys

tem

A 4

2452

1 /

201

8

Pneumatic conveying: regimes

Increasingparticleloading

Often dense transport is associatedwith large pressure fluctuations

april 2018 RoNz 58Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

Page 30: FLUIDISATION PNEUMATIC/HYDRAULIC CONVEYING · Fluid & Particulate Systems Fluid & ParticulateSystems 424521 / 2010 ÅA 424521 / 2018 Fluidisation The individual particles in a fluidisedbed

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flu

id &

Par

ticu

late

Sys

tem

A 4

2452

1 /

201

8Pneumatic conveying: pressure drop Important for

power consumptioncalculation

Acceleration of particlesrequiressignificantpower

”Acceleration length”

Increasedsolid loading

april 2018 RoNz 59Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flu

id &

Par

ticu

late

Sys

tem

A 4

2452

1 /

201

8

Pneumatic conveying

Flow regimediagrams (log-log)for fine particlepneumaticconveying

Jp = 0: only gas

april 2018 RoNz 60Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

Page 31: FLUIDISATION PNEUMATIC/HYDRAULIC CONVEYING · Fluid & Particulate Systems Fluid & ParticulateSystems 424521 / 2010 ÅA 424521 / 2018 Fluidisation The individual particles in a fluidisedbed

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flu

id &

Par

ticu

late

Sys

tem

A 4

2452

1 /

201

8Pneumatic conveying: drag reduction

Left:

Right:

Typically at 0.5 – 2 kg/ kg solids loading, turbulent, dp < 0.2 mm

april 2018 RoNz 61Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flu

id &

Par

ticu

late

Sys

tem

A 4

2452

1 /

201

8

Minimum transport velocity /1

(taken from Fan and Zhu, 1998 chapter 11)

U = mean gas stream velocity; Dd = pipe diameter;µ, ρ = gas viscosity, density; αp= particle volume fraction;ρp = particle density;

april 2018 RoNz 62Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

Page 32: FLUIDISATION PNEUMATIC/HYDRAULIC CONVEYING · Fluid & Particulate Systems Fluid & ParticulateSystems 424521 / 2010 ÅA 424521 / 2018 Fluidisation The individual particles in a fluidisedbed

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flu

id &

Par

ticu

late

Sys

tem

A 4

2452

1 /

201

8Minimum transport velocity /2

(taken from Fan and Zhu, 1998 chapter 11)

april 2018 RoNz 63Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flu

id &

Par

ticu

late

Sys

tem

A 4

2452

1 /

201

8

Pneumatic conveying Pressure drop for flow

of solids in pneumaticconveying (comparedto air velocity) for particle velocity us, solid feed rate F,particle terminal velocity uo.

Electrostatic chargingchanges us and Δp !!

Example experimentalresult for a given system at up to 35 m/s air velocity

april 2018 RoNz 64Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

Page 33: FLUIDISATION PNEUMATIC/HYDRAULIC CONVEYING · Fluid & Particulate Systems Fluid & ParticulateSystems 424521 / 2010 ÅA 424521 / 2018 Fluidisation The individual particles in a fluidisedbed

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flu

id &

Par

ticu

late

Sys

tem

A 4

2452

1 /

201

8Pneumatic conveying: air movers

april 2018 Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

RoNz 65

Rotary lobe (”roots”) blower

C06

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flu

id &

Par

ticu

late

Sys

tem

A 4

2452

1 /

201

8

6.9 Hydraulic conveying

april 2018 RoNz 66Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

Page 34: FLUIDISATION PNEUMATIC/HYDRAULIC CONVEYING · Fluid & Particulate Systems Fluid & ParticulateSystems 424521 / 2010 ÅA 424521 / 2018 Fluidisation The individual particles in a fluidisedbed

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flu

id &

Par

ticu

late

Sys

tem

A 4

2452

1 /

201

8Hydraulic conveying Liquid (water)

instead of gas (air) used for transport

Much lowervelocities

Solids blockageeasier avoided

Three types:– Homogeneous– Settling, vertical– Settling, horizontal

horizontal

april 2018 RoNz 67Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

PRESSURE DROP ESTIMATION: SEE C06 section 4.2

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flu

id &

Par

ticu

late

Sys

tem

A 4

2452

1 /

201

8

Transitional velocities (horizontal)

april 2018 Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

RoNz 68

C06

Page 35: FLUIDISATION PNEUMATIC/HYDRAULIC CONVEYING · Fluid & Particulate Systems Fluid & ParticulateSystems 424521 / 2010 ÅA 424521 / 2018 Fluidisation The individual particles in a fluidisedbed

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flu

id &

Par

ticu

late

Sys

tem

A 4

2452

1 /

201

8Critical velocity: Wilson’s diagram (1979)

april 2018 Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

RoNz 69

C06

For a 0.4 m pipe,0.2 mm particlesstart settling at Ucm ~ 3 m/s ifS = ρS/ρL = 2.65

Corrects to Ucm ~ 2.3 m/s ifS = ρS/ρL = 2.0

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flu

id &

Par

ticu

late

Sys

tem

A 4

2452

1 /

201

8

Critical velocity: Wani’s correlations (1982)

april 2018 Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

RoNz 70

C06

αs = volumetric solids concentration m3/m3.

Page 36: FLUIDISATION PNEUMATIC/HYDRAULIC CONVEYING · Fluid & Particulate Systems Fluid & ParticulateSystems 424521 / 2010 ÅA 424521 / 2018 Fluidisation The individual particles in a fluidisedbed

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flu

id &

Par

ticu

late

Sys

tem

A 4

2452

1 /

201

8Hydraulic conveying Example: coal mining tailings

transport to a storage ”lagoon” at 1,1 km, rate 15 kg/s

april 2018 RoNz 71Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flu

id &

Par

ticu

late

Sys

tem

A 4

2452

1 /

201

8

6.10 Exercises 12

april 2018 RoNz 72Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

Page 37: FLUIDISATION PNEUMATIC/HYDRAULIC CONVEYING · Fluid & Particulate Systems Fluid & ParticulateSystems 424521 / 2010 ÅA 424521 / 2018 Fluidisation The individual particles in a fluidisedbed

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flu

id &

Par

ticu

late

Sys

tem

A 4

2452

1 /

201

8Exercises 12

12.1

12.2

april 2018 RoNz 73Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

Flu

id &

Par

ticul

ate

Sys

tem

s42

4521

/ 2

010

Flu

id &

Par

ticu

late

Sys

tem

A 4

2452

1 /

201

8

april 2018 Åbo Akademi University - Värme- och Strömningsteknik Biskopsgatan 8, FI-20500 Åbo / Turku Finland

74

Sources / further readingBR98: G L Bormand KW Ragland “Combustion engineering” McGraw-Hill (1998) Chapter 17CRBH83: Coulson, J.M., Richardson, J.F., Backhurst, J.R., Harker, J.H. “Chemical Engineering, Vol. 2 : Unit

Operations” Pergamon Press, Oxford (1983) FZ98: L-S Fan, C Zhu “Principles of gas-solid flows” Cambridge Univ. Press (1998)GAK97: Grace, J.R., Avidan, A.A., Knowlton, T.M. (Eds.) "Circulating fluidised beds", Chapman & Hall, London

(1997)IGH91: Iinoya, K., Gotoh, K., Higashitani, K. “Powder technology handbook”, Marcel Dekker, New York

(1991) KL91: D Kunii, O Levenspiel “Fluidisation engineering” 2nd ed, Butterworth-Heinemann (1991)P98: Palchonok, G.I. “Heat and mass transfer to a single particle in a fluidised bed” Chalmers Univ. of

Technol., Sweden, Ph. D. thesis (1998)PL98: Peirano, E., Leckner, B. “Fundamentals of turbulent gas-.solid flows applied to circulating fluidised bed

combustion” Progr. Energy Combust. Sci. 24(1998) 259-296ZH00: R. Zevenhoven, K. Heiskanen ”Particle technology for thermal power engineers” part 1 & part 2, post-

graduate course ene-47.200, TKK, Espoo, Sept./Oct. 2000ZKLTB99: Zevenhoven, R., Kohlmann, J., Laukkanen, T., Tuominen, M., Blomster, A.-M. “Suspension-to-wall

heat transfer in CFB combustion: near-wall particle velocity and concentration measurements at low and high temperatures” Proc. 6th Int. Conf. on CFB, Würzburg, Germany, August 1999 (J. Werther, Ed.), Frankfurt/Main (1999) 959-965

C06: Crowe, C.T., ed., ”Multiphase Flow Handbook” CRC Press, Taylor & Francis Group (2006) Chapters 4-5A11: Ahlskog, M. ”Dimensioning of Polymer Pipelines for Slurries” MSc thesis ÅA KT VST 2011A97: Allen, T. Particle size measurement. Vol. 1, Powder sampling and particle size measurement, and Vol. 2,

Surface area and pore size determination. Chapman & Hall (1997)