fluid flow behaviour on osillatary motion

Upload: helover

Post on 03-Apr-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/28/2019 Fluid Flow Behaviour on Osillatary Motion

    1/12

    JournalofEngineeringScienceandTechnologyVol.7,No.1(2012)119-130SchoolofEngineering,TaylorsUniversity

    119

    NUMERICALSIMULATIONOFFLUIDFLOWBEHAVIOURONSCALEUPOFOSCILLATORYBAFFLEDCOLUMN

    WAHKENGSERN1,*,MOHDSOBRITAKRIFF

    1,SITIKARTOM

    KAMARUDIN1,MEORZAINALMEORTALIB

    1,NURULHASAN

    2

    1DepartmentofChemicalandProcessEngineering,FacultyofEngineeringandBuilt

    Environment,UniversitiKebangsaanMalaysia,43600Bangi,SelangorDE,Malaysia2DepartmentofChemicalEngineering,UniversitiTechnologiPETRONAS,BandarSeri

    Iskandar,31750Tronoh,PerakDR,Malaysia

    *CorrespondingAuthor:[email protected]

    Abstract

    Thefluiddynamicsofoscillatoryflowinabaffledcolumnof145mmdiameter

    wasinvestigatednumericallyinthiswork.Thisnumericalsimulationwascarried

    outbya2DlaminarunsteadysolverusingCFDpackageFluent6.3.Fromthe

    simulation, data on surface velocity were collected and velocity ratio wascalculated todetermine theintensity ofmixingwhichwere themainoperating

    parameters in oscillatory flow in a baffled column. The suitable operating

    parameters of oscillatory baffled column of 145 mm diameter were also

    determinedin this work. Itwasfound that theoscillation amplitudewasmore

    dominantforobtainingdesirablemixing resultscomparetooscillationfrequency.

    Keywords:Oscillatorybaffledcolumn,Velocityratio,CFDmodeling,

    Flowpattern,Oscillationamplitude,Oscillationfrequency.

    1.Introduction

    With the recent advancement of computational fluid dynamics (CFD), fluid

    flowbehaviourinoscillatorybaffledcolumncanbeeasilyunderstood.Previouscomputational fluid dynamics (CFD)modelling of oscillatory baffled column

    wasdoneona50mmdiameteroscillatorybaffledcolumn[1]followedbyscale

    upofbaffledcolumn[2].Thispaperreportsnumericalsimulationoffluidflow

    in larger scale of oscillatory baffled column and compares the data with

    previouslyreportedresults.The resultsarepotentiallyusefuland relevance inordertodesignandoperatealargerscaleoscillatorybaffledcolumnwhichisa

    novelmixingtechnology.

  • 7/28/2019 Fluid Flow Behaviour on Osillatary Motion

    2/12

    120K.S.Wahetal.

    JournalofEngineeringScienceandTechnologyFebruary2012,Vol.7(1)

    Nomenclatures

    D Columndiameter,m

    d Orificediameter,m

    f Oscillationfrequency,Hz

    L Celllength,m

    Reo OscillatoryReynoldsnumberSt Strouhalnumber

    Uo Initialvelocity,m/s

    V Fluidvelocitycomponent,m/s

    xo Oscillationamplitude,m

    GreekSymbols

    Baffledthickness(m)

    Fluidviscosity(kg/ms)

    Fluiddensity(kg/m3)

    Oscillatorybaffledcolumnisa cylinderwithevenlyspacedorificebafflesin

    whicha liquidormultiphasefluidareoscillatedaxiallybymeansofdiaphragm,

    bellowsorpistonatoneorbothendsofthecolumn[1].Forbatchoperations,thecolumnisusuallyoperatedvertically,wherethefluidoscillationisachievedby

    meansofpistonorbellowsatthebaseofthecolumnorbymovingasetofbaffles

    upanddownthecolumnatthetopofthecolumn[1].Themechanismofmixing

    inoscillatorybaffledcolumnisillustratedinFig.1[3].

    Fig.1.MechanismofMixinginOscillatoryBaffledColumn.

    The essential feature is that sharp edges (provided by the baffles) are

    presentedtransversetoanoscillating,fullyreversingflow.Flowoffluidacrossa

    transversebafflesas showninFig.1(a) formsclockwiseandcounterclockwise

    vorticesdownstreamofthebaffles.Thevorticesarepushedawayfromthebafflesbythefluidflowandreachingtheirfurthestpositionatthepeakoftheupward

    (a)

    Piston

    upstroke

    (b)

    Endofpiston

    upstroke

    (c)

    Piston

    downstroke

  • 7/28/2019 Fluid Flow Behaviour on Osillatary Motion

    3/12

    NumericalSimulationofFluidFlowBehaviouronScaleupofBaffledColumn 121

    JournalofEngineeringScienceandTechnologyFebruary2012,Vol.7(1)

    velocity, Fig. 1(b). On flow reversal, the vortices encourage the flow to flow

    betweenthemandtheinnerwall.Thisinturnforcesthevorticesintothemain

    flow area and new vorticesare fromon the new downstream of the baffles as

    shown in Fig. 1(c). The described flow behaviour provides a mechanism for

    formingeddiesandmovingthefluidinthewallareatothemainbodyofthefluid.

    The repeating cycles ofvortex formationandofsimilarmagnitude totheaxial

    velocitiesgivesuniformmixingineachinter-bafflezoneandcumulativelyalongthelengthofthecolumn[4-6].

    The fluid mechanics of oscillatory baffle column is governed by twodimensionless parameters which are oscillatory Reynolds number (Reo) and

    Strouhalnumbers(St),definedas

    Dfxoo

    2Re = (1)

    o4 x

    DSt

    = (2)

    whereD is the column diameter (m), the fluiddensity (kg/m3), the fluid

    viscosity(kg/ms),xotheoscillationamplitude(m)andftheoscillationfrequency(Hz).

    FluidOscillatoryReynolds number(Reo) isamodificationofReynolds numberto

    describethenatureofoscillatingfluidbehaviour.ForReo250,theflow

    becomesprogressivelyturbulentlikeandafullyturbulentnaturecanbeachievedwith

    Reo > 2000 [7]. In short, the oscillatoryReynolds numbers is used todefine the

    mixingintensityinoscillatorybaffledcolumn.Ontheotherhand,Strouhalnumber

    representstheratioofcolumndiametertostrokelength,measuringtheeffectiveeddypropagation[8].Inthiscase,Strouhalnumberisusedtodescribetheoscillatingflow

    mechanismwithvortexshredding[9].ForSt>0.1,acollectiveoscillatingmovement

    oftheplugfluidcanbefoundwheretheincrementinStreducesrelativelengthof

    fluidtransportation.Thesedimensionlessparameterscanbeusedasprimaryreference

    inordertoachievethechaoticmixinginoscillatorybaffledcolumn.

    2.NumericalSimulationSetup

    Thescaleupofoscillatorybaffledcolumninvolvesincreasingthecolumndiameter.

    The aspect ratio of related parameter such as percent baffle opening and baffle

    spacingismaintainedinthescaledupcolumn.Inpreviousworks,scaleupfactors

    of2and4thatcorrespondsto100mmand200mmareusedinthesimulationwithabasecolumndiameterof50mm[2].Inthiswork,oscillatorybaffledcolumnwith

    diameter of 145 mm with a scale up factors of 2.9 is used and the oscillating

    amplituderequiredispredictedtobe5.7mmtoachieveefficientmixing.Tofurther

    investigatesuitableoperatingconditionforthescaleduposcillatorybaffledcolumn,

    oscillation amplitude of 10 mm is used as a basis to determine the suitable

    oscillationfrequency.Table1summarizestheoperatingconditionsusedinprevious

    and this work in the simulations. Before the simulations were conducted, therespectiveStandReowerecalculatedforalloscillationfrequenciesandoscillation

    amplitudestoensuretheturbulentnatureandthevortexformationsweresufficient

    toproduceefficientmixinginoscillatorybaffledcolumn.FromTable1,itcanbe

    found that the minimum requirement of Reo [7] and St [9] in the operation of

  • 7/28/2019 Fluid Flow Behaviour on Osillatary Motion

    4/12

    122K.S.Wahetal.

    JournalofEngineeringScienceandTechnologyFebruary2012,Vol.7(1)

    oscillatory baffled column was fulfilled. These numerical simulations were

    conducted in 2-Dunsteady laminar simulations of oscillatory baffled column to

    understand the model behaviour and obtained sufficient amount of information

    beforeproceedingto3-Dnumericalsimulation.

    Table1.WorkingConditionsintheScale-upSimulations.

    Diameter(mm) 50[2] 100[2] 145 145 200[2]

    xo(mm) 4.0 5.0 10.0 5.7 6.4

    St 0.995 1.592 1.154 2.024 2.487

    f(Hz) 1 1 0.51 1 1

    xof(mm/s) 4 5 5 5.7 6.4

    Uo(=2xof)(mm/s) 25.1 31.4 32.0 35.8 40.2

    Reo 1257 3142 4624 5168 8043

    2.1.Boundaryconditions

    Inpreviousstudies,[5,10,11]bothoscillatoryandperiodicconditionswereused.

    Inthe former, spatially periodiccondition are used[1,2].In thispaper, auserdefined function (UDF) code is written to model the oscillatory and periodic

    conditions.The ideawastosimulatethepistonmovementwhichcanbedefinedasoscillationvelocityasshowninEq.(3)

    fxu 2= (3)

    where

    )2sin(o ftxx = (4)

    By substituting Eq. (4) into Eq. (3), a sinusoidal velocity time function

    describingpistonmovementcanbedefinedasinEq.(5)

    )2sin(2 o ftfxu = (5)

    ThisUDFcodewassubjectedtotheaxialvelocitycomponentsattheinletandoutletofoscillatorybaffledcolumntoensurethefluidflowaswellasthegridsat

    inletand outletwere configured tobe identical for each time steps.Numerical

    simulations were carried out to solve the governing equations using pressure

    basedsolverwithunsteadytimecondition.Withinthediscretizationschemes,the

    pressure was a body forceweighted scheme, the momentum is a second-order

    upwind scheme, and the SIMPLE algorithm was employed in the pressure-velocitycoupling scheme.AlthoughSIMPLECalgorithmcanprovides a faster

    converged solution, however it might also lead to instability due increasing

    pressure-correction due to under-relaxation at 1.0. To avoid this, SIMPLE

    algorithmwaschosenbycompensatingtheconvergencetimerequired.

    2.2.Modelconfigurationandgridgeneration

    Inthe2-Dnumericalsimulationsoftheoscillatorybaffledcolumn,asingleplane

    ofachannelflowcontainingtwoorificebaffleswasusedandisshowninFig.2.

    The columnmodelwas145mm inwidth and 652.5mm inlength withbaffle

  • 7/28/2019 Fluid Flow Behaviour on Osillatary Motion

    5/12

    NumericalSimulationofFluidFlowBehaviouronScaleupofBaffledColumn 123

    JournalofEngineeringScienceandTechnologyFebruary2012,Vol.7(1)

    spacing of 217.5 mm and the orifice diameter of 75 mm. This model was

    designedinsuchaconfigurationinordertocomparewithpreviouswork[2].The

    working fluid was water at room temperature (density 998.2 kg/m3, viscosity

    0.001003kg/ms).A uniformgridwith11,810cellswasusedin thesimulation,

    andgeneratedbyGambit 2.3.16.Thegridwastested throughmesh refinement

    usingfastFouriertransformanalysispriortosimulationinordertoeliminategrid

    dependenceonthemodel.

    Fig.2.BasicConfigurationofOscillatoryBaffledColumnandPeriodic

    BoundaryConditions,L/D=1.5,D=145mm,d=75mm,=3mm.

    3.NumericalResults

    Inthiswork,eachoscillationcyclewasdividedintothreeupwardstrokesphases

    and threedownward strokesphases asshown inFig.3 to further elaboratethefluid flow in oscillatory baffled column. Figures 4 to 6 show comparisons of

    velocity contour of flow characteristics within oscillatory baffled column at

    various times with respect to different oscillation cycle at different operating

    parameters. These results were taken from large number of simulation runs.

    ColourbandsdifferencesinFigs.4to6showdifferentvelocitymagnitudesinthe

    oscillatory baffled column. At the beginning of oscillatory baffled column

    operation,the1stcycleofFig.4clearlyshowstheformationofvorticesinboth.

    Fig.3.PhasePositioninaCompleteOscillationCycle.

  • 7/28/2019 Fluid Flow Behaviour on Osillatary Motion

    6/12

    124K.S.Wahetal.

    JournalofEngineeringScienceandTechnologyFebruary2012,Vol.7(1)

    Combinationoffrequenciesandamplitudes(f=1.0Hzwithxo=5.7mmand

    f =0.5Hzwithxo = 5mm) during the end ofupstroke and downstroke.This

    vorticesformationisthemainmixingmechanisminoscillatorybaffledcolumnas

    described in Fig. 1.At the 5th cycle of Fig. 4, the flow in oscillatory baffled

    columnwereprogressivelybecomescomplex.Itwasfoundthatfluiddispersion

    atf=1.0Hzandxo=5.7mmwasmuchbettercomparedtothecombinationof

    f=0.5Hzwithxo=5mm.

    FromFig.5(10thcycle),itisobservedthatthevorticesformedespeciallyat

    the centre compartment were now interacting with each others. Continuousvorticesformationandinteractionarethemainphenomenaincreatingthechaotic

    flowofoscillatorybaffledcolumn.Atthe10 thcycle,itwasalsoobservedthatfor

    acombinationoff=1.0Hzandxo=5.7mmthefluidmixingwasoutstanding

    compared to the other combination of frequency and amplitude. This can be

    further emphasizesby theflowpatternduring the20th cyclewhere thevortices

    alreadyapproachedtheoutletofoscillatorybaffledcolumninashortertime.Theonlysimilarityfoundinbothconfigurationsisthecomplexmixingatthecentre

    compartmentofoscillatorybaffledcolumn.

    At the 30th cycle (Fig. 6), vortices formedwere getting greater and bigger

    comparedtothe20th

    cyclewhichalsoindicatemoreefficientmixing.However,the vortices formation atf = 0.5 Hz with xo = 5 mm were not satisfactory

    compared to atf = 1.0Hz andxo = 5.7 mm. The observations indicated that

    efficient mixing can be achieved in oscillatory baffled column by carefully

    selecting the combination of oscillation frequency and amplitude. At the 40th

    cycle(Fig.6),itisobservedthattheflowisfullydevelopedandbecomeschaotic.

    Theinteractionofvorticesformedarenowoccupiedthewholeoscillatorybaffled

    columnandthisisthekeymechanismthatenhancethemixingandmasstransferinoscillatorybaffledflow.

    From the numerical simulation results, surface velocities which were taken

    fromthreedifferentpointsonthesameplaneweredividedequallythroughoutthe

    timetakenassurfaceaveragevelocity.Thesurfaceaveragevelocitywasaround

    0.07m/sforoscillatorybaffledcolumnwithdiameterof145mmandconsistentwith previous works [2]. By increasing the column diameter, surface average

    velocity should decrease under a constant oscillatory Reynolds number. The

    effectofincreasingcolumndiameteronaveragevelocitycanbecompensatedby

    increasingtheoscillationamplitude[2].Inthisstudy,acolumnwithadiameterof

    145mmneededoscillationamplitudeof5.7mm(Table1)whichwasabout14%

    increment in oscillation amplitude. To further explore the suitable operating

    condition, oscillation frequency of 0.51 Hzwas found suitable for oscillation

    amplitudeof10mmgivingasurfaceaveragedvelocityof0.05m/s.Tofurther

    ensuretheimportanceroleofsurfaceaveragedvelocity,oscillationfrequencyof

    0.51Hzwastestedwithoscillationamplitude of5 mmgiving surface average

    velocityof0.016m/s.Theresultsdeviatedtoomuchfromthepreviousworks[2]

    indicatesanunsuccessfulscale-upoperatingparameters. Hencethissuggeststhat

    maintaining surfaceaveraged velocity isoneof themajorfactors to scaling-uposcillatorybaffledcolumn.

  • 7/28/2019 Fluid Flow Behaviour on Osillatary Motion

    7/12

    NumericalSimulationofFluidFlowBehaviouronScaleupofBaffledColumn 125

    JournalofEngineeringScienceandTechnologyFebruary2012,Vol.7(1)

    Fig.4.ComparisonofVelocityContourMapofOscillationBaffledColumnfor1

    stand5

    thCycleatOscillationFrequencyof1Hzand0.5Hz

    withOscillationAmplitudeof5.7mmand5.0mm.

  • 7/28/2019 Fluid Flow Behaviour on Osillatary Motion

    8/12

    126K.S.Wahetal.

    JournalofEngineeringScienceandTechnologyFebruary2012,Vol.7(1)

    Fig.5.ComparisonofVelocityContourMapofOscillationBaffledColumn

    for10

    thand20

    thCycleatOscillationFrequencyof1Hzand0.5Hz

    withOscillationAmplitudeof5.7mmand5.0mm.

  • 7/28/2019 Fluid Flow Behaviour on Osillatary Motion

    9/12

    NumericalSimulationofFluidFlowBehaviouronScaleupofBaffledColumn 127

    JournalofEngineeringScienceandTechnologyFebruary2012,Vol.7(1)

    Fig.6.ComparisonofVelocityContourMapofOscillationBaffledColumn

    for30thand40thCycleatOscillationFrequencyof1Hzand0.5Hz

    withOscillationAmplitudeof5.7mmand5.0mm.

  • 7/28/2019 Fluid Flow Behaviour on Osillatary Motion

    10/12

    128K.S.Wahetal.

    JournalofEngineeringScienceandTechnologyFebruary2012,Vol.7(1)

    Another key factor for scaling up in oscillatory baffled column was the

    efficiencyofmixinginoscillatorybaffledcolumn.Thiscanbecalculatedthrough

    theaxialandradialvelocitiescollectedfromthesimulation.Thecharacteristicof

    mixinginoscillatorybaffledcolumncanbedefinedas:

    velocityradialaveragedSurface

    velocityaxialaveragedSurfacevelocityofRatio = (6)

    Itwasrecommendedthattheaveragedratioshouldbekeptbetween2.0-2.5for

    oscillatorybaffledcolumnscale-up[2]. Itis interesting tonote thatatoscillation

    amplitudearound5.7mm, thevelocityratiowas2.0asshownis Fig.7whereas

    others oscillation amplitude giving a higher axial dispersion indicates a poormixing. This suggests that to scale-up oscillatory baffled column with constant

    frequency,it can bedoneonly withcertain oscillationamplitude, e.g. oscillation

    amplitudeof5.7mmwithoscillationfrequencyof1.0Hz.Varyingtheoscillation

    amplitudeatconstantoscillationamplitudeat10 mmgavesatisfactoryresults of

    velocity ratiowhich is 2.2-2.3 at0.50 Hzand 0.51 Hz. However, at oscillation

    frequencyof0.51Hzandoscillationamplitudeof5mm,velocityratioof0.761wasobtained. In this case, radial dispersion was higher than axial dispersionwhich

    impliesapoormixing.Itwasnotedthatvelocityratioshouldnotbemorethan3.5

    [2]becausehighaxialdispersionresultedininsufficientmixing.

    Fig.7.ComparisonofVelocityRatiowithDifferentOscillationAmplitude

    inOscillatoryBaffledColumn(f=1.0Hz).

    Fig.8.ComparisonofVelocityRatiowithDifferentOscillationFrequency

    inOscillatoryBaffledColumn(xo=10mm).

  • 7/28/2019 Fluid Flow Behaviour on Osillatary Motion

    11/12

    NumericalSimulationofFluidFlowBehaviouronScaleupofBaffledColumn 129

    JournalofEngineeringScienceandTechnologyFebruary2012,Vol.7(1)

    The results suggest thatmain consideration in the scaling upofoscillatory

    baffledcolumnweretomaintainthesurfaceaveragevelocityandvelocityratio.It

    was also found that it was easier to control the fluidmechanics behaviour in

    oscillatory baffled column through oscillation amplitude which results in less

    fluctuationinthevelocityratioasshowninFigs.7and8.TheCFDsimulationof

    different scales of oscillatory baffled column can be used to predict mixing

    characteristicanddeterminetheoperatingconditionofoscillatorybaffledcolumninalargerscale.

    4.Conclusions

    Thefluiddynamicsandscale-upcharacteristicofoscillatorybaffledcolumnwas

    successfullyinvestigatednumericallyin thiswork.The surfaceaveragevelocityand velocity ratio were found to be important parameters in the scaling up

    oscillatorybaffledcolumn.Itwasalsofoundthatitwaseasiertocontrolthefluid

    mechanicsbehaviourinoscillatorybaffledcolumnthroughoscillationamplitude

    whichresultsinlessfluctuationinthevelocityratio.

    Acknowledgement

    TheauthorswishtothankUniverisitiKebangsaanMalaysiaforfinancialsupport

    ofprojectUKM-GUP-NBT-08-26-09.

    References

    1. Ni, X.; Jian, H.; and Fitch A.W. (2002). Computational fluid dynamicmodelling of flow patterns in an oscillatory baffled column. Chemical

    EngineeringScience,57(14),2849-2862.

    2. Ni, X.; and Jian, H. (2005). A numerical study on scale-up behaviour in

    oscillatorybaffledcolumns.TransactionsIchemE,83(A10),1163-1170.

    3. Takriff,M.S.;andYussof,W.S.W.(2008).Multiphasemixinginoscillatoryflowinbaffledtube.The2

    ndAsianConferenceonMixing,Japan.

    4. Brunold,C.R.;Hunns,J.C.B.;Mackley,M.R.;andThompson,J.W.(1989).

    Experimentalobservationonflowpatternsandenergylossesforoscillatoryflowinductscontainingsharpedges.ChemicalEngineeringScience ,44(5),

    1227-1244.

    5. Mackley,M.R.;andNi,X.(1991).Mixinganddispersioninabaffledtube

    forsteadylaminarandpulsatileflow.ChemicalEngineeringScience,46(12),

    3139-3151.

    6. Mackley, M.R.; and Ni, X. (1993). Experimental fluid dispersion

    measurementsinperiodicbaffledtubearrays.ChemicalEngineeringScience,

    48(18),3293-3305.

    7. Stonestreet, P.; and Van Der Veeken, P.M.J. (1999). The effects of

    oscillatoryflowandbulkflowcomponentsonresidencetimedistributionin

    baffled tube reactors.Chemical Engineering Research and Design, 77(8),

    671-684.

  • 7/28/2019 Fluid Flow Behaviour on Osillatary Motion

    12/12

    130K.S.Wahetal.

    JournalofEngineeringScienceandTechnologyFebruary2012,Vol.7(1)

    8. Ni,X.;andGough,P.(1997).Onthediscussionofthedimensionlessgroups

    governingoscillatoryflowinabaffledtube.ChemicalEngineeringScience ,

    52(18),3209-3212.

    9. Sobey, I.J. (1982) Oscillatory flows at intermediate Strouhal number in

    asymmetricchannels.JournalofFluidMechanics,125,359-373.

    10. Roberts,E.P.;andMackley,M.R.(1995).Thesimulationofstretchratesfor

    the quantitative prediction and mapping ofmixing within a channel flow.

    ChemicalEngineeringScience,50(23),3727-3746.

    11. NevesSaraiva,R.M.D.C.;andMackley,M.R.(1997).Theeffectofgeometry

    onmixingratesforoscillatoryflowintubeswithperiodicallyspacedbaffles.

    15th IMACS World Congress on Scientific Computation, Modelling, and

    AppliedMathematics,24-29August,1997,Berlin,Germany.