fluctuating-charge models: theory and applications

51
Fluctuating charge models: applications and illustrations Jiahao Chen Martínez Group Dept. of Chemistry, Frederick Seitz Materials Research Lab. and the Beckman Institute University of Illinois at Urbana-Champaign

Upload: jiahao-chen

Post on 27-Jan-2015

143 views

Category:

Education


1 download

DESCRIPTION

Slides for prospective postdoctoral interview at the Aspuru-Guzik group at Harvard University, 2008-10-09.

TRANSCRIPT

Page 1: Fluctuating-charge models: theory and applications

Fluctuating charge models: applications and illustrations

Jiahao ChenMartínez Group

Dept. of Chemistry, Frederick Seitz Materials Research Lab. and the Beckman Institute

University of Illinois at Urbana-Champaign

Page 2: Fluctuating-charge models: theory and applications

Acknowledgments

Prof. Troy van VoorhisProf. Alán Aspuru-Guzik

Prof. Todd J. MartínezMartínez Group and friends

$: DOE

Discussions

Harvard/MIT visit

Prof. Susan Atlas (UNM)Dr. Ben Levine (UPenn)Dr. Steve Valone (LANL)

Prof. Troy van Voorhis (MIT)

Page 3: Fluctuating-charge models: theory and applications

“The supreme goal of all theory is to make the irreducible basic elements as simple and as few as possible without

having to surrender the adequate representation of a single datum of

experience.”Albert Einstein, “On the Method of Theoretical Physics”, Phil. Sci. 1 (1934), 163-9.

Page 4: Fluctuating-charge models: theory and applications

What is electronegativity?

“Concept introduced by L. Pauling as the power of an atom to attract electrons to itself.”

“The quantity that measures the escaping tendency of electrons from a species in its ground state.” IUPAC Compendium of Chemical Terminology,

aka “The Gold Book”, goldbook.iupac.org

Page 5: Fluctuating-charge models: theory and applications

A quantitative definition

R. S. Mulliken J. Chem. Phys 2:(1934), 782–793

! =IP + EA

2

Page 6: Fluctuating-charge models: theory and applications

A quantitative definition

R. S. Mulliken J. Chem. Phys 2:(1934), 782–793

! =IP + EA

2

=E(N ! 1)! E(N + 1)

2

" "E

"N

Page 7: Fluctuating-charge models: theory and applications

Electronic structure and dynamics

Page 8: Fluctuating-charge models: theory and applications

Electronic structure and dynamicsWhat is the charge distribution?

What does the system do?

Page 9: Fluctuating-charge models: theory and applications

Electronic structure and dynamics

H! = i!

H! = E! What is the charge distribution?

What does the system do?

Page 10: Fluctuating-charge models: theory and applications

Electronic structure and dynamics

less variablesmore variables

H! = i!

H! = E! What is the charge distribution?

What does the system do?

Page 11: Fluctuating-charge models: theory and applications

Electronic structure and dynamics

less variablesmore variables

H! = i!

H! = E!

directnumericalquadrature

ab initiotheories

semiempiricalmethods

density functional

theory

coarse-grained models

continuumelectrostatics

molecular models (MM)

classicalmoleculardynamics

finite element methods

coarse-grained

dynamics

numerical quadrature, e.g. real-time path

integral propagatorsab initio molecular dynamics

What is the charge distribution?

What does the system do?

Page 12: Fluctuating-charge models: theory and applications

Electronic structure and dynamics

less variablesmore variables

H! = i!

H! = E!

directnumericalquadrature

ab initiotheories

semiempiricalmethods

density functional

theory

coarse-grained models

continuumelectrostatics

molecular models (MM)

classicalmoleculardynamics

finite element methods

coarse-grained

dynamics

numerical quadrature, e.g. real-time path

integral propagatorsab initio molecular dynamics

What is the charge distribution?

What does the system do?

molecular models (MM)

classicalmoleculardynamics

Page 13: Fluctuating-charge models: theory and applications

Molecular models/force fields

covalent bond effectsE =

+

Typical energy function

noncovalent interactions

Page 14: Fluctuating-charge models: theory and applications

bond stretch angle torsion dihedrals

electrostatics dispersion

+-

+

Typical energy function

!

i<j!atoms

!ij

"#"ij

rij

$12

!#

"ij

rij

$6%

E =!

b!bonds

kb(rb ! r0b )2 +

!

a!angles

!a("a ! "0a)2

!

d!dihedrals

!

n

ldn cos(n!)+

++!

i<j!atoms

qiqj

rij

Molecular models/force fields

Page 15: Fluctuating-charge models: theory and applications

bond stretch angle torsion dihedrals

electrostatics dispersion

+-

+

Typical energy function

!

i<j!atoms

!ij

"#"ij

rij

$12

!#

"ij

rij

$6%

E =!

b!bonds

kb(rb ! r0b )2 +

!

a!angles

!a("a ! "0a)2

!

d!dihedrals

!

n

ldn cos(n!)+

++!

i<j!atoms

qiqj

rij

Molecular models/force fields

Page 16: Fluctuating-charge models: theory and applications

Unique to condensed phases, where most

chemistry and biology happens

Why care about polarization and charge transfer?

Page 17: Fluctuating-charge models: theory and applications

Polarization in chemistry• Effect of local environment in liquid phases

• Ex. 1: Stabilizes carbonium in lysozyme

• Ex. 2: Hydrates chloride in water clusters

OPLS/AAnon-polarizable

force field

TIP4P/FQpolarizableforce field

1. A Warshel and M Levitt J. Mol. Biol. 103 (1976), 227-249. 2. SJ Stuart and BJ Berne J. Phys. Chem. 100 (1996), 11934 -11943.

Page 18: Fluctuating-charge models: theory and applications

3 models for polarization

Review: H Yu and WF van Gunsteren Comput. Phys. Commun. 172 (2005), 69-85.

Page 19: Fluctuating-charge models: theory and applications

Drude oscillatorsor charge-on-spring

or shell modelsQ

q !Q

kR

Response = change in RReview: H Yu and WF van Gunsteren Comput. Phys. Commun. 172 (2005), 69-85.

Ideal spring

Page 20: Fluctuating-charge models: theory and applications

Inducible dipoles

!1 !2

µinduced,1 µinduced,2

Response = change in induced dipoles

Review: H Yu and WF van Gunsteren Comput. Phys. Commun. 172 (2005), 69-85.

Page 21: Fluctuating-charge models: theory and applications

-0.3

Fluctuating charges

+0.8

-0.5

charge transfer = 1.1e charge transfer = 0.2 e

charge transfer = 1.3 e

Response = change in atomic charges

!2, "2

!3, "3

Review: H Yu and WF van Gunsteren Comput. Phys. Commun. 172 (2005), 69-85.

Page 22: Fluctuating-charge models: theory and applications

Better electrostatics

Model Polari-zation

Charge transfer

Cost

Pairwise fixed charges

Drude oscillator

Inducible dipoles

Fluctuating charges

Implicit, at best ❙

✓ ❙ ❙

✓ ❙ ❙ ❙ ❙ ❙ ❙

✓ ✓ ❙ ❙ ❙

!

i<j!atoms

qiqj

rij

Page 23: Fluctuating-charge models: theory and applications

QEq, a fluctuating-charge model

AK Rappé and WA Goddard III J. Phys. Chem. 95 (1991), 3358-3363.

atomicelectronegativities

“voltages”

screenedCoulomb

interactions

Jij =!

R3!2

!2i (r1)!2

j (r2)|r1 ! r2| dr1dr2

!i(r) = Ni |r !R|ni!1 e!!i|r!Ri|

E =!

i

qi!i +12

!

ij

qiqjJij

Page 24: Fluctuating-charge models: theory and applications

Principle of electronegativity equalization

Minimize energy

subject to charge constraint!

i

qi = Q

Using the method of Lagrange multipliers, reduces to solving the linear equation

(electronic) chemical potential

!J 11T 0

" !qµ

"=

!!!0

"

E =!

i

qi!i +12

!

ij

qiqjJij

Page 25: Fluctuating-charge models: theory and applications

Physical interpretationIn equilibrium:

oeach atom i has the same chemical potential µo µ uniquely determines the atomic charges qi

Atoms are subsystems in equilibrium

N, V, T

ΩΩi

moleculeatom

Energy derivatives: chemical potential µ, hardness η

Page 26: Fluctuating-charge models: theory and applications

QEq has wrong asymptotics

q =!1 ! !2

J11 + J22 ! J12

0.0

0.2

0.4

0.6

0.8

1.0

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

R/Å

q/e

QEq

ab initio

Na ClR

asymptote ~ 0.43 ≠ 0

Page 27: Fluctuating-charge models: theory and applications

Problems with QEqFractional charge distributions predicted

for dissociated systems

Wrong direction of intermolecular charge transfer predicted in some systems

No out-of-plane dipole polarizability

Overestimates in-plane dipole polarizability

Page 28: Fluctuating-charge models: theory and applications

Fluctuating-charge models map molecules onto electrical circuits

screenedCoulomb

interactionchemicalhardness

electro-negativitymolecule

screenedCoulombchemicalelectro-

Page 29: Fluctuating-charge models: theory and applications

Fluctuating-charge models map molecules onto electrical circuits

screenedCoulomb

interactionchemicalhardness

electro-negativitymoleculeelectric

potential(inverse)

capacitanceelectricalcircuits

Coulombinteraction

screenedCoulombchemicalelectro-

Page 30: Fluctuating-charge models: theory and applications

Fluctuating-charge models map molecules onto electrical circuits

screenedCoulomb

interactionchemicalhardness

electro-negativity

More electropositive

More electronegative0 V

χ2

χ1η

1

η2

- V

olta

ge +

moleculeelectric

potential(inverse)

capacitanceelectricalcircuits

Coulombinteraction

screenedCoulombchemicalelectro-

Page 31: Fluctuating-charge models: theory and applications

QEq has wrong asymptotics

q =!1 ! !2

J11 + J22 ! J12

0.0

0.2

0.4

0.6

0.8

1.0

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

R/Å

q/e

QEq

ab initio

Na ClR

asymptote ~ 0.43 ≠ 0

J12 → 0+

-

+

-

+

-

+

-

Page 32: Fluctuating-charge models: theory and applications

In fluctuating-charge models like QEq, all

molecules are metallic

Page 33: Fluctuating-charge models: theory and applications

η2

QTPIE, our new charge modelCharge-transfer with polarization current

equilibrationVoltage attenuates with increasing distance

J. Chen and T. J. Martínez, Chem. Phys. Lett. 438 (2007) 315-320.

voltage

distance

η2

Page 34: Fluctuating-charge models: theory and applications

η2

QTPIE, our new charge modelCharge-transfer with polarization current

equilibrationVoltage attenuates with increasing distance

J. Chen and T. J. Martínez, Chem. Phys. Lett. 438 (2007) 315-320.

voltage

distance

η2

η2

Page 35: Fluctuating-charge models: theory and applications

Making QTPIE (Step 1)

J Chen and T J Martínez, Chem. Phys. Lett. 438 (2007), 315-320.

To make the proposed change, first change variables

E =!

i

qi!i +12

!

ij

qiqjJij

=!

ij

pji!i +12

!

ijkl

pkipljJij

qi =!

j

pji

Charge transfer variables quantify how much charge went from one atom to another, and are indexed over pairs

p12

p23

p34

p45

Still QEq!Same model,new representation

Page 36: Fluctuating-charge models: theory and applications

Making QTPIE (Step 2)

J Chen and T J Martínez, Chem. Phys. Lett. 438 (2007), 315-320.

atomic electronegativities become bond electronegativities

Sij =!

R3!i(r)!j(r)dr

EQEq =!

ij

pji!i +12

!

ijkl

pkipljJij

EQTPIE =!

ij

pji!ikijSij +12

!

ijkl

pkipljJij

Page 37: Fluctuating-charge models: theory and applications

0.0

0.2

0.4

0.6

0.8

1.0

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

R/Å

q/e

QEq

QTPIE

ab initio

QTPIE has correct limit

q =(!1 ! !2)S12

J11 + J22 ! J12

q =!1 ! !2

J11 + J22 ! J12

Na ClR

Page 38: Fluctuating-charge models: theory and applications

Reverting to charge variables

p12p13

p34

p14

p23

p24

q1

q2 q3

q4qi =

!

j

pji

?

Adjacency matrix of an oriented complete graph with 4 vertices

!

""#

q1

q2

q3

q4

$

%%& =

!

""#

!1 !1 !1 0 0 01 0 0 !1 !1 00 1 0 1 0 !10 0 1 0 1 1

$

%%&

!

""""""#

p12

p13

p14

p23

p24

p34

$

%%%%%%&

Page 39: Fluctuating-charge models: theory and applications

Reverting to charge variables

p12p13

p34

p14

p23

p24

q1

q2 q3

q4qi =

!

j

pji

?

Inverse transformation is determined by pseudoinverse of adjacency matrix

!

""""""#

p12

p13

p14

p23

p24

p34

$

%%%%%%&=

!

""#

!1 !1 !1 0 0 01 0 0 !1 !1 00 1 0 1 0 !10 0 1 0 1 1

$

%%&

+ !

""#

q1

q2

q3

q4

$

%%&

=14

!

""""""#

!1 1 0 0!1 0 1 0!1 0 0 10 !1 1 00 !1 0 10 0 !1 1

$

%%%%%%&

!

""#

q1

q2

q3

q4

$

%%&

Page 40: Fluctuating-charge models: theory and applications

Reverting to charge variables

p12p13

p34

p14

p23

p24

q1

q2 q3

q4qi =

!

j

pji

Inverse transformation is determined by pseudoinverse of adjacency matrix

!

""""""#

p12

p13

p14

p23

p24

p34

$

%%%%%%&=

!

""#

!1 !1 !1 0 0 01 0 0 !1 !1 00 1 0 1 0 !10 0 1 0 1 1

$

%%&

+ !

""#

q1

q2

q3

q4

$

%%&

=14

!

""""""#

!1 1 0 0!1 0 1 0!1 0 0 10 !1 1 00 !1 0 10 0 !1 1

$

%%%%%%&

!

""#

q1

q2

q3

q4

$

%%&

pji =qi ! qj

N

Page 41: Fluctuating-charge models: theory and applications

Reverting to charge variables

Charge transfer variables have massive linear redundancy due to Kirchhoff’s voltage law

p12

p23

p31

p12 + p13 + p31 = 0

Page 42: Fluctuating-charge models: theory and applications

Execution times

0.01

0.1

1

10

100

1000

104

10 100 1000 104 105

TImes to solve the QTPIE model

Bond-space SVDBond-space COFAtom-space iterative solverAtom-space direct solver

Sol

utio

n tim

e (s

)

Number of atoms

N1.81N6.20

N

Page 43: Fluctuating-charge models: theory and applications

Cooperative polarization in water

• Dipole moment of water increases from 1.854 Debye1 in gas phase to 2.95±0.20 Debye2 at r.t.p. (liquid phase)

• Polarization enhances dipole moments

• Missing in models with implicit or no polarization

!"+

1. D R Lide, CRC Handbook of Chemistry and Physics, 73rd ed., 1992.2. AV Gubskaya and PG Kusalik J. Chem. Phys. 117 (2002) 5290-5302.

Page 44: Fluctuating-charge models: theory and applications

Polarization in water chains• Use parameters from single water molecule

to model chains of waters

• Compare QEq and QTPIE with:

๏ Gas phase experimental data1

๏ Ab initio DF-LMP2/aug-cc-pVDZ

๏ AMOEBA2, an inducible dipole model

๏ TIP3P, a common implicit polarization model

1. WF Murphy J. Chem. Phys. 67 (1977), 5877-5882.2. P Ren and JW Ponder J. Phys. Chem. B 107 (2003), 5933-5947.

H! = E!

Page 45: Fluctuating-charge models: theory and applications

Our new water model

EMM =!

i!bonds

ki (Ri !Reqi )2

+!

i!1,3-bonded

kUBi

"RUB

i !RUB,eqi

#2

+!

i!angles

!i ("i ! "eqi )2

+!

ij

4#ij

$%$ij

rij

&12

!%

$ij

rij

&6'

+EQTPIE

E =!

b!bonds

kb(rb ! r0b )2 +

!

b!1,3int.

kUBb (rUB

b ! rUB,0b )2

+!

a!angles

!a("a ! "0a)2

+!

i<j!atoms

4#ij

"#$ij

rij

$1

2!#

$ij

rij

$6

)

+EQTPIE

Flexible SPC/E, but with QTPIE electrostaticsFit to gas-phase data, and test transition to bulk in 1 dim.

!"!ij

rij

#12

!"

!ij

rij

#6$

Page 46: Fluctuating-charge models: theory and applications

Dipole moment per water

0 5 10 15 20 25

Number of molecules

1.8

1.9

2.0

2.1

2.2

2.3

2.4

2.5

2.6

Dip

ole

mom

ent/

mol. (

Debye)

DF-LMP2/aug-cc-PVTZ

QTPIE

QEq

AMOEBA

Page 47: Fluctuating-charge models: theory and applications

Polarizability per water

0 5 10 15 20 25

Number of molecules

1.0

1.5

2.0

2.5

3.0

3.5Tra

nve

rse p

ola

riza

bili

ty/m

ol.

(Å!)

DF-LMP2/aug-cc-PVTZ

QTPIE

QEq

AMOEBA

Page 48: Fluctuating-charge models: theory and applications

Polarizability per water

0 5 10 15 20 25

Number of molecules

.0

.5

1.0

1.5

2.0

2.5

3.0

3.5Longit

udin

al p

ola

riza

bili

ty (

Å!)

DF-LMP2/aug-cc-PVTZ

QTPIE

QEq

AMOEBA

Page 49: Fluctuating-charge models: theory and applications

Polarizability per water

0 5 10 15 20 25

Number of molecules

.0

.5

1.0

1.5

Out-

of-

pla

ne

pola

riza

bili

ty (

Å!)

DF-LMP2/aug-cc-PVTZ

QTPIE QEq

AMOEBA

Page 50: Fluctuating-charge models: theory and applications

Charge transfer in 15 waters

1 3 5 7 9 11 13 15Index of water molecule

-.05

-.03

-.01

.01

.03

.05

Ch

arg

e o

n w

ate

r m

ole

cu

le

QEq

QTPIE

Mulliken

1 3 5 7 9 11 13 15Index of water molecule

-.05

-.03

-.01

.01

.03

.05

Ch

arg

e o

n w

ate

r m

ole

cu

le

QEq

QTPIE

Mulliken

1 3 5 7 9 11 13 15Index of water molecule

-.05

-.03

-.01

.01

.03

.05

Ch

arg

e o

n w

ate

r m

ole

cu

le

QEq

QTPIE

Mulliken

1 3 5 7 9 11 13 15Index of water molecule

-.05

-.03

-.01

.01

.03

.05

Ch

arg

e o

n w

ate

r m

ole

cu

le

QEq

QTPIE

Mulliken

1 3 5 7 9 11 13 15Index of water molecule

-.05

-.03

-.01

.01

.03

.05C

ha

rge

on

wa

ter

mo

lec

ule

QEq

QTPIE

Mulliken

Page 51: Fluctuating-charge models: theory and applications

Summary

• Polarization and charge transfer are important effects usually neglected in classical MD

• Our new charge model corrects deficiencies in existing fluctuating-charge model at similar computational cost

• We obtain quantitative polarization and qualitative charge transfer trends in linear water chains