florida bioreactor landfill demonstration project e/swana2001.pdflandfill surface well bottom safety...

36
Aerobic vs. Anaerobic Bioreactor Landfill Case Study: the New River Regional Landfill Presented at SWANA’s 6 th Annual Landfill Symposia San Diego, CA June 18-20, 2001 Debra R. Reinhart, PhD Timothy Townsend, PhD

Upload: others

Post on 22-Oct-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

  • Aerobic vs. Anaerobic Bioreactor Landfill Case Study: the New

    River Regional Landfill

    Presented at SWANA’s 6th Annual Landfill Symposia

    San Diego, CAJune 18-20, 2001

    Debra R. Reinhart, PhDTimothy Townsend, PhD

  • View of drill rig from the landfill’s entrance road.Drill Rig Panorama

  • Presentation Overview

    • Brief overview of NRRL bioreactor project

    • Flammability issues• Cost issues• Moisture balance issues• Waste degradation issues• Process control impacts

  • Project Location

  • Cell 3Cells 1 & 2

    Bioreactor

  • Bioreactor Components

    • Leachate Collection System Modifications

    • Leachate/Air Injection• Gas Collection• Geomembrane Cap

  • • Three Wells

    • Spacing 3-5 ft

    • Maintain 10 ft distancefrom top of sand drainage layer to bottom of the well

    Top of Landfill

    Top of Sand DrainageBlanket

    10 ft

    Cluster Well Sketch

  • Bioreactor Gas Extraction

    Cell 1Cell 2

  • GeomembraneCap

    Gas

  • Monitoring

    • Leachate• Landfill Gas• Waste Properties• Settlement

  • Instrumentation

    • Head on Liner• Leachate Flow• Landfill Temperature• Landfill Moisture Content

  • Moisture Sensors

  • New River Regional Landfill Bioreactor Demonstration ProjectCross Section on Injection Cluster Wells C8 (x=600)

    120

    130

    140

    150

    160

    170

    180

    190

    200

    210

    220

    -100 0 100 200 300 400 500 600 700 800 900

    Y

    Elev

    atio

    n

    Landfill Surface Well Bottom Safety Zone Bottom Liner

    10 ft

    CN8CL8

    CJ8 CH8 CF8CD8

  • 0 100 200 300 400 500 600 700 800

    0

    100

    200

    300

    400

    500

    600

    700

    800

    900

    New River Regional Landfill Bioreactor Project

    New River Regional LandfillLocation: Union County, Florida

    Monitoring WellInjection Well

    Bioreactor Landfill BoundaryAccess Road

    Legend General Temperatute SketchInjection Wells Sheet Nº

    1/4

    File: temp def sketch.srf Date: 05/30/01Scale: 1:125Units:English

  • Scale: 1:50Units:English

    New River Regional Landfill Bioreactor Project

    New River Regional LandfillLocation: Union County, Florida

    Monitoring WellInjection Well

    Bioreactor Landfill BoundaryAccess Road

    Legend Temperature MapInjection Wells B (~40-50 ft deep) Sheet Nº

    3/4

    File: Temperature.srf Date: 05/30/01

    300 350 400 450 500 550

    250

    300

    350

    400

    450

    500

    CN2

    CL2

    CJ2

    CH2

    CF2

    CD2

    CC3

    CF3

    CG3

    CI3

    CK3

    CM3

    CO3

    CN4

    CL4

    CJ4

    CH4

    CF4

    CD4

    CC5

    CE5

    CG5

    CI5

    CK5

    CM5

    CO5

    CN6

    CL6

    CJ6

    CH6

    CF6

    CD6

    CC7

    CE7

    CG7

    CI7

    CK7

    CO7

    CN8

    CL8

    CJ8

    CF8

    CD8

    100102104105106108110112114115116118120122124125126128130132

  • 0

    10

    20

    30

    40

    50

    60

    7080 85 90 95 100 105 110 115 120 125 130

    Temperature (degrees F)

    Dep

    th fr

    om

    To

    p o

    f La

    ndfil

    l (ft

    )

    TP3 TP2

    TP4 TP1

    TP4 TP5

    New River Regional LandfillTemperature Profiles

  • Monitoring Probe

    InstrumentationPackageClay

  • Instrumentation and Injection Wells

  • Anaerobic vs. Aerobic Landfilling

    • Flammability• Moisture Balance• Process Control• Degradation Pathways• Waste Degradation• Costs

  • 02468

    10121416182022

    0 5 10 15 20 25% Methane

    % O

    xyge

    nMixtures that can

    not be formed

    ExplosiveRange

    Not capable offorming flammablemixtures with air

    Capable of forming flammablemixtures with air (contains too

    much methane to be in explosive range)

  • 02468

    10121416182022

    0 5 10 15 20 25 30 35 40 45 50 55% Methane

    % O

    xyge

    n

    Arid Region Landfill

    Air

    Aerobic Landfill

    Anaerobic Landfill

  • Moisture Issues: Anaerobic Decomposition

    →+ OHOHC 25106 24 33 COCH +

  • Moisture Issues: Aerobic Decomposition

    →+ 25106 6OOHC OHCO 22 56 +

  • Aerobic Landfill

  • Moisture Balance

    Moisture,gpm/acre

    Aerobic Anaerobic

    Loss/Gain –Biodegradation

    0.51 0.24

    Removed inExhaust Gas

    1.16 0.21

    Required Input 0.65 0.45

  • Measure GasConcentration

    Plot data Immediate-ly stop airinjection

    Gas inexplo-sive

    range.

    Gasoutside ofexplosive

    MonitoringPoint inAnaerobic?

    MonitoringPoint inAerobic

    O2 >2 %CH4 2 %

    ConsiderIncr. Flow

    Decrease Air

    YesNo

    O2 10%

    Control Diagram

  • MeasureTemperature

    T < 140 °F

    T > 140 °FT < 160 °F

    T > 160 °FT < 170 °F

    T > 170 °F

    Possible concern. Check gas concentrations.If anaerobic → Add leachateIf aerobic → Reduce air flow rate. Track the rate oftemperature increase of this area. If a rate of 1°F perday (weekly average) is exceeded, stop air injectionand add leachate/water.

    Temperature may be below optimum. Investigateand revise operations as desired. Not a safety hazard.

    Optimum conditions. Operate and monitor asscheduled.

    Condition of concern. Stop air injection. Addleachate at permitted amount only, or request thatDEP allows more liquid volume injection.

  • Waste Degradation

    • Different pathways– Some compounds are recalcitrant under aerobic

    conditions and degrade under anaerobic conditions and vice versa

    • Energy yields– Aerobic reactions yield more energy, this can lead

    to elevated temperatures under low MC• Byproduct formation

    – H2S– Methane

  • Waste Stabilization

    0.00

    10.00

    20.00

    30.00

    40.00

    50.00

    60.00

    70.00

    80.00

    0 10 20 30 40 50

    Time, years

    CO

    D, g

    /L

  • Leachate COD Reduction Half-Lives

    Scale OperatingRegime

    COD Half-Life,Days

    Laboratory Anaerobic Wet 26 – 157Laboratory Anaerobic Conventional 150 – 1369Laboratory Semi-aerobic Wet 24Laboratory Semi-aerobic Conventional 26

    Pilot Anaerobic Wet 117Pilot Anaerobic Conventional 99Full Anaerobic Wet 285 – 383Full Anaerobic Conventional 3650

  • Cost Issues

    Aerobic– Energy

    Requirements– Loss of methane– Potential GHG

    emission offset credits

    – Additional moisture requirements

    Anaerobic– Gas

    collection/treatment– Additional leachate

    treatment

  • Energy Considerations –Aerobic Landfill

    • Blowers– Push air through landfill– 4.75 x volume of anaerobic gas production– NRRL Aerobic Energy Requirements 12 x

    Anaerobic

  • Conclusions• Power requirements are twelve times higher for an

    aerobic bioreactor as compared to the anaerobicbioreactor.

    • Aerobic bioreactor moisture requirements are 29%higher.

    • Due to the presence of diluent gases in aerobicbioreactor gases, flammable conditions are unlikelyto develop, particularly if process conditions ensurelow oxygen levels.

    • The addition of water and air significantlyaccelerations the rate of reduction of organic materialin leachate.

    • Oxygen content and internal temperature are criticalcontrol components for aerobic and anaerobicbioreactors

  • Schedule (Estimated)

    • Permit Award: December 2000• Instrumentation Installation: Spring

    2001• Bioreactor Construction: Fall 2001• Begin Bioreactor Operation: Late

    2001

    Aerobic vs. Anaerobic Bioreactor Landfill Case Study: the New River Regional LandfillDrill Rig PanoramaPresentation OverviewSlide Number 4Slide Number 5Slide Number 6Bioreactor ComponentsCluster Well SketchBioreactor Gas ExtractionGeomembrane�CapSlide Number 11MonitoringInstrumentationMoisture SensorsSlide Number 15Slide Number 16Slide Number 17Slide Number 18Monitoring ProbeInstrumentation and Injection WellsAnaerobic vs. Aerobic LandfillingSlide Number 22Slide Number 23Moisture Issues: Anaerobic DecompositionMoisture Issues: Aerobic DecompositionAerobic Landfill Moisture BalanceSlide Number 28Slide Number 29Waste Degradation Waste StabilizationLeachate COD Reduction Half-Lives Cost IssuesEnergy Considerations – Aerobic LandfillConclusionsSchedule (Estimated)