flexure stainless example

36
Structural Calculations Job. No. 14-366 nitials JDH Date: 1/19/22 K2 Engineering and Structural Design Job Name: Bitz Residence Architect: NA ob Address: 155 Oregon Blvd. Reno, NV 90506 APN 080-324-08 escription: New Wood framed residence Wood: Bending Fb (PSI) 4X or Less #2 2" and Wider 900 575 180 625 1350 1600000 Stud Grade 525 450 180 625 775 1400000 6X or Greater #1 1350 675 170 625 925 1600000 Microllam LVL 2600 285 750 2310 1900000 Parallam PSL 2900 290 650 2900 2000000 Glu-Lam Beams Unbalanced Dry Use 24F-V4 DF/DF 2400 1150 190 650 1650 1800000 Balanced for Cont. 24F-V8 DF/DF 2400 1150 190 650 1650 1800000 or Cantilevered Wood Framing per 2012 National Design Specifications Code: I.B.C. 2012 Edition Steel: Anchor Bolts - A307, Threaded Rods - A307, Rebar - f's=40ksi or better Structural Wide Flange - Fy=50 ksi, Structural Tubes - Fy=46 ksi Steel Moment Frames - A992 Grade 50 Steel - special inspection and UT testing required Concrete: f'c=2,500 psi for all slabs, continuous foundations and spread footings - no inspection required. f'c=3,000 psi for all structural grade beams - inspection required. Masonry: f'm=1,500 psi - inspection required, f'm=750 psi - no inspection required Joel D. Heidema Douglas Fir-Larch (G = 0.5) Moisture content not to exceed 19% Size Classification Tension Parallel to Grain (PSI) Shear Parallel to Grain Fv (PSI) Compression Perpendicular to Grain Compression Parallel to Grain Modulus of Elasticity (PSI) 1-3/4" Wide Plies

Upload: jh50000

Post on 06-Dec-2015

55 views

Category:

Documents


26 download

DESCRIPTION

Excel sheet with stainless steel design example

TRANSCRIPT

Page 1: Flexure Stainless Example

Joel D. Heidema Structural Calculations

Job. No. 14-366 Initials: JDH Date: 4/18/23K2 Engineering and Structural Design

Job Name: Bitz ResidenceArchitect: NA

Job Address: 155 Oregon Blvd. Reno, NV 90506

APN 080-324-08Description:

New Wood framed residence

Wood:

Siz

e C

lass

ifica

tion

Ben

ding

Fb

(PS

I)

4X or Less#2 2" and Wider 900 575 180 625 1350 1600000

Stud Grade 525 450 180 625 775 14000006X or Greater

#1 1350 675 170 625 925 1600000Microllam LVL

1-3/4" Wide Plies 2600 285 750 2310 1900000Parallam PSL

2900 290 650 2900 2000000Glu-Lam Beams

Unbalanced Dry Use 24F-V4 DF/DF 2400 1150 190 650 1650 1800000Balanced for Cont. 24F-V8 DF/DF 2400 1150 190 650 1650 1800000

or CantileveredWood Framing per 2012 National Design Specifications

Code: I.B.C. 2012 EditionSteel: Anchor Bolts - A307, Threaded Rods - A307, Rebar - f's=40ksi or better

Structural Wide Flange - Fy=50 ksi, Structural Tubes - Fy=46 ksiSteel Moment Frames - A992 Grade 50 Steel - special inspection and UT testing required

Concrete: f'c=2,500 psi for all slabs, continuous foundations and spread footings - no inspection required.f'c=3,000 psi for all structural grade beams - inspection required.

Masonry: f'm=1,500 psi - inspection required, f'm=750 psi - no inspection required

Douglas Fir-Larch(G = 0.5)

Moisture content not to exceed 19%

Te

nsi

on

Pa

ralle

l to

G

rain

(P

SI)

Sh

ea

r P

ara

llel t

o

Gra

in F

v (P

SI)

Co

mp

ress

ion

P

erp

en

dic

ula

r to

Gra

in

Co

mp

ress

ion

Pa

ralle

l to

Gra

in

Mo

du

lus

of

Ela

stic

ity

(PS

I)

Page 2: Flexure Stainless Example

Ground Snow Loads Northern Nevada

For:

Bitz Residence

Project Region: West of U.S. Hwy 395 Sierra Slope

Project Elevation: 4958'

Table 1608.2.1

Lake Tahoe Basin

4500 30 30 10 -5000 30 30 30 -5100 41 31 31 -5200 52 33 33 -5300 64 34 34 -5400 75 35 35 -5500 86 37 37 -6000 142 43 43 2206500 171 43 43 2357000 200 57 57 2507500 215 57 57 2658000 229 86 86 2808500 243 86 86 2959000 271 114 114 3309500 300 142 142 390

10000 357 142 142 420

30 psf

1. Drift load design in the 30-psf zones may utilize ASCE 7-10 table C7-1 ground snow values

3. Intermediate values may be interpolated by proportion

Elevation (ft)

West of U.S. Hwy 395 Sierra Slope

East of U.S. Hwy 395

Lyon & Story Counties

Carson, Douglas, Washoe, Reno

Carson, Douglas, Washoe Counties,

Reno & Sparks

Lyon & Story Counties

All Nevada Coutnies

Ground Snow Load, pg =

2. The final roof design snow loads shall not be less than 20 psf after all reductions are factored, except for Lyon and Story Counties

Page 3: Flexure Stainless Example

Snow Loads

Pitch = 4 :12

Eq. 7.3-1 ###

30 psf Figure 7-1 Or Per Local Building Official A (see Section 1609.4)

Terrain Category = B (see Section 1609.4)

Exposure of Roof = C (see Section 1609.4)

Thermal Condition = D (see Section 1609.4)

1 Table 1604.5, ASCE Table 11.5-1 Above the treeline in windswept mountainous areas

0.9 ASCE Table 7-2 In Alaska, in areas where trees do not exist within a 2-mile radius of the site

1.1 ASCE Table 7-3 ###

20.79 psf All structures except as indicated below

20 psf Structures kept just above freezing and others with cold, ventilated roofs in which the thermal resistance (R-value) 1.1 between the ventilated space and the heated space exceeds 25 ft2¥hr¥¡F/Btu

20.79 psf Unheated structures

Continuously heated greenhouses with a roof having a thermal resistance (R-value) less than 2.0 ft2¥hr¥¡F/Btu

Eq. 7-2

20.79 psf ###

Slope Θ = 19 Unobstructed Slippery Surfaces

1.1 All Other Surfaces

1.00 7.4.1, 7.4.2, 7.4.3 Figure 7.2a,b and c ###

20.79 psf W = 20.00 ###Balanced and Unbalanced Snow Load for Hip and Gable Roof ###

Snow Density γ = Eq (7-3) ###

= 17.90 pcf 6.89L/W = 1.50 Θ = 19 ###

0.58

Θ > 9.27 L= 30.0 Θ >

20.79 psf Θ ≤See Figure 7.3 for Curved Roof BALANCED ###See Figure 7.4 for Cont Beam ###See Figure 7-6 for Sawtooth Roof =1.5ps/Ce for Θ > 5 W ≤ 20See Figure 7-8 for Snow Drifts UNBALANCED W ≤ 20 34.65 psf W > 20

6.24 psfUNBALANCED W > 20 N/A Θ >275βpf/γW

Θ >275βpf/γW Θ ≤275βpf/γW35.77 psf 35.77 psf

1608.3 FLAT ROOF SNOW LOAD (slope ≤ 5o )

Flat-roof snow load, pf = 0.7CeCtIspg

Ground snow load, pg =

Snow load importance factor, Is =

Snow exposure factor, Ce =

Thermal factor, Ct =

Flat-roof snow load, pf =

Min pf =

Design pf =

1608.4 SLOPE ROOF SNOW LOAD (slope > 5o )

ps = Cspf

Design pf =o

Ct =

Slope factor Cs =

ps =

.13pg + 14 ≤ 30 pcf

he =

β =

275βpf/γW =

ps =

275βpf/γW

B7
1608.3 Flat roof snow loads. The flat roof snow load, pf , on a roof with a slope equal to or less than 5 degrees (0.09 rad) (1inch per foot = 4.76 degrees) shall be calculated in accordance with Section 7.3 of ASCE 7.
B19
1608.4 Sloped roof snow loads. The snow load, ps, on a roof with a slope greater than 5 degrees (0.09 rad) (1 inch per foot = 4.76 degrees) shall be calculated in accordance with Section 7.4 of ASCE 7
Page 4: Flexure Stainless Example

DESIGN LIVE AND DEAD LOADS

ROOF DEAD LOAD: ROOF TYPE 1 ROOF DEAD LOAD: ROOF TYPE 2

NO

TE

: S

OM

E L

OA

DS

MA

Y N

OT

BE

AP

PL

ICA

BL

E

Roofing Material (Comp Roof) = 5.0 PSF Roofing Material (Assume Clay Tiles) = PSFRoof Felt (Assume 5-ply) = 4.0 PSF Roof Felt (Assume 5-ply) = PSFRoof Sheathing (Assume 5/8") = 3 PSF Roof Sheathing (Assume 5/8") = PSFRoof Trusses @ 24" O.C. = 4.5 PSF Roof Trusses @ 24" O.C. = PSFGypsum Board (Assume 5/8") = 2.5 PSF Gypsum Board (Assume 5/8") = PSFInsulation = 3.0 PSF Insulation = PSFMech., Elec., Sprinklers = 2.5 PSF Mech., Elec., Sprinklers = PSF

SUB-TOTAL = 24.5 PSF SUB-TOTAL = 0.0 PSFSlope Correction "X:12" 12.00 1.41 PSF Slope Correction "X:12" 5.00 1.08 PSFMiscellaneous = 25.9 PSF Miscellaneous = 1.0 PSF

ROOF DEAD LOAD = 20 PSF ROOF DEAD LOAD = 0 PSFROOF LIVE/SNOW LOAD = 21 PSF ROOF LIVE/SNOW LOAD = 0 PSFTOTAL ROOF LOAD = 41 PSF TOTAL ROOF LOAD = 0 PSF

EXTERIOR WALL LOADS: FLOOR DEAD LOAD:Western Red Ceder = 17.0 PSF Floor Finish = 4.0 PSFWall Sheathing (Assume 15/32") = 0 PSF Floor Sheathing (Assume 3/4") = 2.5 PSFWall Studs (Assume 2x6's at 16" o.c.) = 0.0 PSF Floor Joists = 5.0 PSFInsulation = 0.5 PSF Insulation = 1.0 PSFGypsum Board (Assume 1/2") = 2.5 PSF Mech., Elec., Sprinklers = 2.0 PSFMiscellaneous = 0.5 PSF SUB-TOTAL = 14.5 PSF

SUB-TOTAL = 20.5 PSF FLOOR DEAD LOAD = 15 PSFTOTAL EXTERIOR WALL = 21 PSF FLOOR LIVE LOAD = 40 PSF

INTERIOR WALL LOADS: DECK LOADS:Finishes = 0.5 PSF Finishes = 4.0 PSFGypsum Board (Assume 1/2") = 2.5 PSF Floor Sheathing (Assume 3/4") = 2.5 PSFWall Studs (Assume 2x6's at 16" o.c.) = 1.0 PSF Floor Joists = 6.0 PSFMiscellaneous = 3.0 PSF SUB-TOTAL = 12.5 PSF

SUB-TOTAL = 7.0 PSF DEAK DEAD LOAD 10 PSFTOTAL INTERIOR WALL = 10 PSF DECK LIVE LOAD = 40 PSF

WIND LOADS

WIND LOADS:= 130 MPH IBC Figure 1609A,B,C; Ultimate Design Wind Speeds

= 101 MPH IBC Eq. 16-33 Nominal Design Wind Speed

Exposure Category: = C IBC 1609.4 Exposure Category

Risk Category: = II IBC Table 1604.5

Topographic Factor (Kzt): = 1.0 ASCE 7-10 FIG. 26.8-1

Internal Pressure Coefficient: = +/- 0.18 ASCE 7-10 6.5.7

Components & Cladding Press. Wall = 35.1 PSFComponents & Cladding Press. Roof = 17.9 PSF

ASCE 7-10 Low Rise Building Method Ch. 28 ASCE 7-10 Low Rise Buildings Simplified Ch. 30

SEISMIC AND SOURCE DATA

Site Class: D ASCE7-10 Ch. 20 Seismic Design Category: D IBC Table 1613.3.5 (1,2)

1.500 IBC Figures 1613.5 (1-14) 1.000 IBC EQ. 16-39

0.661 IBC Figures 1613.5 (1-14) 0.661 IBC EQ. 16-40

Importance Factor 1.0 ASCE7-10 Table 1.5-2 Resisting System: A.15 ASCE 7-10 Table 12.2-1

Response Coef. (R): 6.5 ASCE7-10 Table 12.2-1 Redundancy Factor (ρ): 1.3 ASCE 7-10 Table 12.3.4.2Story Force Factor (F): 1 ASCE7-10 12.14.8.1

1.5 IBC Table 1613.3.3 (2)

Site Coefficient (Fa): 1.0 IBC Table 1613.3.3 (1) V=[(F*Sds)/(1.4*R)]*W V = 0.143 WIBC Chapter 16

SOILS DATA

SOILS REPORT : None Provided - Assume Code MinimumsGEOTECHNICAL ENGINEER : N/A DATE OF REPORT : N/A

BASIC BEARING PRESSURE:PADS & CONT. FNDT. = Qa = 2,000 PSF USE SOIL BEARING PRESSURE = 2,000 PSF

INCREASE FOR WIDTH = N/A %INCREASE FOR DEPTH = N/A %

MAX. SOIL PRESSURE - Qa = N/A PSF

ALLOW PASSIVE PRESSURE = 135.0 PCF EQUIV. FLUID PRESSURE = 35.0 PCF

Wind Speed (Vult):

Wind Speed (VASD):

ASCE 7-10 FIG. 30.5-1 50ft²

ASCE 7-10 FIG. 30.5-1 50ft²

Velocity Pressure qz = 0.00256 Kz Kzt Kd V2 (Eq. 28.3-1) Components and Cladding pnet = λKzt pnet30 (Eq. 30.5-1)

Ss (%g): Sds:S1 (%g): Sd1:

Site Coefficient (Fv): BASE SHEAR EQUATION (ASCE 7-10, 12.14.8.1)

Page 5: Flexure Stainless Example

Posts

AXIAL COMPRESSION LOADS (pounds) WITH Cd=1.0

HEIGHTDouglas Fir-Larch #2 Douglas Fir Larch #1

2x4 2x6 4x4 4x6 4x8 6x6 6x8 8x82 18,385 27,680 34,890 30,000 40,900 56,0004 6,770 11,600 15,793 24,001 30,533 29,200 39,800 55,2006 4,690 10,500 10,935 16,923 21,935 27,600 37,600 53,8008 3,000 8,710 7,001 10,929 14,304 24,800 33,900 51,600

10 2,010 6,700 4,694 7,352 9,656 21,000 28,600 48,20012 3,332 5,226 6,871 16,900 23,000 43,50014 2,478 3,888 5,119 13,400 18,300 38,00016 1,911 2,999 3,950 10,700 14,600 32,400

* Use minimum one stud per each girder truss ply under all girder truss bearing points, U.N.O.

Please Note: Reactions from beam and truss calculations have been considered and compared with the values in the above table

Page 6: Flexure Stainless Example

CONTINUOUS FOOTINGS

12" 10" (2) #4 6,000 LBS 1,500 PLF 8,000 LBS 2,000 PLF

16" 10" (2) #4's 8,000 LBS 2,000 PLF 10,667 LBS 2,667 PLF

18" 10" (2) #4's 9,000 LBS 2,250 PLF 12,000 LBS 3,000 PLF

21" 10" (2) #4's 10,500 LBS 2,625 PLF 14,000 LBS 3,500 PLF

24" 10" (2) #4's 12,000 LBS 3,000 PLF 16,000 LBS 4,000 PLF

28" 10" (3) #4's 14,222 LBS 3,500 PLF 20,222 LBS 4,667 PLF

32" 10" (3) #4's 16,111 LBS 4,000 PLF 23,111 LBS 5,333 PLF

36" 10" (3) #4's 18,000 LBS 4,500 PLF 26,000 LBS 6,000 PLF

- All Footings Shall Bear on Undisturbed Soil

-

-

STEMWALL

-8" Wide

- (1) #4 Continuous at the Top

- (1) #4 Vertical @ 32" on center Hooked at Footing (Alternate Hooks)

SYMBOL WIDTHN/A to monopour

DEPTH STEELcontinuous

CAPACITY(1500 PSF)

CAPACITY(1500 PSF)

CAPACITY(2000 PSF)

CAPACITY(2000 PSF)

(1-story only)

Assume Soil Bearing Pressure has been Determined and Increased in Accordance with chapter 18 of IBC 2006

Exterior Footings shall bear @ or below the frostline per applicable local codes

12

16

18

21

24

28

36

32

Page 7: Flexure Stainless Example

PIER FOOTINGS

12" 10" (2) #4's 1,500 LBS 2,000 LBS

14" 10" (2) #4's 2,042 LBS 2,722 LBS

16" 10" (2) #4's 2,667 LBS 3,556 LBS

18" 10" (3) #4's 3,375 LBS 4,500 LBS

21" 10" (3) #4's 4,594 LBS 6,125 LBS

24" 10" (3) #4's 6,000 LBS 8,000 LBS

28" 12" (3) #4's 8,167 LBS 10,889 LBS

32" 12" (4) #4's 10,667 LBS 14,222 LBS

36" 12" (5) #4's 13,500 LBS 18,000 LBS

42" 12" (6) #4's 18,375 LBS 24,500 LBS

48" 14" (7) #4's 24,000 LBS 32,000 LBS

54" 14" (8) #4's 30,375 LBS 40,500 LBS

60" 14" (9) #4's 37,500 LBS 50,000 LBS

Please Note: Reactions from beam calculations have been considered and compared with the pier schedule above

- All Footings Shall Bear on Undisturbed Soil

-

- Exterior Footings shall bear @ or below the frostline per applicable local codes

SYMBOL WIDTH(each side)

DEPTH STEEL(each way)

CAPACITY(1500 PSF)

CAPACITY(2000 PSF)

Assume Soil Bearing Pressure has been Determined and Increased in Accordance with chapter 18 of IBC 2006

12

14

16

18

21

24

28

32

36

42

48

54

6612121260

Page 8: Flexure Stainless Example

PROJECT: Bitz Residence 4/18/2023

FOUNDATION DESIGN:

ALLOWABLE SOIL BEARING CAPACITY= 2000 PSFNUMBER OF STORIES= 1

PIER ID LOAD (lb) FOOTING SIZE FOOTING CAPACITY(SQ INCHES) (lb)

PF1 1000 12 2000

Page 9: Flexure Stainless Example

Point Load on Continuous FTGSoil Bearing Pressure = 2000 psf

Pier Pier Size(ft)P1 16000 1000 16 82 2170.73171 No Pier Req'd

Point Load #

Line Load (PLF)

Cont. FTG Size (INCHES)

FTG Depth (INCHES)

Total Line Load

Page 10: Flexure Stainless Example

PierP1

Page 11: Flexure Stainless Example

Lateral Design CriteriaSubject Bitz ResidenceJob # 14-366Date 4/18/2023By JDH

Lateral Design Loads

Wind Load ( Envelope Procedure Simple Diaphragm)

Width 64 ftLength 45 ftMean Roof Height 14 ft

End Zone 2a= 9 ft

Roof Pitch Gable End 4:12 See Printout to Follow

ZoneA 32.4 43.6B 0.0 0.0C 21.5 29.0D 0.0 0.0

Seismic Loads

1.50

0.66

1.00

1.50F 1.00I 1.00ρ 1.30

1.00

0.66R 6.5

0.143 *W

Weight Base ShearType (psf) Type (psf)

20 2.9

15 2.1

ps30(130) (psf) ps30(130) (psf)

SS

S1

FA

FV

SDS

SD1

V= [I*ρ*F*SDS/1.4*R]*W=

WRoof WRoof

WFloor WFloor

Page 12: Flexure Stainless Example

21 3.0WWall WWall

Page 13: Flexure Stainless Example

2012 IBC Wind Design PressuresEnvelope Procedure

Enclosed Simple Diaphragms

130 mph (3 second gust)Exposure C

Mean Roof Height 14

4/12 Pitch

Zone λA 36.035732 1.21 43.6 26.161941B -10.23823 1.21 -12.4 -7.432954C 23.980054 1.21 29.0 17.409519D -5.71302 1.21 -6.9 -4.147653E -32.2 1.21 -39.0 -23.3772F -20.03823 1.21 -24.2 -14.54775G -22.4 1.21 -27.1 -16.2624H -15.48172 1.21 -18.7 -11.23973

-45.1 1.21 -54.6 -32.7426

-35.3 1.21 -42.7 -25.6278

Flat / Gable End

Zone λA 26.8 1.21 32.4 19.4568B -13.9 1.21 -16.8 -10.0914C 17.8 1.21 21.5 12.9228D -8.2 1.21 -9.9 -5.9532E -32.2 1.21 -39.0 -23.3772F -18.3 1.21 -22.1 -13.2858G -22.4 1.21 -27.1 -16.2624H -14.2 1.21 -17.2 -10.3092

-45.1 1.21 -54.6 -32.7426-35.3 1.21 -42.7 -25.6278

ps30(130) ps(130) ps(ASD)

EOH

GOH

ps30(130) ps(130) ps(ASD)

EOH

GOH

Page 14: Flexure Stainless Example

Subject Bitz Residence LATERAL DESIGNJob # 14-366 WIND AND SEISMIC LOADSDate 4/18/2023By JDH

Wind Load (psf) Gable End Wind Load (psf) 4:12Roof (E) Wall (E) Roof (I) Wall (I) Roof (E) Wall (E) Roof (I) Wall (I)

0.0 19.5 0.0 12.9 0.0 26.2 0.0 17.4

Seismic Load (psf)Roof Floor Wall2.9 2.1 3

Wind Area (sq. ft.) Wind Force (lbs.) Seismic Area (sq. ft.) Seismc Force (lbs.) Design LoadGrid Gable Level Roof (E) Wall (E) Roof (I) Wall (I) Level Added Total Roof Floor Wall Level Added Total (lbs.)

A Main 35 40 95 55 2560 2560 755 216 2838 2838 2838B Main 255 150 4440 4440 1195 279 4303 4303 4440C yes Main 70 0 80 2400 2400 583 99 1988 1988 24001 Main 45 33 0 0 888 888 192 108 881 881 8882 Main 145 115 3000 3000 1280 198 4306 4306 43063 Main 55 45 45 40 2160 2160 1061 144 3509 3509 3509

Page 15: Flexure Stainless Example

04/18/2023

Main Floor Shear Wall AnalysisJOB #: 0 NOTES:

Roof Diaphragm, Worst Case Loading

BY: JDH

GRID LINES A B C 1 2 3 3SEISMIC STRUT FORCE (LBS) 2838 4303 1988 881 4306 2281 1160 0

WIND STRUT FORCE (LBS) 2560 4440 2400 888 3000 1404 0 0 0 0SEISMIC ADD/ADJ (LBS) 0 0 0 0 0 0 0

WIND ADD/ADJ (LBS) 0 0 0 0 0 0 0 0 0 0 0TOTAL SEISMIC FORCE (LBS) 2838 4303 1988 881 4306 2281 1160 0 0 0 0

TOTAL WIND FORCE (LBS) 2560 4440 2400 888 3000 1404 0 0 0 0 0

MAX UNADJUSTED WALL SHEAR (PLF) 89 306 192 66 308 #DIV/0! 202 #DIV/0! #DIV/0! #DIV/0! #DIV/0!

LENGTH 32 9.5 12.5 13.5 9.5 0 2.875HEIGHT 9 9 9 9 9 0 9DL (PLF) 150 200 200 200 200 200 200

Aspect Ratio 0.28125 0.9473684 0.72 0.6666667 0.9473684 #DIV/0! 3.1304348 #DIV/0! #DIV/0! #DIV/0! #DIV/0!Seismic Factor 1 1 1 1 1 #DIV/0! 0.6388889 #DIV/0! #DIV/0! #DIV/0! #DIV/0!

Vseismic 88.7 296.7 159.0 65.2 307.6 #DIV/0! 315.8 #DIV/0! #DIV/0! #DIV/0! #DIV/0!Vwind 80.0 306.2 192.0 65.8 214.3 #DIV/0! 0.0 #DIV/0! #DIV/0! #DIV/0! #DIV/0!O.M. 25538 26181 21600 7992 #VALUE! 0 8170 #DIV/0! #DIV/0! #DIV/0! #DIV/0!R.M. 65280 6017 10417 12150 7671 #DIV/0! 703 #DIV/0! #DIV/0! #DIV/0! #DIV/0!

UPLIFT -1242 2123 0 -308 #VALUE! #DIV/0! 2598 #DIV/0! #DIV/0! #DIV/0! #DIV/0!

HOLDOWN nothing H-10 nothing nothing PERF PERF H-11 #DIV/0! #DIV/0! #DIV/0! #DIV/0!SHEAR 89 306 192 66 PERF 316 #DIV/0! #DIV/0! #DIV/0! #DIV/0!

NAILING 6 4 6 6 PERF 4 #DIV/0! #DIV/0! #DIV/0! #DIV/0!

LENGTH 0 5 0 4.5 0 2.875 0HEIGHT 0 9 0 9 0 9 0DL (PLF) 0 20 0 200 0 200 0

Aspect Ratio #DIV/0! 1.8 #DIV/0! #DIV/0! 2 #DIV/0! 3.1304348 #DIV/0! #DIV/0! #DIV/0! #DIV/0!Seismic Factor #DIV/0! 1 #DIV/0! #DIV/0! 1 #DIV/0! 0.6388889 #DIV/0! #DIV/0! #DIV/0! #DIV/0!

Vseismic #DIV/0! 296.7 #DIV/0! #DIV/0! 307.6 #DIV/0! 315.8 #DIV/0! #DIV/0! #DIV/0! #DIV/0!Vwind 80.0 306.2 192.0 65.8 214.3 #DIV/0! 0.0 #DIV/0! #DIV/0! #DIV/0! #DIV/0!O.M. #DIV/0! 13779 #DIV/0! #DIV/0! #VALUE! #DIV/0! 8170 #DIV/0! #DIV/0! #DIV/0! #DIV/0!R.M. #DIV/0! 167 #DIV/0! #DIV/0! 1721 #DIV/0! 703 #DIV/0! #DIV/0! #DIV/0! #DIV/0!

UPLIFT #DIV/0! 2723 #DIV/0! #DIV/0! #VALUE! #DIV/0! 2598 #DIV/0! #DIV/0! #DIV/0! #DIV/0!

HOLDOWN #DIV/0! H-11 #DIV/0! #DIV/0! PERF #DIV/0! H-11 #DIV/0! #DIV/0! #DIV/0! #DIV/0!SHEAR #DIV/0! 306 #DIV/0! #DIV/0! PERF #DIV/0! 316 #DIV/0! #DIV/0! #DIV/0! #DIV/0!

NAILING #DIV/0! 4 #DIV/0! #DIV/0! PERF #DIV/0! 4 #DIV/0! #DIV/0! #DIV/0! #DIV/0!

LENGTH 0 0 0 0 0 0 0HEIGHT 0 0 0 0 0 0 0DL (PLF) 0 0 0 0 0 0 0

Aspect Ratio #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!Seismic Factor #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

Vseismic #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!Vwind 80.0 306.2 192.0 65.8 214.3 #DIV/0! 0.0 #DIV/0! #DIV/0! #DIV/0! #DIV/0!O.M. #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!R.M. #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

UPLIFT #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

HOLDOWN #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!SHEAR #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

NAILING #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

LENGTH 0 0 0 0 0 0 0 0 0HEIGHT 0 0 0 0 0 0 0 0 0DL (PLF) 0 0 0 0 0 0 0 0 0

Aspect Ratio #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!Seismic Factor #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

Vseismic #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!Vwind 80.0 306.2 192.0 65.8 214.3 #DIV/0! 0.0 #DIV/0! #DIV/0! #DIV/0! #DIV/0!O.M. #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!R.M. #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

UPLIFT #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

HOLDOWN #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!SHEAR #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

NAILING #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

SHEAR PANEL

1

SHEAR PANEL

2

SHEAR PANEL

3

SHEAR PANEL

4

Page 16: Flexure Stainless Example

04/18/2023

Upper Floor Shear Wall AnalysisJOB #: 14-366 NOTES:SUBJECT: Bitz Residence Upper Floor

Roof Diaphragm, Worst Case LoadingBY: JDH

GRID LINES XX XX XX XX XX XX XX XXSEISMIC STRUT FORCE (LBS) 5800 580 0 0 0 0 0 0

WIND STRUT FORCE (LBS) 2560 0 0 0 0 0 0 0SEISMIC ADD/ADJ (LBS) 0 0 0 0 0 0 0 0 0

WIND ADD/ADJ (LBS) 0 0 0 0 0 0 0 0 0TOTAL SEISMIC FORCE (LBS) 5800 580 0 0 0 0 0 0

TOTAL WIND FORCE (LBS) 2560 0 0 0 0 0 0 0

MAX UNADJUSTED WALL SHEAR (PLF) 1933 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

LENGTH 3 0 0 0 0 0 0 0HEIGHT 10 0 0 0 0 0 0 0DL (PLF) 0 0 0 0 0 0 0 0

Aspect Ratio 3.3333333 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!Seismic Factor 0.6 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

Vseismic 3222.2 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!Vwind 609.5 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!O.M. 96667 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!R.M. 0 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

UPLIFT 32222 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

HOLDOWN CHECK #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!SHEAR 3222 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

NAILING CHECK #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

LENGTH 0 0 0 0 0 0 0 0HEIGHT 0 0 0 0 0 0 0 0DL (PLF) 0 0 0 0 0 0 0 0

Aspect Ratio #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!Seismic Factor #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

Vseismic #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!Vwind 609.5 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!O.M. #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!R.M. #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

UPLIFT #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

HOLDOWN #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!SHEAR #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

NAILING #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

LENGTH 0 0 0 0 0 0 0 0HEIGHT 0 0 0 0 0 0 0 0DL (PLF) 0 0 0 0 0 0 0 0

Aspect Ratio #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!Seismic Factor #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

Vseismic #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!Vwind 609.5 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!O.M. #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!R.M. #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

UPLIFT #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

HOLDOWN #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!SHEAR #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

NAILING #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

LENGTH 0 0 0 0 0 0 0 0HEIGHT 0 0 0 0 0 0 0 0DL (PLF) 0 0 0 0 0 0 0 0

Aspect Ratio #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!Seismic Factor #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

Vseismic #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!Vwind 609.5 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!O.M. #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!R.M. #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

UPLIFT #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

HOLDOWN #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!SHEAR #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

NAILING #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

FLOOR TO FLOOR STRAP HOLDOWN SCHEDULEH-1 MSTC40 3,465H-2 MSTC52 4,620H-3 MSTC66 5,860H-4 80" LONG CMST14 6,490H-5 102" LONG CMST12 9,215

SHEAR PANEL

1

SHEAR PANEL

2

SHEAR PANEL

3

SHEAR PANEL

4

Page 17: Flexure Stainless Example

PERFORATED SHEARWALL DESIGN-

Grid: 2 Shear Load at Shearwall (V,lbs): 4306

17.3

Total Panel Length (L, ft): 26.3 Wall Height (H, ft):

0.66

Use: 60% Use:

WALL HEIGHT, H H/3 (.33) H/2 (.50) 2H/3 (.67) 5H/6 (.83)8' wall 2' 8" 4' 0" 5' 4" 6' 8"

10' wall 3' 4" 5' 0" 6' 8" 8' 4"

Shear Resistance Adjustment Factor10% 1.00 0.69 0.53 0.4320% 1.00 0.71 0.56 0.4530% 1.00 0.74 0.59 0.4940% 1.00 0.77 0.63 0.5350% 1.00 0.80 0.67 0.5760% 1.00 0.83 0.71 0.6370% 1.00 0.87 0.77 0.6980% 1.00 0.91 0.83 0.7790% 1.00 0.95 0.91 0.87

100% 1.00 1.00 1.00 1.00

0.83

301

Use: Use:

Total Length of Shearwalls (L1, ft): Maximum Opening Height (H1, ft):

L1/L = H1/H =

TABLE 2305.3.8.2 SHEAR RESISTANCE ADJUSTMENT FACTOR, Co

MAXIMUM OPENING HEIGHT (H1/H)

Percent Full Height Sheathing (L1/L)

C0 =

vperf = V/(L1*C0) = O.T.perf = (V*H)/(L1*C0) =

4 H-11

A18
Clinton Neer: Round Down
Page 18: Flexure Stainless Example

PERFORATED SHEARWALL DESIGN-

2838

4.0

8.0

0.50

0.5

H (1)8' 0"

10' 0"

Shear Resistance Adjustment Factor0.360.380.420.450.500.560.630.710.831.00

2406

TABLE 2305.3.8.2 SHEAR RESISTANCE ADJUSTMENT FACTOR, Co

MAXIMUM OPENING HEIGHT (H1/H)

H-11

B14
Clinton Neer: Round Up
Page 19: Flexure Stainless Example

PERFORATED SHEARWALL DESIGN-

Grid: B Shear Load at Shearwall (V,lbs): 2281

17.5

Total Panel Length (L, ft): 25.5 Wall Height (H, ft):

0.69

Use: 60% Use:

WALL HEIGHT, H H/3 (.33) H/2 (.50) 2H/3 (.67) 5H/6 (.83)8' wall 2' 8" 4' 0" 5' 4" 6' 8"

10' wall 3' 4" 5' 0" 6' 8" 8' 4"

Shear Resistance Adjustment Factor10% 1.00 0.69 0.53 0.4320% 1.00 0.71 0.56 0.4530% 1.00 0.74 0.59 0.4940% 1.00 0.77 0.63 0.5350% 1.00 0.80 0.67 0.5760% 1.00 0.83 0.71 0.6370% 1.00 0.87 0.77 0.6980% 1.00 0.91 0.83 0.7790% 1.00 0.95 0.91 0.87

100% 1.00 1.00 1.00 1.00

0.83

157

Use: Use:

Total Length of Shearwalls (L1, ft): Maximum Opening Height (H1, ft):

L1/L = H1/H =

TABLE 2305.3.8.2 SHEAR RESISTANCE ADJUSTMENT FACTOR, Co

MAXIMUM OPENING HEIGHT (H1/H)

Percent Full Height Sheathing (L1/L)

C0 =

vperf = V/(L1*C0) = O.T.perf = (V*H)/(L1*C0) =

6 H-10

A18
Clinton Neer: Round Down
Page 20: Flexure Stainless Example

PERFORATED SHEARWALL DESIGN-

2838

4.0

8.0

0.50

0.5

H (1)8' 0"

10' 0"

Shear Resistance Adjustment Factor0.360.380.420.450.500.560.630.710.831.00

1256

TABLE 2305.3.8.2 SHEAR RESISTANCE ADJUSTMENT FACTOR, Co

MAXIMUM OPENING HEIGHT (H1/H)

H-10

B14
Clinton Neer: Round Up
Page 21: Flexure Stainless Example

PERFORATED SHEARWALL DESIGN-

Grid: C Shear Load at Shearwall (V,lbs): 2281

6.0

Total Panel Length (L, ft): 14.0 Wall Height (H, ft):

0.43

Use: 40% Use:

WALL HEIGHT, H H/3 (.33) H/2 (.50) 2H/3 (.67) 5H/6 (.83)8' wall 2' 8" 4' 0" 5' 4" 6' 8"

10' wall 3' 4" 5' 0" 6' 8" 8' 4"

Shear Resistance Adjustment Factor10% 1.00 0.69 0.53 0.4320% 1.00 0.71 0.56 0.4530% 1.00 0.74 0.59 0.4940% 1.00 0.77 0.63 0.5350% 1.00 0.80 0.67 0.5760% 1.00 0.83 0.71 0.6370% 1.00 0.87 0.77 0.6980% 1.00 0.91 0.83 0.7790% 1.00 0.95 0.91 0.87

100% 1.00 1.00 1.00 1.00

0.77

494

Use: Use:

Total Length of Shearwalls (L1, ft): Maximum Opening Height (H1, ft):

L1/L = H1/H =

TABLE 2305.3.8.2 SHEAR RESISTANCE ADJUSTMENT FACTOR, Co

MAXIMUM OPENING HEIGHT (H1/H)

Percent Full Height Sheathing (L1/L)

C0 =

vperf = V/(L1*C0) = O.T.perf = (V*H)/(L1*C0) =

FALSE

H-11

A18
Clinton Neer: Round Down
Page 22: Flexure Stainless Example

PERFORATED SHEARWALL DESIGN-

2838

4.0

8.0

0.50

0.5

H (1)8' 0"

10' 0"

Shear Resistance Adjustment Factor0.360.380.420.450.500.560.630.710.831.00

3949

TABLE 2305.3.8.2 SHEAR RESISTANCE ADJUSTMENT FACTOR, Co

MAXIMUM OPENING HEIGHT (H1/H)

H-11

B14
Clinton Neer: Round Up
Page 23: Flexure Stainless Example

DIAPHRAGM CALCULATION

Job: 14-124Date: 4/18/2023

By: JDH

Grid XXStrut Length 0Diaph. Width 0Seismic Strut 2838 0Wind Strut 0 0 0 0 0 0 0Governing Strut 2837.5 0 0 0 0 0 0 0Unit Shear (plf) #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

Common Nail Size = 10d Nominal Panel Thickness (in) = 5/8

SEISMIC WINDUnblocked Diaphragm with edge nails spaced @ 6" o/c 215 plf 301 plf

Blocked Diaphragm with edge nails spaced @ 4" o/c 425 plf 595 plfBlocked Diaphragm with edge nails spaced @ 2.5" o/c 640 plf 896 plf

Use Typical: Nails Spaced 12" o/c in the Field

GRID: 0 GRID: 0

Blocking Requirements Blocking Requirements#DIV/0! #DIV/0!

Distance to Block Distance to Block MINIMUM DISTANCE TO BLOCK (ft) = #DIV/0! MINIMUM DISTANCE TO BLOCK (ft) = #DIV/0!

GRID: 0 GRID: 0

Blocking Requirements Blocking Requirements#DIV/0! #DIV/0!

Distance to Block Distance to Block MINIMUM DISTANCE TO BLOCK (ft) = #DIV/0! MINIMUM DISTANCE TO BLOCK (ft) = #DIV/0!

GRID: 0 GRID: 0

Blocking Requirements Blocking Requirements#DIV/0! #DIV/0!

Distance to Block Distance to Block MINIMUM DISTANCE TO BLOCK (ft) = #DIV/0! MINIMUM DISTANCE TO BLOCK (ft) = #DIV/0!

GRID: 0 GRID: XX

Blocking Requirements Blocking Requirements#DIV/0! NOT APPLICABLE

Distance to Block Distance to Block MINIMUM DISTANCE TO BLOCK (ft) = #DIV/0! MINIMUM DISTANCE TO BLOCK (ft) = NOT APPLICABLE

A9
Clinton Neer: Parallel to load
A10
Clinton Neer: Perpendicular to load
Page 24: Flexure Stainless Example

Subject XXJob # 13-Date 4/18/2023By CAN

TOP PLATE SPLICE

Upper Roof: Upper Floor:

w (plf)= 226 w (plf)= 0L (ft)= 62 L (ft)= 0b (ft)= 42 b (ft)= 0

108593 lb-ft 0 lb-ftT=C=M/b 2586 # T=C=M/b #DIV/0!

16d Sinkers: 16d Sinkers:

186 #/Nail 186 #/Nail

# Nails at top Plate Splice: # Nails at top Plate Splice:

# =T/N' 14 # =T/N' #DIV/0!Use 12 nails min. Use 12 nails min.

#DIV/0!

M=wL2/8 M=wL2/8

N'=1.48/1.5*118*1.6= N'=1.48/1.5*118*1.6=

Use (14) 16d sinkers at each top plate splice.

Page 25: Flexure Stainless Example

DIAPHRAGM CALCULATION

Job: 14-124Date: 4/18/2023

By: JDH

Grid XX XXStrut LengthDiaph. WidthSeismic Strut Wind Strut 0 0 0 0 0 0 0Governing Strut 0 0 0 0 0 0 0 0Unit Shear (plf) #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

Common Nail Size = 10d Nominal Panel Thickness (in) = 5/8

SEISMIC WINDUnblocked Diaphragm with edge nails spaced @ 6" o/c 215 plf 301 plf

Blocked Diaphragm with edge nails spaced @ 4" o/c 425 plf 595 plfBlocked Diaphragm with edge nails spaced @ 2.5" o/c 640 plf 896 plf

Use Typical: Nails Spaced 12" o/c in the Field

GRID: 0 GRID: 0

Blocking Requirements Blocking Requirements#DIV/0! #DIV/0!

Distance to Block Distance to Block MINIMUM DISTANCE TO BLOCK (ft) = #DIV/0! MINIMUM DISTANCE TO BLOCK (ft) = #DIV/0!

GRID: 0 GRID: 0

Blocking Requirements Blocking Requirements#DIV/0! #DIV/0!

Distance to Block Distance to Block MINIMUM DISTANCE TO BLOCK (ft) = #DIV/0! MINIMUM DISTANCE TO BLOCK (ft) = #DIV/0!

GRID: 0 GRID: XX

Blocking Requirements Blocking Requirements#DIV/0! NOT APPLICABLE

Distance to Block Distance to Block MINIMUM DISTANCE TO BLOCK (ft) = #DIV/0! MINIMUM DISTANCE TO BLOCK (ft) = NOT APPLICABLE

GRID: 0 GRID: XX

Blocking Requirements Blocking Requirements#DIV/0! NOT APPLICABLE

Distance to Block Distance to Block MINIMUM DISTANCE TO BLOCK (ft) = #DIV/0! MINIMUM DISTANCE TO BLOCK (ft) = NOT APPLICABLE

A9
Clinton Neer: Parallel to load
A10
Clinton Neer: Perpendicular to load
Page 26: Flexure Stainless Example

Roof Diaphragm 04/18/2023

document.xlsx

Diaphragm AnalysisJOB #: 0

Roof Diaphragm, Worst Case LoadingSUBJECT: 0

AdjustedBY: JDH Diaphragm Load (PLF) = 0.0

Common Nail Size = 8d Nominal Panel Thickness (in) = 1/2 in

SEISMIC WINDUnblocked Diaphragm with edge nails spaced @ 6" o/c 180 PLF 252 PLF

Blocked Diaphragm with edge nails spaced @ 4" o/c 360 PLF 504 PLFBlocked Diaphragm with edge nails spaced @ 2.5" o/c 530 PLF 742 PLF

Use Typical: Nails Spaced 12" o/c in the Field

Gridline c XX XX XX XX XX XX XXWind Strut Force 4440 0 0 0 0 0 0 0

Seismic Strut Force #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

Length of Roof Diaphragm 44 0 0 0 0 0 0 0Length of Wall 0 0 0 0 0 0 0 0

Length of Foundation 0 0 0 0 0 0 0 0

0 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

Diaphragm Framing (L) #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

0 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

0 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

Diaphragm Framing (R) #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

0 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

Wall Shear #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

Drag Ties and Connections

Diaphragm Unit Shear (L,PLF)

Unblocked Diaphragm with edge

nails spaced @ 6" o/c

Distance to Block w/ 4" o/c nailing (L,ft)

Diaphragm Unit Shear (R,PLF)

Unblocked Diaphragm with edge

nails spaced @ 6" o/c

Distance to Blockw/4" o/c nailing (R,ft)

Page 27: Flexure Stainless Example

SHEAR WALL SCHEDULE

SYMBOL

6 3/8" 260 8d @ 6" o.c. 6" o.c. 16" o.c No 48 48 48

4 3/8" 350 8d @ 4" o.c. 4" o.c. 12" o.c No 48 35 48

3 3/8" 490 8d @ 3" o.c. 3" o.c. 8" o.c Yes* 46 30 38

2 3/8" 640 8d @ 2" o.c. 2" o.c. 6" o.c Yes 35 23 29

4/2 3/8" B/S 700 8d @4" o.c. 2" o.c. 5-1/2" o.c. Yes 32 21 26

3/2 3/8" B/S 980 8d @ 3" o.c. 4" o.c. Yes 23 15 19

2/2 3/8" B/S 1,280 8d @ 2" o.c. 3" o.c Yes 18 11 14

A 1/2" 770 10d @ 2" o.c. 6" o.c. Yes 29 19 24

B 5/8" 870 10d @ 2" o.c. 5-1/2" o.c. Yes 26 16 21

L6 220 8d @ 6" o.c. 6" o.c. 16" o.c. No 48 48 48

L4 320 8d @ 4" o.c. 4" o.c. 16" o.c. No 48 39 48

L3 410 8d @ 3" o.c. 3" o.c. 12" o.c. Yes* 48 36 45

L2 530 8d @ 2" o.c. 2" o.c. 8" o.c. Yes* 42 27 35

●Nails shall be common or galvanized box. Nail heads are not to penetrate plywood.●All field nailing shall be at 12" o.c., U.N.O.●All shear wall studs shall be Douglas Fir-Larch spaced at 16" o.c.

●Where applicable, plywood joint and sill plate nailing shall be staggered in all cases.●For all shear walls except types 6, 4, L6, & L4 use:

○3 inch nominal or thicker sill plates with 5/8" x 12 AB's.*

●Provide blocking or solid framing @ all panel edges.

●Use Simpson MST48 or MSTC52 to strap across beams at any break in top plates, U.N.O.●Foundation sill anchor bolts shall be 5/8"x10" spaced at 48" o.c. on all exterior walls U.N.O.●Use 3"x3"x1/4" thick steel plate washers at all wood sill plates for shear walls.

●All notes are typical U.N.O.

SHEAR PLYWOOD

CAPACITY LBS. PER

FT.

EDGE NAIL SPACING

16d NAIL SPACING

SDS 1/4 SPACING

3x FRAMING AT ADJOINING PANEL

EDGES

5/8"ø AB SPACING

1/2"ø AB SPACING

**MASA SPACING

7/16" Smart Panel Siding

7/16" Smart Panel Siding

7/16" Smart Panel Siding

7/16" Smart Panel Siding

●Use APA rated shear plywood / OSB / TI-11 sheathing or an approved equal U.N.O.

●Nail all shear ply with edge nail spacing at top plates, mud sill, all posts, all king studs, and all studs with holdowns.

○3 inch nominal or thicker framing members, or double 2x framing members stitched together with minimum (2) rows of 16d nails @ 12" o.c. at all adjoining panel edges.

●*For shear wall type 3, L3, & L2, a 2 inch nominal sill plate may be used if anchor bolts are spaced @ half the specified spacing.

●Double shear walls to have shear ply with specified nailing both sides. Provide 3 inch nominal or thicker framing members on all abutting panel edges. B/S is Both Sides.

●**All MASA mudsill anchors to be installed with both legs fully nailed into side and top of sill plate.

Page 28: Flexure Stainless Example

Axial Compression and Biaxial Bending

Material Proph 2 inA 1.510 in^2Ix 0.747 in^4Iy 0.747 in^4

Zx 0.964 in^3Zy 0.964 in^3Sy 0.747 in^3rx= 0.704 in^3ry= 0.704 inb= 1.250 intf= 0.250 in

tw= 0.250 ind= in

ho= 2.000 inh/tw 5.00

(Slenderness Ratios)λ=b/t= 5.00

Fy= 77 ksiE= 28000 ksi

Flexure Limitsb/t .33*(E/Fy)^1/2 5.00

h/tw 2.54*(E/Fy)^1/2 48.44λ= 2.50 Compact (Check chart for slenderness ratio and how to calculate)

λr= 1.24*SQRT(E/fy) 21.4λp= 1.12*SQRT(E/fy) 23.6

Axial Limitsh/tw 1.24*(E/Fy)^1/2 23.6

h/tw 5.0 Non-slender

Axial Compression CapacityK 1.00L 108.00 inr 0.70K*L/r 153.413.77*sqrt(E/Fy) 71.89 check

Fe= pi()*E/(kl/r)^2 11.74Fcr= 0.82 ksiPn= 1.23Ω= 1.67

Pn/Ω= 0.74 k

Flexural CapacityMnx (Major Axis)=Mp Fy*Zx if compact

6.19 k-ftΩ 1.67

Mnx/Ω 3.704 k-ft

Mny (Minor Axis)=My Fy*Sy<1.6Fy*Sy if compact since compact is no local flange buckling6.19 k-ft

1.6Fy*Sy 7.6692

Page 29: Flexure Stainless Example

Ω 1.67Mny/Ω 3.704 k-ft

Interaction Pr 4.7 K-FT

Mnx 2 K-FTMny 2 K-FT

= 6.358234AISC H1-1a

AISC H1-1b

Page 30: Flexure Stainless Example

Axial Compression and Biaxial Bending

(Check chart for slenderness ratio and how to calculate)

Page 31: Flexure Stainless Example

3 631 556 2

6 632.5 32.535.9 35.939.3 39.342.7 42.746.1 46.149.5 49.5 3 31 56 6 32.5 35.952.9 52.9