fixing and converting co and renewable electrons to liquid ... · g. stephanopoulos, mit september...

22
ARPAe Carbon workshop September 26, 27, 2019 G. Stephanopoulos, MIT MEL- Metabolic Engineering Laboratory Carbon Optimized Bioconversion Platforms for the Bioeconomy An ARPA-E Workshop Chicago, IL September 26, 27, 2019 Fixing and converting CO 2 and renewable electrons to liquid fuels Gregory Stephanopoulos MIT

Upload: others

Post on 23-Mar-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Fixing and converting CO and renewable electrons to liquid ... · G. Stephanopoulos, MIT September 26, 27, 2019 MEL- Metabolic Engineering Laboratory Carbon Optimized Bioconversion

ARPAe Carbon workshop

September 26, 27, 2019G. Stephanopoulos, MITMEL- Metabolic Engineering

Laboratory

Carbon Optimized Bioconversion Platforms for the

Bioeconomy

An ARPA-E WorkshopChicago, IL

September 26, 27, 2019

Fixing and converting CO2 and

renewable electrons to liquid fuels

Gregory Stephanopoulos

MIT

Page 2: Fixing and converting CO and renewable electrons to liquid ... · G. Stephanopoulos, MIT September 26, 27, 2019 MEL- Metabolic Engineering Laboratory Carbon Optimized Bioconversion

ARPAe Carbon workshop

September 26, 27, 2019G. Stephanopoulos, MITMEL- Metabolic Engineering

Laboratory

Point 1:

What is the cost of electrons?

Page 3: Fixing and converting CO and renewable electrons to liquid ... · G. Stephanopoulos, MIT September 26, 27, 2019 MEL- Metabolic Engineering Laboratory Carbon Optimized Bioconversion

ARPAe Carbon workshop

September 26, 27, 2019G. Stephanopoulos, MITMEL- Metabolic Engineering

Laboratory

Conclusion 1:

Hydrogen at $1/kg is equivalent to

glucose at $130/ton (5c/lb)

Page 4: Fixing and converting CO and renewable electrons to liquid ... · G. Stephanopoulos, MIT September 26, 27, 2019 MEL- Metabolic Engineering Laboratory Carbon Optimized Bioconversion

ARPAe Carbon workshop

September 26, 27, 2019G. Stephanopoulos, MITMEL- Metabolic Engineering

Laboratory

Point 2:

A two=stage process for production of

lipid (or alkanes)

Presented and demonstrated in

Peng Hu, S. Chakraborty, A. Kumar, B. Woolston, H. Liu, D. Emerson, and G. Stephanopoulos, “Integrated system for biological

conversion of gaseous substrates to lipids,” Proceedings of the National Academy of Sciences, PNAS, doi/10.1073/pnas.1516867113 (2016)

Page 5: Fixing and converting CO and renewable electrons to liquid ... · G. Stephanopoulos, MIT September 26, 27, 2019 MEL- Metabolic Engineering Laboratory Carbon Optimized Bioconversion

5

Two-stage system for CO2 fixation into lipids

CO2

H2

acetate

Moorellathermoacetica

Yarrowialipolytica

lipids

Goal: Produce an infrastructure compatible fuel (biodiesel) from CO2 and H2

Asset: Oleaginous microbe with extremely high yields, productivities, and titers

Strategy: Fix CO2 and H2 by acetogenic bacteria and feed acetate so produced

to Oleaginous microbe

Challenges: Achieve high rates of growth of acetogenic bacteria, and acetate

production

Page 6: Fixing and converting CO and renewable electrons to liquid ... · G. Stephanopoulos, MIT September 26, 27, 2019 MEL- Metabolic Engineering Laboratory Carbon Optimized Bioconversion

ARPAe Carbon workshop

September 26, 27, 2019G. Stephanopoulos, MITMEL- Metabolic Engineering

Laboratory

Integrated production of acetate and

lipid from waste gas

CO2

H2 Acetate lipid

Moorellathermoacetica Yarrowia lipolytica

Page 7: Fixing and converting CO and renewable electrons to liquid ... · G. Stephanopoulos, MIT September 26, 27, 2019 MEL- Metabolic Engineering Laboratory Carbon Optimized Bioconversion

ARPAe Carbon workshop

September 26, 27, 2019G. Stephanopoulos, MITMEL- Metabolic Engineering

Laboratory

Alternative feed stocks

Glucose is expensive, may compete with food

Acetic acid is interesting alternative. Can be sourced

at large volumes from: Anaerobic digestion

Fixation of CO2 with CO or Hydrogen using anaerobic

acetogenic bacteria

Oxidation of methane using novel Rhodium catalyst (Tufts

Univ. Nature, 2018)

VFA Yarrowia

Fermentation

Trash

Gases (CO2 + H2, CH4)

TTF: Anaerobic Digestion

GTL: Anaerobic Fermentation, or,

catalytic conversion of methane Lipids, Green Diesel,

Biodiesel

Page 8: Fixing and converting CO and renewable electrons to liquid ... · G. Stephanopoulos, MIT September 26, 27, 2019 MEL- Metabolic Engineering Laboratory Carbon Optimized Bioconversion

ARPAe Carbon workshop

September 26, 27, 2019G. Stephanopoulos, MITMEL- Metabolic Engineering

Laboratory

Point 3:

Convert dilute acetic acid to

lipids at high yields and

productivities

Jingyang Xu, Nian Liu, K.J. Qiao, S. Vogg and G. Stephanopoulos, “Application of metabolic controls for

maximization of lipid production in oleaginous yeast,” Proceedings of the US National Academy of Sciences,

DOI: :10.1073/pnas.1703321114/-/DC Supplemental (2017)

Page 9: Fixing and converting CO and renewable electrons to liquid ... · G. Stephanopoulos, MIT September 26, 27, 2019 MEL- Metabolic Engineering Laboratory Carbon Optimized Bioconversion

ARPAe Carbon workshop

September 26, 27, 2019G. Stephanopoulos, MITMEL- Metabolic Engineering

Laboratory

a b c

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

Lip

id y

ield

(g/g

)

**

0

20

40

60

80

100

120

0 20 40 60 80

Lip

ids t

iter

/ D

ry c

ell

weig

ht

(g/L

)

Time (h)

AD DCW

AD Lipid titer

ADgy DCW

ADgy Lipid titer

ADgm DCW

ADgm Lipid titer

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100

Lip

id t

iter

/ D

ry c

ell

weig

ht

(g/L

)

Time (h)

ADgm DCW

ADgm Lipid titer

ADgm-hi DCW

Adgm-hi Lipid titer

K.J. Qiao, T.M. Wasylenko, K. Zhou, P. Hu and G. Stephanopoulos, “Rewiring metabolism to

maximize lipid production in Yarrowia lipolytica,” Nature Biotechnology, DOI: 10.1038/nbt.3763 (2017)

Page 10: Fixing and converting CO and renewable electrons to liquid ... · G. Stephanopoulos, MIT September 26, 27, 2019 MEL- Metabolic Engineering Laboratory Carbon Optimized Bioconversion

4. Feed based on pH control, metabolic model, RQ

Jingyang Xu, Nian Liu, K.J. Qiao, S. Vogg and G. Stephanopoulos, “Application of

metabolic controls for maximization of lipid production in oleaginous yeast,” Proceedings

of the US National Academy of Sciences, DOI: :10.1073/pnas.1703321114/-

/DCSupplemental (2017).

Purdue-Biochemical Horizons

November 17, 2017G. Stephanopoulos, MITMEL- Metabolic Engineering

Laboratory

Page 11: Fixing and converting CO and renewable electrons to liquid ... · G. Stephanopoulos, MIT September 26, 27, 2019 MEL- Metabolic Engineering Laboratory Carbon Optimized Bioconversion

4. Optimization of Nitrogen feed based on RQ/CTR feedback control

• Working volume 1.5 L• Maintain carbon at zero

Page 12: Fixing and converting CO and renewable electrons to liquid ... · G. Stephanopoulos, MIT September 26, 27, 2019 MEL- Metabolic Engineering Laboratory Carbon Optimized Bioconversion

ARPAe Carbon workshop

September 26, 27, 2019G. Stephanopoulos, MITMEL- Metabolic Engineering

Laboratory

Conclusion 3:

It is possible to convert dilute VFA to

very dense intracellular oil that is

easily separated by filtration and

extraction

Page 13: Fixing and converting CO and renewable electrons to liquid ... · G. Stephanopoulos, MIT September 26, 27, 2019 MEL- Metabolic Engineering Laboratory Carbon Optimized Bioconversion

ARPAe Carbon workshop

September 26, 27, 2019G. Stephanopoulos, MITMEL- Metabolic Engineering

Laboratory

Point 4:

Exploring synergies by substrate co-feeding

See

J.O. Park, Nian Liu, K.M. Holinski, D.F. Emerson, K.J. Qiao, B.M Woolston, J. Wu, Z.

Lazar, M.A. Islam, C. Vidoudez, P.R. Girguis and G. Stephanopoulos, “Synergistic substrate

cofeeding stimulates reductive metabolism,” Nature Metabolism (2019)

Page 14: Fixing and converting CO and renewable electrons to liquid ... · G. Stephanopoulos, MIT September 26, 27, 2019 MEL- Metabolic Engineering Laboratory Carbon Optimized Bioconversion

14

Some issues must be resolved when using acetic acid

3-HB

2 AcCoA + 1 NADPH per elongation

“carbon intensive”

Glucose Acetate

Ymax,PHB 0.48 g/g 0.67 g/g

Ymax,C18:0 0.28 g/g 0.28 g/g

Ymax,C18:0+biomass 0.21 g/g 0.16 g/gNADPH

NADH

ATP

ATP

NADPH

ATP ATP

AcCoA

AcCoA

CO2

CO2

Fatty acid

1 AcCoA + 2 NADPH + 1 ATP per elongation

“Primarily cofactors”

CO2

Page 15: Fixing and converting CO and renewable electrons to liquid ... · G. Stephanopoulos, MIT September 26, 27, 2019 MEL- Metabolic Engineering Laboratory Carbon Optimized Bioconversion

Can we help the cells?

oxPPP

15

Acetate

GNG

Glycerol

Fructose

Glucose Gluconate

Z. Lazar et al. Trends in Biotechnology 2018N. Liu et al. Metabolic Engineering 2016

NaAceglucose

23 μmol/hr

(+30% oxPPP)

1.2 mmol/hrTCA

FA

Page 16: Fixing and converting CO and renewable electrons to liquid ... · G. Stephanopoulos, MIT September 26, 27, 2019 MEL- Metabolic Engineering Laboratory Carbon Optimized Bioconversion

Glcn provides NADPH through recursive use of oxPPP

PGI

G6PDH

GND

PPP

16

Page 17: Fixing and converting CO and renewable electrons to liquid ... · G. Stephanopoulos, MIT September 26, 27, 2019 MEL- Metabolic Engineering Laboratory Carbon Optimized Bioconversion

Sourcing the acetate from CO2

(2CO2+4H2 CH3COOH+H2O)

17

CO2

fixation

ATPe-

Acetate

Glucose

CO2

Page 18: Fixing and converting CO and renewable electrons to liquid ... · G. Stephanopoulos, MIT September 26, 27, 2019 MEL- Metabolic Engineering Laboratory Carbon Optimized Bioconversion

18

Glucose

Pyruvate2X

2e-

ATP

Biomass precursors

2e-CO2

Glycolysis

-CH2-O=CH- =CH-

H2O

PO43-

ADP

O=C=O -CH3

THF

ATP

Co-CH3

C≡O

PO43-

ADP

CoA

ATP

2e- 2e- 2e-

Formyl

-THFMethenyl

-THF

Methylene

-THF

Methyl

-THF

Acetic acid

Methyl branch

Ca

rbo

nyl

bra

nch

Wood-Ljungdahl

pathway

Decouple e- supply from glucose decarboxylation

GlucoseH2

ATP

CO2

fixation

e-

CO2

Media(no organic carbon)

Glucose

CO2/H2

Page 19: Fixing and converting CO and renewable electrons to liquid ... · G. Stephanopoulos, MIT September 26, 27, 2019 MEL- Metabolic Engineering Laboratory Carbon Optimized Bioconversion

Synergistic cofeeding enhances CO2 fixation

19

Page 20: Fixing and converting CO and renewable electrons to liquid ... · G. Stephanopoulos, MIT September 26, 27, 2019 MEL- Metabolic Engineering Laboratory Carbon Optimized Bioconversion

20

H2 (100%)

Acetic acid (95%)

Biomass

(14%)

Lipids (38%)

Synergistic cofeeding enables efficient lipid synthesis from CO2

Page 21: Fixing and converting CO and renewable electrons to liquid ... · G. Stephanopoulos, MIT September 26, 27, 2019 MEL- Metabolic Engineering Laboratory Carbon Optimized Bioconversion

ARPAe Carbon workshop

September 26, 27, 2019G. Stephanopoulos, MITMEL- Metabolic Engineering

Laboratory

Conclusion 4:

Many fold increases in CO2 fixation

and acetate production are possible

with judicious substrate co-feeding.

Acetate production can surpass that

of ethanol by yeast

Page 22: Fixing and converting CO and renewable electrons to liquid ... · G. Stephanopoulos, MIT September 26, 27, 2019 MEL- Metabolic Engineering Laboratory Carbon Optimized Bioconversion

ARPAe Carbon workshop

September 26, 27, 2019G. Stephanopoulos, MITMEL- Metabolic Engineering

Laboratory

Acknowledgements

1. Cofeeding: Nian Liu, Jun park

2. Yarrowia Engineering: K.J Qiao, Mitchell Tai

3. CO2 fixation: Jingyang Xu, Peng Hu, David

Emerson

4. Funding: US Department of Energy, ARPAe