first elements of thermal neutron scattering theory (i) daniele colognesi istituto dei sistemi...

68
First Elements of Thermal Neutron Scattering Theory (I) Daniele Colognesi Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sesto Fiorentino (FI) - Italy

Upload: sophia-wood

Post on 29-Dec-2015

219 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: First Elements of Thermal Neutron Scattering Theory (I) Daniele Colognesi Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sesto Fiorentino

First Elements of Thermal Neutron Scattering Theory (I)

Daniele Colognesi

Istituto dei Sistemi Complessi,

Consiglio Nazionale delle Ricerche,

Sesto Fiorentino (FI) - Italy

Page 2: First Elements of Thermal Neutron Scattering Theory (I) Daniele Colognesi Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sesto Fiorentino

Talk outlines

0) Introduction.

1) Neutron scattering from nuclei.

2) Time-correlation functions.

3) Inelastic scattering from crystals.

4) Inelastic scattering from fluids (intro).4) Inelastic scattering from fluids (intro).

5) Vibrational spectroscopy from molecules.5) Vibrational spectroscopy from molecules.

6) Incoherent inelastic scattering from 6) Incoherent inelastic scattering from molecular crystals.molecular crystals.

7) Some applications to soft matter.7) Some applications to soft matter.

Page 3: First Elements of Thermal Neutron Scattering Theory (I) Daniele Colognesi Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sesto Fiorentino

0) Introduction

Why neutron scattering (NS) from condensed matter?

Nowadays NS is relevant in physics, material science, chemistry, geology, biology, engineering etc., being highly complementary to X-ray scattering.

E. Fermi C. G. Shull B. N. Brockhouse

Page 4: First Elements of Thermal Neutron Scattering Theory (I) Daniele Colognesi Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sesto Fiorentino

What is special with NS?1) Neutrons interact with nuclei and not with their electrons (neglecting magnetism). Ideal for light elements, isotopic studies, similar-Z elements, and lattice dynamics.

Page 5: First Elements of Thermal Neutron Scattering Theory (I) Daniele Colognesi Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sesto Fiorentino

2) Neutrons have simultaneously the right and E, matching the typical distance and energy scales of condensed matter.

Page 6: First Elements of Thermal Neutron Scattering Theory (I) Daniele Colognesi Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sesto Fiorentino

4) The neutron has a magnetic moment, ideal for studying static and dynamic magnetic properties (not discussed in what follows ).

3) Weakly interacting with matter due to its neutrality, then: (a) small disturbance of the sample, so linear response theory always applies; (b) large penetration depth for bulky samples; (c) ideal for extreme condition studies; (d) little radiation damage.

Page 7: First Elements of Thermal Neutron Scattering Theory (I) Daniele Colognesi Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sesto Fiorentino

Basic neutron properties

Mass: 1.67492729(28) 10−27 KgMean lifetime: 885.7(8) s (if free)

Electric charge: 0 eElectric dipole moment: <2.910−26 e·cm

Magnetic moment: −1.9130427(5) μN

Spin: 1/2

Page 8: First Elements of Thermal Neutron Scattering Theory (I) Daniele Colognesi Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sesto Fiorentino

Neutron wave-mechanical properties

Interested only in slow neutrons (E<1 KeV), where:

E=mv2/2 (m=1.675·10-27 Kg) and

=h/(mv)Using the wave-vector (k=2/), one has:

E(meV)=81.81 (Å)-2=2.072 k(Å-1)2

=5.227 v(Km/s)2=0.08617 T(K)

Page 9: First Elements of Thermal Neutron Scattering Theory (I) Daniele Colognesi Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sesto Fiorentino

The slow neutron “zoology”

(a version of)

Name Energy range (meV)

Very cold / Ultra-cold <0.5

Cold 0.5 - 5

Thermal 5 - 100

Hot 100 - 103

Epithermal / Resonant >103

Page 10: First Elements of Thermal Neutron Scattering Theory (I) Daniele Colognesi Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sesto Fiorentino

1) Neutron scattering from nuclei

The neutron-Nucleus interaction

1) Short ranged (i.e. 10-15 m).

2) Intense (if compared to e.m.).

3) Spin-dependent.

4) Complicated (even containing non-central terms).

Example: D=p+n, toy model (e.g. rectangular potential well)

width: r0=2·10-15 m

depth: Vr=30 MeV

binding energy: Eb=2.23 MeV

Coulomb equivalent (p+p) energy: EC=0.7 MeV

Page 11: First Elements of Thermal Neutron Scattering Theory (I) Daniele Colognesi Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sesto Fiorentino

The slow neutron-Nucleus system

Good news: if nr0 (always true for slow neutrons) and dr0 (d: size of the nuclear delocalization) we do not need to know the detail of the n-N potential for describing the n-N system! Two quantities (r0 and the so-called scattering length, a) are enough.

)wave()(1),(

0)(for),(),(),()(22

N0nN

nNnNnN0nNNN

2N

2

n

2n

2

sr

a

rEHUmm

r rrr

rrrrrrrrr

Localized isotropic impact model

Page 12: First Elements of Thermal Neutron Scattering Theory (I) Daniele Colognesi Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sesto Fiorentino

The Schroedinger equation plus the boundary condition are exactly equivalent to:

potential]-pseudo[Fermi

)(2

)(2

)( :where

),(lim)(),(),(

Nnn

2

Nn

2

Nn

nN0

NnnNnN0

rrrrrr

rrrrrrrr

bm

aV

rr

VEHr

Tough equation… But it can be expanded

in power series of V: =0+1+2+… (if

na and da), where:

1k0

kk0

000

lim

0

rr

VEH

EH

r

Page 13: First Elements of Thermal Neutron Scattering Theory (I) Daniele Colognesi Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sesto Fiorentino

The Fermi approximation is identical to the well-known first Born approximation:

00000

110 lim

VVrr

VEHrr

QM text-book solution:

where a spherical wave, modulated by the inelastic scattering amplitude f(k’,F;k,0) has been introduced:

state)ion(perturbat)()0,;,'(

exp

8

1

state)ed(unperturb)(exp8

1

Nucleus

NF

neutron

n

n

31

Nucleus

N0

neutron

n30

rkk

rrk

Ffr

rk'i

i

Page 14: First Elements of Thermal Neutron Scattering Theory (I) Daniele Colognesi Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sesto Fiorentino

and the following energy conservation balance and useful definitions apply:

transfer)(momentum'

:defines oney analogousl

transfer)(energy2

'

22

'

2 0Fn

22

n

22

Fn

22

0n

22

kkQ

kkkk

EEmm

Em

Em

0F0*F

N0NnN*FnNn2

n

)exp()()('exp

)(),()('exp2

4

1)0,;,'(

RQRRRkkR

rrrrrkkrrkk

ibidb

Viddm

Ff

Page 15: First Elements of Thermal Neutron Scattering Theory (I) Daniele Colognesi Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sesto Fiorentino

Slow neutron scattering from a nucleus

(k, E)

(k’, E’)

E0EF

Measurable quantity: number of scattered neutrons, n detected in the time interval t, in the solid angle between and +, and between and +, having an energy ranging between E’ and E’+ E’:

tEEIn ')',,(

Qk-k’ E-E’=EF-E0

Page 16: First Elements of Thermal Neutron Scattering Theory (I) Daniele Colognesi Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sesto Fiorentino

Scattering problem: how is I(,,E’) related to the intrinsic target properties [i.e. to i(RN)]?

The concept of double differential scattering cross-section (d2/d/dE’) has to be introduced:

where Jin is the current density of incoming neutrons (i.e. neutrons per m2 per s), all exhibiting energy E. Analogously, for the outgoing neutrons, one could write: Jout(,,E’)= r

-2 I(,,E’) (spectral density current).

in

out

in J

EJr

J

EI

dEd

d )',,()',,(

'

2

E'E,φ,θ,

2

Page 17: First Elements of Thermal Neutron Scattering Theory (I) Daniele Colognesi Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sesto Fiorentino

Going back to our QM text book, one finds the “recipe” for the neutron density current:

*

n

Imm

J

0F0

2

0F2

23

2

23

3

')(),'(),()(

)exp('

)0,;,'('

)(

EEEEΩJΩEJΩJdΩJ

ibr

k

mLFf

r

k

mLΩJ

kmL

J

outoutoutout

nnout

nin

RQkk

which, applied to 0 and 1 (box-normalized, L3), gives:

and finally, the neutron scattering fundamental equation:

Page 18: First Elements of Thermal Neutron Scattering Theory (I) Daniele Colognesi Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sesto Fiorentino

0F

2

0F2

F02

')exp('

'EE,φ,θ,

EEEEibk

k'

dEd

d

RQ

for the transition from the nuclear ground state 0 to the excited state F, with the constraint: E-E’=EF-E0.

Summing over all the possible nuclear excited states F, one has to explicitly add the energy conservation:

0FF

2

0F2

2

)exp('

'EE,φ,θ,

EEibk

k'

dEd

d

RQ

Finally, if the target is not at T=0, one should also consider a statistical average (pI) over the initial nuclear states, I:

Page 19: First Elements of Thermal Neutron Scattering Theory (I) Daniele Colognesi Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sesto Fiorentino

onlypropertyTarget

12

IIF

F

2

IFI2

2

),(

)exp('

'EE,φ,θ,

Q

RQ

SbE

E'

EEipbk

k'

dEd

d

where the inelastic structure factor or scattering law S(Q,) has been defined. Giving up to the neutron final energy (E’) selection, one writes the single differential s. cross-section:

I F

2

IFIF

I2

IF

2

0

)exp(

)for('

''EE,φ,θ,Eφ,θ,

RQiE

EEEpb

EEEdEd

ddE

d

d

Page 20: First Elements of Thermal Neutron Scattering Theory (I) Daniele Colognesi Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sesto Fiorentino

Neutron scattering from an extended system

So, is everything so easy in NS? No, not quite…

Giving up to the selection of the scattered neutron direction () too, one writes the s. cross-section:

s.)c.(freefor4

s.)c.(bound0for4)( 2

2n

2

2

Eφ,θ,

Eb

m

Eb

d

ddE

potential) like-(comb)(2

)(2

states)body(many),...,,()(

jn

N

1jj

n

2

Nnn

2

N21FI,NFI,

Rrrr

RRRr

bm

bm

Page 21: First Elements of Thermal Neutron Scattering Theory (I) Daniele Colognesi Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sesto Fiorentino

Neutrons and incoherence

“Real-life” neutron scattering (from a set of nuclei with the same Z)

INC

2

COH

22

'''

dEd

d

dEd

d

dEd

d

where: ),(4

'

'1COH

COH

2

QS

E

E

dEd

d

),(4

'

' self1INC

INC

2

QS

E

E

dEd

d

Page 22: First Elements of Thermal Neutron Scattering Theory (I) Daniele Colognesi Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sesto Fiorentino

scattering laws defined for a many-body

system (set of nuclei with the same Z) as:

IIF

F

N

1j

2

IjFIself

IIF

F

2

I

N

1jjFI

)exp(),(

)exp(),(

EEipN

S

EEipN

S

RQQ

RQQ

S(Q,) is obvious, but where does Sself(Q,) come from? From the spins of neutron (sn,mn) and nucleus (IN,MN), so far neglected! b depends on IN+sn

- e.g. full quantum state for a neutron-nucleus pair:|k’,sn,mn; F, IN, MN

Page 23: First Elements of Thermal Neutron Scattering Theory (I) Daniele Colognesi Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sesto Fiorentino

How does it work? Assuming randomly distributed neutron and nuclear spins, one can have a simple idea of the phenomenon:

2

spinj'spinjspinj'j

2

spinjjspinj'j

positionspin

N

1j'j'j'

positionspin

N

1jjj

2

positionspin

N

1jjj

:for

:for

)'exp()exp(

)exp(

bbbbbj'j

bbbbbj'j

ibib

ib

RQRQ

RQ

Page 24: First Elements of Thermal Neutron Scattering Theory (I) Daniele Colognesi Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sesto Fiorentino

The incoherence origin (rigorous theory):

22

INC

2

COH2

TOT

ˆˆ4

ˆ4;ˆ4

bb

bb

since b is actually not simply a number, but is the scattering length operator acting on |iN, mN (nucleus) and on |sn, mn (neutron) spin states:

Nˆˆ

2ˆ iσ

BAb

Page 25: First Elements of Thermal Neutron Scattering Theory (I) Daniele Colognesi Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sesto Fiorentino

This implies the existence of b+ and b- (if iN>0) for any isotope (N, Z), respectively for iN½:

bibii

A NNN

)1(12

1

bbi

B12

2

N

)1(4

,;,ˆ,;,)12(2

1

;,;,ˆ,;,)12(2

1

NN

22

m,MnnNN

2nnNN

N

m,MnnNNnnNN

N

nN

nN

iiB

AmsMibmsMii

AmsMibmsMii

After some algebra, only for unpolarized neutrons and nuclei, one can write:

Page 26: First Elements of Thermal Neutron Scattering Theory (I) Daniele Colognesi Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sesto Fiorentino

j jN,

2jjN,

2jjN,

j2

j jN,

jjN,jjN,j

12

)())(1(ˆ

12

)1(ˆ

i

bibicb

i

bibicb

Important case: hydrogen

(protium H, iN=1/2): b+=10.85 fm, b-=-47.50 fm

TOT=82.03 b, COH=1.7583 b

(deuterium D, iN=1): b+=9.53 fm, b-=0.98 fm

TOT=7.64 b, COH=5.592 b

Deuterium

Hydrogen

TOT:

With various isotopes (cj ) one gets:

Page 27: First Elements of Thermal Neutron Scattering Theory (I) Daniele Colognesi Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sesto Fiorentino

High-Q spatial incoherence

DIS

2

INC

2

INC

TOT2

INC

2

INC

COH

COH

2

DIS

2

'''

'''

dEd

d

dEd

d

dEd

d

dEd

d

dEd

d

dEd

d

(rearranging…)

0),(),(),(

0for''

distself

INC

2

INC

TOT2

QQQ SSS

dEd

d

dEd

d

Incoherent approximation

Page 28: First Elements of Thermal Neutron Scattering Theory (I) Daniele Colognesi Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sesto Fiorentino

When does it apply in a crystal?When does it apply in a crystal?

2

2/12

2d

uQ

Practical example : D2SO4 (T=10 K)

d(DO)=0.091 nmu21/2(D)=0.0158 nm2u21/2/d2=11.9 nm-1

|Qinc|100 nm-1

Page 29: First Elements of Thermal Neutron Scattering Theory (I) Daniele Colognesi Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sesto Fiorentino

2) Time-correlation functions

S(Q,) and Sself(Q,) are probe independent, i.e. they are intrinsic sample properties. But what do they mean?

Fourier-transforming the two spectral functions, one defines I(Q,t) and Iself(Q,t), the so-called intermediate scattering function and self intermediate scattering function:

),(exp),(

),(exp),(

selfself

QQ

QQ

StidtI

StidtI

Page 30: First Elements of Thermal Neutron Scattering Theory (I) Daniele Colognesi Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sesto Fiorentino

After some algebra (e.g. the Heisenberg representation), one writes I(Q,t) and Iself(Q,t) as time-correlation functions (with a clearer physical meaning):

),(),(),(

)(iexp)0(iexp1

),(

selfdist

jjjself

tItItI

tN

tI

QQQ

RQRQQ

kj,

kj )(iexp)0(iexp1

),( tN

tI RQRQQ

So far we have dealt only with a pure monatomic system (set of nuclei with the same Z).

Page 31: First Elements of Thermal Neutron Scattering Theory (I) Daniele Colognesi Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sesto Fiorentino

s

tIbbsctdtk

k

dEd

d

tIbbzcsctdtk

k

dEd

d

),(][iexp2

1'

'

),(][][iexp2

1'

'

(s)self

2s

2s

INC

2

s z

z)(s,zs

COH

2

Q

Q

Sum over ”s” distinct species (concentration c[s]):

sN

1j

sj

sj

s

(s)self )(iexp)0(iexp

1),( t

NtI RQRQQ

But what about “real-life” samples (e.g. chemical compounds)?

where I(s)self(Q,t) is the so-called self intermediate

scattering function for the sth species:

Page 32: First Elements of Thermal Neutron Scattering Theory (I) Daniele Colognesi Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sesto Fiorentino

),(exp2

1),( (s)

self(s)self tItidtS QQ

and where S(s)self(Q,) is the so-called self

inelastic structure factor for the sth species. Properties similar to those of Sself(Q,):

The coherent part is slightly more complex

I(s,z)(Q,t) is the so-called total intermediate scattering function for the sth species (if sz), or the cross intermediate scattering function for the s,zth pair of species (if sz):

Page 33: First Elements of Thermal Neutron Scattering Theory (I) Daniele Colognesi Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sesto Fiorentino

s zN

j

zk

N

k

sj

zs

z)(s, )(iexp)0(iexp),( tNN

NtI RQRQQ

and S(s,z) (Q,) is the so-called total inelastic

structure factor for the sth species (if sz), or the cross inelastic structure factor for the s,zth pair of species (if sz):

),(exp2

1),( z)(s,z)(s, tItidtS QQ

The total contains a “distinct” plus a “self” terms, while the cross only a “distinct” term.

Page 34: First Elements of Thermal Neutron Scattering Theory (I) Daniele Colognesi Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sesto Fiorentino

Coherent sum rules

factorstructureStatic)(),()0th

QQ SSd

EnergyRecoil2

),()1 R

22st

EM

SdQ

Q

I

I

N

jk,jkII )exp()exp(

1)( RQRQQ iip

NS

where:

0

n

nnn ),()(),(:from

t

tIt

iSd QQ

Page 35: First Elements of Thermal Neutron Scattering Theory (I) Daniele Colognesi Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sesto Fiorentino

ionNormalizat1),()0 selfth

QSd

EnergyRecoil2

),()1 R

22

selfst

EM

SdQ

Q

2Nk

22self

2R

nd

2 :energy Kinetic

),()2

v

QvQ

ME

SEd

Incoherent sum rules

0

selfn

nn

selfn ),()(),(:from

t

tIt

iSd QQ

Page 36: First Elements of Thermal Neutron Scattering Theory (I) Daniele Colognesi Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sesto Fiorentino

U

UQQM

SEd

potentialtheofLaplacian

2),()3

ji,jjii2

4

self3

Rrd

Q

UUM

SEd

potentialtheofgradientSquare

),()4

2

2

4

44self

4R

th

Q

QvQ

Page 37: First Elements of Thermal Neutron Scattering Theory (I) Daniele Colognesi Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sesto Fiorentino

Detailed balance

),(exp),(

),(exp),(

selfself

QQ

QQ

SωS

SωS

Tk

Tk

B

B

from the microscopic reversibility principle:

q.e.d.exp

exp

exp

nm

2

nm,1

n

mn

mn

2

mn,1m

nm

2

nm,1n

EEnimp

pp

EEminp

EEnimp

RQ

RQ

RQ

Analogous proof for the scattering law

Page 38: First Elements of Thermal Neutron Scattering Theory (I) Daniele Colognesi Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sesto Fiorentino

The zoo of excitations…

Page 39: First Elements of Thermal Neutron Scattering Theory (I) Daniele Colognesi Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sesto Fiorentino

…and their (|Q|-E) relationships

Page 40: First Elements of Thermal Neutron Scattering Theory (I) Daniele Colognesi Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sesto Fiorentino

3) Inelastic scattering

from crystals

Scattering law from a many-body system: analytically solved only in few cases (e.g. ideal gas, Brownian motion, and regular crystalline structures, with a purely harmonic dynamics.

n'n,n'nn'n

m

2m

)(iexp)0(iexp

exp2)(

1),(

tbb

tidt

b

RQRQ

Q

Generalized scattering law (sometimes used for mixed systems)

Page 41: First Elements of Thermal Neutron Scattering Theory (I) Daniele Colognesi Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sesto Fiorentino

nnnnINC,

mmINC,

self

)(iexp)0(iexp

exp2

1),(

t

tidt

RQRQ

Q

Generalized self scattering law (sometimes used for mixed systems)

In a harmonic crystal the time correlation functions are exactly solvable in terms of phonons due to the Bloch theorem for a 1D harmonic oscillator (X is its adimensional coordinate):

221expexp XX

Page 42: First Elements of Thermal Neutron Scattering Theory (I) Daniele Colognesi Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sesto Fiorentino

Three-dimensional crystalline lattice (N cells and r atoms in the elementary cell: “l” and “d” indexes):

)()( dl,mequilibriu

l.d tt udlR

Harmonicity (expansion of ul,d(t) in normal modes; e.g. phonon “s”; quantized):

tiia

tiiaNM

t

ssds,

3Nr

1sssds,

2/1s

ddl,

exp

exp2

)(

lqe

lqeu

Page 43: First Elements of Thermal Neutron Scattering Theory (I) Daniele Colognesi Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sesto Fiorentino

with es,d polarization versor, a†s (as) creation

(annihilation) operator of the sth phonon with s frequency and 2|q|-1 wavelength.

Collective index “s”: {qx,qy,qz,j} with q1BZ (first Brillouin zone: N points). “j” labels the phonon branches (3 acoustic e 3r-3 optic).

Polarizations: 2 transverse and 1 longitudinal.

Total: 3Nr d.o.f.

Dispersion curves: s=j(q)

Page 44: First Elements of Thermal Neutron Scattering Theory (I) Daniele Colognesi Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sesto Fiorentino

Coherent scattering

Plugging the equations for Rl,d(t) and ul,d(t) (i.e. phonon quantization) into the coherent d. d. cross-section, one gets:

)(exp)0(expexp2

''exp'

'

d',l'd0,

d d',l'd'd

COH

2

tiitidt

ibbNk

k

dEd

d

uQuQ

lddQ

and using the Bloch theorem together with the commutation rules: eAeB=eA+Be[A,B]/2, one writes:

Page 45: First Elements of Thermal Neutron Scattering Theory (I) Daniele Colognesi Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sesto Fiorentino

)()0(exp

)()0(2

1exp

)(exp)0(exp

d',l'd0,

2d'0,

2d0,

d',l'd0,

t

t

tii

uQuQ

uQuQ

uQuQ

),(expexp2

)/20,()/20,(exp

''exp'

'

d',l'd,d'd

d d',l'd'd

COH

2

tBtidt

BB

ibbNk

k

dEd

d

QQQ

lddQ

and then:

Page 46: First Elements of Thermal Neutron Scattering Theory (I) Daniele Colognesi Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sesto Fiorentino

)(2122

)0,( ds

ss

2

sd,

dd0, Q

eQQ Wn

NMB

where the static term is the Debye-Waller factor, whose exponent is:

with ns number of thermally activated phonons; while the dynamic term contains:

)]''(exp[)]''(exp[

1))((

2),(

sssss

ss

s

*s,d'sd,

d'd

d',l'd,

lddqlddq

eQeQQ

itiniti

nMMN

tB

Page 47: First Elements of Thermal Neutron Scattering Theory (I) Daniele Colognesi Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sesto Fiorentino

Coherent elastic scattering

Phonon expansion

Expanding exp[Bd,d’,l’(Q,t)] in power series, one gets a sum of terms with n phonons (created or annihilated):

...),(!

1

...),(2

1),(1),(exp

nl',d'd,

2l',d'd,l',d'd,l',d'd,

tBn

tBtBtB

Q

QQQ

one gets for the first term, 1, an elastic contribution:

Page 48: First Elements of Thermal Neutron Scattering Theory (I) Daniele Colognesi Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sesto Fiorentino

)/20,()/20,(exp

''exp'

d'd

d d',l'd'd

1

elastCOH,

2

QQ

lddQ

BB

ibbNdEd

d

Integrating over E’ and making use of the reciprocal lattice () sum rule: l exp(iQl) = 83vcell

-1 (Q-), one obtains the well-known Bragg law:

τ

Q

τQ

QQddQ

)peaksBragg()(

)()(exp'exp8

factorstructure cell-unitnuclear:)(

d'dd'd,

d'dcell

3

elastCOH,

2n

F

WWibbNvd

d

Page 49: First Elements of Thermal Neutron Scattering Theory (I) Daniele Colognesi Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sesto Fiorentino

Neutron powder diffraction pattern from Li2NH (plus Al container) at room temperature. Abscissa: d=2Q -1

Page 50: First Elements of Thermal Neutron Scattering Theory (I) Daniele Colognesi Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sesto Fiorentino

One-phonon coherent contribution

If ER,d(Q)</s-1 [the lightest Md] then:

),(1),(exp l',d'd,l',d'd, tBtB QQ

and one obtains the single phonon (created or annihilated) d. d. coherent cross section:

),(exp2

)()(exp

''exp'

'

d',l'd,d'd

d d',l'd'd

1COH,

2

tBtidt

WW

ibbNk

k

dEd

d

QQQ

lddQ

Page 51: First Elements of Thermal Neutron Scattering Theory (I) Daniele Colognesi Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sesto Fiorentino

Plugging the equation for Bd,d’,l’(Q,t) into the one-phonon coherent d. d. cross-section and performing the Fourier transforms and the reciprocal lattice sums, one gets:

)0creation ),( phonon,1(1

)(exp2

8'

'

jsss

2

dsd,d

ds

1s

cell

3

1COH,

2

qτqQ

eQQdQ

τ

--n

WiM

b

Nvk

k

dEd

d d

)0onannihilati),(phonon,1(

)(exp2

8'

'

jsss

2

dsd,d

ds

1s

cell

3

1COH,

2

qτqQ

eQQdQ

τ

-n

WiM

b

Nvk

k

dEd

d d

Page 52: First Elements of Thermal Neutron Scattering Theory (I) Daniele Colognesi Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sesto Fiorentino

DispersionCurvepractical example: lithium hydride LiD (cubic, Fm3m, i.e. NaCl type) with r=2 j=1,2,3

Red: Acoustic

Blue: Optic

Full: Transverse

Dash: Longitudinal

Page 53: First Elements of Thermal Neutron Scattering Theory (I) Daniele Colognesi Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sesto Fiorentino

First Brillouin zonein a face-centered cubic lattice

(f.c.c.)

face-centered cubic lattice

1st Brillouin zone f.c.c.

Page 54: First Elements of Thermal Neutron Scattering Theory (I) Daniele Colognesi Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sesto Fiorentino

One-phonon incoherent contribution

),(exp)0,(exp

)(iexp)0(iexp

dd

d(d)INC

dl,dl,dl,

(d)INC

tBBN

t

QQ

RQRQ

Bloch theorem:

where the static term is the Debye-Waller factor, whose exponent is:

s

ss

2

sd,

dd 12

2)0,( n

NMB

eQ

Q

Page 55: First Elements of Thermal Neutron Scattering Theory (I) Daniele Colognesi Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sesto Fiorentino

tin

tinNM

tB

ss

sss

s

2

sd,

dd

exp

exp12

),(

eQ

Q

with ns number of thermally activated phonons; while the dynamic term contains:

Page 56: First Elements of Thermal Neutron Scattering Theory (I) Daniele Colognesi Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sesto Fiorentino

Single phonon and density of states

Expanding exp[Bd(Q,t)] in power series, one gets a sum of terms with n phonons (created or annihilated):

...),(!

1

...),(2

1),(1),(exp

nd

2ddd

tBn

tBtBtB

Q

QQQ

if ER,d(Q)</s-1 then:

),(1),(exp dd tBtB QQ

Page 57: First Elements of Thermal Neutron Scattering Theory (I) Daniele Colognesi Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sesto Fiorentino

and one obtains the single phonon (creation or annihilation) d. d. incoherent cross section:

)0,(exp1

2

1

4

'

'

dssss

s s

2

sd,

dd

(d)INC

1INC,

2

Q

eQ

Bnn

NMk

k

dEd

d

Density of (phonon) states: density probability for a phonon of any kind with frequency between and +d:

3rN

ss )(

3

1)(

rNg

Page 58: First Elements of Thermal Neutron Scattering Theory (I) Daniele Colognesi Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sesto Fiorentino

)(2exp]})(exp[1{

)()(

24

'

'

d1

2

d

d

2

d

(d)INC

1INC,

2

Qe

WTk

gr

M

Q

k

k

dEd

d

B

The single-phonon incoherent d. d. cross section (creation or annihilation) becomes more simply:

where:

(creat.)0

(annih.)0for

1)(

)()(exp1

11B

forn

nTk

Page 59: First Elements of Thermal Neutron Scattering Theory (I) Daniele Colognesi Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sesto Fiorentino

weak point (“”), i.e. the meaning of the averaged eigenvector:

Δω

2sd,

2

d

s)(3

1)( ee

rNg

The separation from Q is rigorous only in cubic lattices:

2

d

2

s

2sd, )(

3eeQ

Q

otherwise one has the isotropic approximation.

Page 60: First Elements of Thermal Neutron Scattering Theory (I) Daniele Colognesi Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sesto Fiorentino

In addition, using this approximation, one proves that:

2d

2

dd 3)(2)0,( uQQ

QWB

link between the exponent of the Debye-Waller factor

and the mean square displacement of the d species.

It is often used the density of states projected on d:

dTk

G

M

grG

B0

d

d

2d

2

dd

2coth

)(

2

3

)()()(

u

e

Page 61: First Elements of Thermal Neutron Scattering Theory (I) Daniele Colognesi Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sesto Fiorentino

2d

2

1B

d

d

2

d

(d)INC

1INC,

2

3exp

]})(exp[1{

)(

24

'

'

uQ

Tk

G

M

Q

k

k

dEd

d

from which:

70 80 90 100 110 120 130 140 150

0.00

0.01

0.02

0.03

0.04

0.05

LiH, Optic

ZH()

(m

eV

-1)

(meV)

DDM13, (Dyck & Jex, 1981) SM-IV, (Verble, Warren & Yarnell, 1968) TOSCA-II (Colognesi et al., 2002)

Density of states projected on Hpractical example: lithium hydride LiH

—————— transverse—————— longitudinal

Page 62: First Elements of Thermal Neutron Scattering Theory (I) Daniele Colognesi Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sesto Fiorentino

Multiphonon incoherent contributions

1INC,

2

INC

2

MultINC,

2

'''

dEd

d

dEd

d

dEd

d

Coherent multiphonon terms are too complex and not very useful (e.g. for powders: Bredov approximation). Here only incoherent terms. Definition:

ddd

(d)INC

INC

2

),(exp)0,(exp4

exp2

'

'

tBB

tidt

k

k

dEd

d

QQ

remembering that:

Page 63: First Elements of Thermal Neutron Scattering Theory (I) Daniele Colognesi Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sesto Fiorentino

...),(!

1

...),(2

1),(1),(exp

nd

2ddd

tBn

tBtBtB

Q

QQQ

and that:

one gets for the first term, 1, an elastic contribution:

dd

(d)INC

dd

(d)INC

ElasINC,

2

)(2exp4

')(2exp

4

exp2

'

'

QQ Wk

kW

tidt

k

k

dEd

d

Page 64: First Elements of Thermal Neutron Scattering Theory (I) Daniele Colognesi Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sesto Fiorentino

not to be confused with the incoherent s. d. cross-section:

''0 INC

2

INC

dEdEd

d

d

d

For the second term one gets, B(Q,t), the single phonon contribution (1, created or annihilated) already known:

)(2exp]})(exp[1{

)(

24

'

'

d1B

d

d

2

d

)(

1INC,

2

QWTk

G

M

Q

k

k

dEd

d dINC

Page 65: First Elements of Thermal Neutron Scattering Theory (I) Daniele Colognesi Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sesto Fiorentino

While for the (n+1)th term, one gets Bn(Q,t), a contribution with n phonons (created and/or annihilated). Using the convolution theorem:

n

d

timesn

dddnd

0

),(~

),(~

...),(~

),(~

),(exp2

QB

QBQBQBtQBtidt

where::

)(2)]}/(exp[1{

)(

2),(

~d

d

2

B

d

d

2

d

fM

Q

Tk

G

M

QQB

Page 66: First Elements of Thermal Neutron Scattering Theory (I) Daniele Colognesi Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sesto Fiorentino

we obtain:

)(2exp!

)(

24

'

'

d

nd

n

d

2

d

(d)INC

nINC,

2

QWn

f

M

Q

k

k

dEd

d

Self-convolution shifts and broadens fd(), but blurs its details too…

Sjölander approximation: [fd()]n is replaced by an appropriate Gaussian (same mean and variance ):

Page 67: First Elements of Thermal Neutron Scattering Theory (I) Daniele Colognesi Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sesto Fiorentino

2ddk2

dd

d

1d2

dd

d

2dd

d

d

2

;2

3

;3

2

:)(for

mEM

v

AM

m

MA

f

u

u

u

d

2d

n

dd

nd 2

exp1

2

1)(

nv

nm

mnvf

Then we have:

Properties

of fd()

Page 68: First Elements of Thermal Neutron Scattering Theory (I) Daniele Colognesi Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sesto Fiorentino

0 20 40 60 80 100 120 140 160 1800.0

0.5

1.0

1.5

2.0

2.5

3.0

self(

Q,

) (a

.u.)

E (meV)

Not always appropriate…

-D-glucose at T=19 K, example from TOSCA