first draftresearchpaperorfinal

21
RUNNING HEAD: UNDERSTANDING THE EFFECTS OF LIGHT REGARDING MELATONIN Understanding the Effects of Light Regarding Melatonin Daniela I. Lin Everglades High School

Upload: daniela-lin

Post on 09-Aug-2015

57 views

Category:

Education


0 download

TRANSCRIPT

RUNNING HEAD: UNDERSTANDING THE EFFECTS OF LIGHT REGARDING MELATONIN

Understanding the Effects of Light Regarding Melatonin

Daniela I. Lin

Everglades High School

RUNNING HEAD: UNDERSTANDING THE EFFECTS OF LIGHT REGARDING MELATONIN 2

Table of Contents

Title Page (pg 1)

Table of Contents (pg 2)

Abstract (pg 3)

Introduction (pg 4-5)

Method (includes participants, materials, apparatus, and procedure)(pg6-7)

Results (pg 7)

Discussion (pg 8)

References (pg 9-11)

Tables/Figures (pg 12-15)

RUNNING HEAD: UNDERSTANDING THE EFFECTS OF LIGHT REGARDING MELATONIN 3

Abstract

Melatonin is a sleep-inducing hormone that’s produced by the brain’s pineal gland it’s normally

suppressed only by daylight. Nowadays though, artificial daylight in our modern technology has been

found to mimic natural light confusing the brain into decreasing melatonin even at night too! Studies

conducted have shown that before (Fonken, L., & Nelson, R., 2011) artificial light present in devices had

been emitting mostly red wavelengths but now it has replaced with “bluish bulbs” to increase energy

efficiency. Through studies (utilizing precise dime-semeters and specialized googles) conducted by

Figueiro, M., Plitnick, B., Rea, M., & Wood, B. (2012), we can see that after 2 hours there is a significant

repression of melatonin.

Keywords: Melatonin, Blue Light, self-luminous devices, Circadian Rhythm, Artificial light

RUNNING HEAD: UNDERSTANDING THE EFFECTS OF LIGHT REGARDING MELATONIN 4

Introduction

For more than 120 years, artificial light has been emitting mostly red wavelengths (for example

incandescent light bulbs). The problem now states Fonken, L., & Nelson, R. (2011) is that the artificial

light sources we use today are increasingly “becoming blue” or utilizing short blue wavelengths. He

estimates that 1.6 billion new computers, phones, and cellphones were sold last year alone. These

newer technologies were replaced with even “bluer bulbs” for increase energy efficiency.

In 1958, Woodland Hastings and Beatrice Sweeney (2010, January 1) tested the ability of

different wavelengths. They found that “the greatest power to reset the organism’s daily meter lay in

the blues.” Now studies show that light acts on the body on two pathways (the primary optic tract and

the retinohypothalamic tract). The primary optic tract is known to control over visual effects and visual

reflexes. While the retinohypothalamic tract controls the circadian, endocrine, and neurobehavioral

functions. Thus making the retinohypothalamic tract more sensitive to blue light exposure(energy

wavelength of about 459-485 nm). Blue’s power to “reset” circadian rhythms is not because of the color

but because of the fact that it more easily penetrates into the surface of oceans and photoreceptors

than other visible wavelengths(such as red=incandescent bulbs). Scientists believe that the color balance

of the sky might have helped preserve blue light’s reset role throughout history.

Electronic devices with overly brightened blue emitting displays can cause great suppression of

the hormone melatonin. Melatonin is a sleep-inducing hormone that is produced by the brain’s pineal

gland. Normally, daylight activates light sensitive retinal proteins that control our biological clock by

triggering signals to the brain’s suprachiasmatic nucleus (SCN). As a result, the SCN causes the pineal

RUNNING HEAD: UNDERSTANDING THE EFFECTS OF LIGHT REGARDING MELATONIN 5

gland to decrease its production of melatonin. However, as a result of artificial light in self-luminous

tablets mimicking the daylight the brain gets “confused” and decreases melatonin production during the

night too (instead of increasing it). Which explains why people nowadays are going to sleep later

(especially teenagers).

Suppression of melatonin at night (by light) results in circadian disruption (our human biological

clock) which can lead to higher chances of obtaining diabetes, obesity, breast cancer, and other

diseases. To produce white lights electronic devices must emit at short wavelengths which is especially

disrupts our circadian rhythm. The 2011 “Sleep in America” poll released by the National Sleep

Foundation (NSF) has found that 43% of Americans between the ages of 13-64 said that they

rarely/never get a good night’s sleep during school weeks. More than half state that they have

experienced some sort of sleep problem often/every night (like snoring, waking at night, and feeling

unrefreshed in the morning). Overall, 95% of Americans surveyed admitted to using devices that emitted

short wavelengths before bedtime. These following results show potential positive correlation of

artificial light and melatonin suppression (which leads to inability to sleep). According to Michael

Gradisar, PhD, Flinders University (2011, March 7), baby boomers (46-64 years old), generation X'ers

(30-45 year olds), generation Y'ers (19-29 year olds), and generation Z'ers (13-18 year olds) all report

very different technological preferences (hence very different sleep patterns/schedules). Roughly 55%

of generation Z'ers and 47% of generation Y'ers say that they surf the Internet every night/ almost every

night within the hour before their bedtime. About 18% of generation Z'ers and 20% of generation Y’ers

state that they are awakened by a text message, phone call, or email after having gone to sleep(they

state that this happens a few times a week). As a result, generation Z’ers and generation Y’ers report

more of an average sleepiness than the baby boomers and generation X’ers. Meaning that suppression

of melatonin affects teenagers the most and thus it’s of utmost importance to restrict usage of modern

technology.

RUNNING HEAD: UNDERSTANDING THE EFFECTS OF LIGHT REGARDING MELATONIN 6

Method

The materials utilized were a dime-simeter which is a small and inexpensive “data logging

device” that can record light and activity levels over many days. It can be worn as a badge, collar, hat,

near the eye, or etc. the size is comparable to a dime (hence the name). Also special glasses that

absorbed or blocked artificial Light, compact fluorescent light bulbs with differing color frequencies, and

self-luminous devices (more specifically an IPAD Air) accompanied it.

To ensure valid test results the participants chosen were around average age of the 18.9.

Individuals that possessed major health problems such as heart disease, diabetes, and high blood

pressure or were taking over the counter medication were excluded from the experiment. “Atypical

people” that were predisposed to rising earlier or later were also filtered out of the experiment through

a questionnaire. All of this made sure that melatonin production was made at the relatively same time in

all subjects (they approximated from 11:00 pm-1:00 am).

In order to test their theories, they gathered 13 individuals who utilized self-luminous tablets to

perform daily tasks (read, play games, watch movies, and etc.) The 13 participants were divided into

three groups (control group, extra melatonin suppression group, and no melatonin suppression group).

The first group was given a pair of clear goggles with blue light (470—nm). This was the group with

“extra melatonin suppression” because blue light is known to be a strong melatonin suppressor. The

second group used orange tinted glasses that filtered out short-wavelengths of radiation emitted by the

tablets (the “no melatonin suppression group”). The third and final group was the control group who

wore nothing and used the tablets like any other regular person. All three groups had their tablet set at

RUNNING HEAD: UNDERSTANDING THE EFFECTS OF LIGHT REGARDING MELATONIN 7

the brightest possible setting. A dime-simeter was worn close to the corners of the eye by each subject

to accurately record each person’s light exposure results. The research team hypothesized that the

amount of time exposed and the distance between the screen and the eye impacted how much

melatonin was inhibited. After a one hour exposure, the controlled group’s melatonin was repressed by

about 7%, the group with the blue goggles was about 48%, and the group with the tinted orange goggles

was not applicable (because it was used as a dark control in other words if measured it would be none

b/c their goggles were made to filter out all the light). Although melatonin levels were still rising they

rose lower than a normal person’s would if surrounded by pitch darkness. A two hour exposure showed

a significant amount of blockage (of the production of melatonin). The controlled group’s melatonin

was repressed by 23%, the blue goggles group was about 66%, and the orange tinted glasses group was

still not applicable.

Results

For the tablet with blue LEDs condition, suppression values were significantly different than zero

at 00:00 (t(10) ¼ 15.0, p < 0.001) and at 01:00 (t(11) ¼ 16.1,p < 0.001). For the tablet-only condition,

suppression was not significantly different than zero after 1 hour exposure (t(10) ¼ 1.80, p ¼ 0.103) to

the tablet, but was significantly greater than zero after 2 hour of exposure (t(11) ¼ 3.39,p ¼ 0.006).

According to the studies(shown below in figures pg 13)of Figueiro, M., Plitnick, B., Rea, M., & Wood, B.

(2012), the calculated mean SEM (standard error of the means) CS values after 1 hour exposures were

0.46 plus or minus 0.0013 for the tablet with blue LEDs condition and 0.03 plus or minus 0.0066 for the

tablet-only condition.

RUNNING HEAD: UNDERSTANDING THE EFFECTS OF LIGHT REGARDING MELATONIN 8

Discussion

Figueiro (2012) concluded that even if melatonin suppression is not significant (for example

after an hour) you are still susceptible to an increased risk of diseases such as obesity (lack of sleep

makes the brain irritable and seek comfort= food). She and her team also figured that the type of task

being performed also impacts how much light is delivered to the cornea. This was proven by the team’s

dimesimeter measurements, which showed that the brightness levels varied approximately 5 lux per

activity (diff brightness levels= diff levels of repression). The team concluded exposure to compact

fluorescent lamps at 6500k suppressed melatonin the most. As a result of blocking melatonin (hormone

that induces sleep) the most, people in the 6500k setting reacted with faster reaction times because

they were more alert than others.

They also concluded that commercially available fluorescent light bulbs with different color

temperatures not only increasingly affect the circadian rhythm (a human’s 24 hour biological clock) but

also cognition or cognitive performances (because of lack of sleep). She hopes that through these

studies corporations and institutions can develop more “circadian-friendly” electronic devices. These

devices would decrease and increase contrast levels based on the time of the day (able to “tell” the time

even through bad weather conditions). Until then, she states that the best thing for people to do is limit

the amount used/time spent using electronic devices, dimming the screen as much as you can, and not

utilizing them at all before bedtime to lessen melatonin suppression.

RUNNING HEAD: UNDERSTANDING THE EFFECTS OF LIGHT REGARDING MELATONIN 9

References

Bernstein, M., & Kallabis, R. (n.d.). Healthy Body Healthy Planet: Issues in Artificial Lighting. Retrieved

September 21, 2014.

Duffy, J., & Czeisler, C. (2010). Effect of Light on Human Circadian Physiology. Retrieved September 21,

2014, from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2717723/

Figueiro, M., Plitnick, B., Rea, M., & Wood, B. (2012). Light level and duration of exposure determine the

impact of self-luminous tablets on melatonin suppression. Applied Ergonomics, 44(2), 1-4. Retrieved

September 21, 2014, from http://www.gwern.net/docs/melatonin/2012-wood.pdf

Fonken, L., & Nelson, R. (2011). Illuminating the deleterious effects of light at night. <i>F1000 Medicine

Reports,</i> <i>3</i>(18). Retrieved September 21, 2014, from

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3169904/

Rensselaer Polytechnic Institute (RPI). (2012, August 27). Light from self-luminous tablet computers can

affect evening melatonin, delaying sleep. ScienceDaily. Retrieved September 22, 2014 from

www.sciencedaily.com/releases/2012/08/120827094211.htm

RUNNING HEAD: UNDERSTANDING THE EFFECTS OF LIGHT REGARDING MELATONIN 10

Annual Sleep in America Poll Exploring Connections with Communications Technology Use and Sleep.

(2011, March 7). Retrieved October 1, 2014, from http://sleepfoundation.org/media-center/press-

release/annual-sleep-america-poll-exploring-connections-communications-technology-use-/page/0,1/

Beil, L. (2011, July 4). In Eyes, a Clock Calibrated by Wavelengths of Light. <i>The New York Times</i>.

Retrieved October 1, 2014, from http://www.nytimes.com/2011/07/05/health/05light.html?

_r=3&pagewanted=all&

Chellappa, S., Steiner, R., Blattner, P., Oelhafen, P., Gotz, T., & Cajochen, C. (2011). Non-Visual Effects of

Light on Melatonin, Alertness and Cognitive Performance: Can Blue-Enriched Light Keep Us Alert? <i>Non-

Visual Effects of Light on Melatonin, Alertness and Cognitive Performance: Can Blue-Enriched Light Keep

Us Alert?,</i> <i>6</i>(1), 1-11. Retrieved October 1, 2014, from

http://www.plosone.org/article/fetchObject.action?uri=info:doi/10.1371/

journal.pone.0016429&representation=PDF

What’s in a color? The Unique Human Health Effects of Blue Light. (2010, January 1). <i>What’s in a Color?

The Unique Human Health Effects of Blue Light</i>, A23-A27.

Kresser, C. (n.d.). How artificial light is wrecking your sleep, and what to do about it. Retrieved October 27,

2014, from http://chriskresser.com/how-artificial-light-is-wrecking-your-sleep-and-what-to-do-about-it

RUNNING HEAD: UNDERSTANDING THE EFFECTS OF LIGHT REGARDING MELATONIN 11

Blue light has a dark side. (2012, May 1). Retrieved October 27, 2014, from

http://www.health.harvard.edu/newsletters/harvard_health_letter/2012/may/blue-light-has-a-dark-side/

Light suppresses melatonin secretion in humans;AJ Lewy, TA Wehr, FK Goodwin, DA Newsome, and SP

Markey Science 12 December 1980: 210 (4475), 1267-1269. [DOI:10.1126/science.7434030]

Magri, F. et al. Changes in Endocrine Circadian Rhythms as Markers of Physiological and Pathological Brain

Aging. Chronobiology International. 1997 July; volume 14, issue 4, pp. 386-396.

Stoschitzky K, Sakotnik A, Lercher P, Zweiker R, Maier R, Liebmann P, Lindner W. Influence of beta-

blockers on melatonin release. European Journal of Clinical Pharmacology. 1999. April. Vol. 55. Issue 2.

pp.111-115.

Kalpakcioglu B. and Senel K. The Role of Melatonin in Rheumatic Diseases. Infectious Disorders Drug

Targets. 2009, August. Vol. 9. Issue 4. pp. 453-456.

RUNNING HEAD: UNDERSTANDING THE EFFECTS OF LIGHT REGARDING MELATONIN 12

Tables

Figure i- Comparison between relative sleepiness/wellbeing in regards to frequency of light exposed to

RUNNING HEAD: UNDERSTANDING THE EFFECTS OF LIGHT REGARDING MELATONIN 13

Figure ii- Supports RESULTS section of experiment (shows overall values)

RUNNING HEAD: UNDERSTANDING THE EFFECTS OF LIGHT REGARDING MELATONIN 14

Figure iii-How the Circadian Rhythm Functions

RUNNING HEAD: UNDERSTANDING THE EFFECTS OF LIGHT REGARDING MELATONIN 15

Figure iv-No glasses, blue melatonin supressing glasses, and orange light supressing glasses used in experiment